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Abstract. We investigate congruences in one-element extensions of algebras in the variety
generated by tournaments.
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0. Introduction

Recently M. Maróti proved that every subdirectly irreducible algebra in the vari-
ety T generated by tournaments is a tournament; equivalently, the variety generated
by tournaments coincides with the quasivariety generated by tournaments. This has

been a conjecture formulated in the paper [3]; in that paper and in [1] we have proved
some particular cases. In [3] we have also formulated a stronger conjecture, which

remains open: A groupoid belongs to the variety T if and only if it satisfies the
three-variable equations of tournaments and avoids the algebras J3 andMn (n > 3;
these algebras are defined below). This has been verified for all groupoids with at
most ten elements.

The aim of this paper is to investigate one-element extensions in the variety T .
Let A and B be two groupoids such that B ∈ T and B is an extension of A by an

element e. Denote by V the set of the elements a ∈ A such that a → e in B. The
main result of this paper states that the congruence of B generated by all pairs of

incomparable elements from V has all nontrivial blocks contained in V . Since there
is a hope that this could be useful for the solution of the stronger conjecture, we

While working on this paper the author was partially supported by the Grant Agency of
the Czech Republic, grant 201/99/0263 and by the institutional grant MSM113200007.
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will formulate and prove this result in terms of algebras satisfying the three-variable

equations of tournaments and avoiding J3 and Mn. (See Theorem 2.12.)

For the terminology and notation see [4] and [2].

We denote by T the class of tournaments, and by T the variety generated by T.
For any n > 1, let Tn denote the variety generated by all n-element tournaments,
and let T n denote the variety determined by the at most n-variable equations of
tournaments. So, Tn ⊆ Tn+1 ⊆ T ⊆ T n+1 ⊆ T n for all n.

For a variety V and a positive integer n, we denote by Fn(V ) the free algebra in V

on n generators. According to Theorem 3 of [3], Fn(T ) = Fn(Tn) = Fn(T n).

According to [3], the following four equations are a base for the equational theory

of T 3:

(e1) xx = x,

(e2) xy = yx,

(e3) xy · x = xy,

(e4) (xy · xz)(xy · yz) = xyz

and the following are consequences of these four equations:

(e5) (xy · xz)x = xy · xz,

(e6) (xy · xz) · yz = xyzy,

(e7) xyzy = xzyz,

(e8) (yzx)(xy · xz) = xy · xz,

(e9) xzyxz = xyz.

According to Lemma 5 of [3], for any three elements a, b, c of an algebra A ∈ T 3 we

have:

(p1) If ab → c, then a, b, c generate a semilattice.

(p2) If ab → c → a, then bc = ab.

(p3) If a → c → ab, then c → b.

(p4) If a → c and b → c, then ab → c.

(p5) If a → c → b and a, b, c, ab are four distinct elements, then the subgroupoid
generated by a, b, c either contains just these four elements and c → ab, or

else it contains precisely five elements a, b, c, ab, ab · c and a → ab · c → b.

Our proof in [2] of the fact that the variety T is not finitely based relied on
an infinite sequence Mn (n > 3) of algebras with the following properties: Mn is
subdirectly irreducible, |Mn| = n + 2 and Mn ∈ T n − T n+1. These algebras are
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defined as follows. Mn = {a, b, c, d1, . . . , dn−2, e};

ab = e,

e → a → c,

e → b → c,

e → c,

a → d1 → d2 → . . . → dn−2 → b,

di → c for i < n− 2,

c → dn−2,

di → e for all i,

di → a for i > 1,

di → b for all i,

dj → di for j > i + 1.

We will also need the five-element subdirectly irreducible algebra J3 ∈ T 3, intro-
duced in [3] and defined on {a, b, c, d, e} by a → d → b → c → a, c → e, d → c, d → e

and ab = e. The algebrasM3, M4 and J3 are pictured in Fig. 1. (The monolith of
Mn identifies ab with b; the monolith of J3 identifies ab with b with c.)
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c

d1
b

e = ab

a

c

b

e = ab

d1 d2

a

c

b

e = ab

d

M3 M4 J3

Figure 1.

Two elements a, b of an algebra A ∈ T 3 are said to be comparable if either a → b

or b → a; we write a l b in that case. If a, b are incomparable, we write a ‖ b.

We say that an algebra A avoids an algebra B if A contains no subalgebra isomor-

phic to B. We denote by T ∗ the class of the algebras belonging to T 3 and avoiding
the algebras J3 andMn for all n > 3.
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1. One-element extensions

Throughout this paper let A be an algebra belonging to T ∗; let A = U ∪ V be
a partition of A into two disjoint subgroupoids such that u ∈ U , v ∈ V and u ‖ v

imply uv ∈ U ; let e be an element not belonging to A; define an algebra B with the
underlying set A ∪ {e} in such a way that A is a subgroupoid and v → e → u for all

u ∈ U and v ∈ V . Then, as it is easy to see, B belongs to T 3. We will assume that
B avoids J3 andMn for all n > 3, so that B ∈ T ∗.

1.1 Proposition. The following are true:

(1) There are no elements u ∈ U , v ∈ V and a ∈ A with u ‖ v, u → a → v and

a → uv.

(2) There are no elements u ∈ U and v, w ∈ V with u ‖ v, u → w and v → w.

(3) There are no elements u ∈ U and v1, v2 ∈ V with v1 ‖ v2, v1 → u → v2 and

u → v1v2.

�
	�����
. Suppose there are such elements.

(1) Since u → a → v → e → u, a → uv, e → uv and a l e, these five elements

constitute a subalgebra isomorphic to J3 (no matter whether a → e or e → a).

(2) The elements v → e → u with uv and w constitute a subalgebra isomorphic

toM3.

(3) The elements v1 → u → v2 with v1v2 and e constitute a subalgebra isomorphic
toM3.

We get a contradiction in each case. �

1.2. Proposition. Let u ∈ U , v ∈ V , u ‖ v. Then there is no element a ∈ A

with u → a → v.

�
	�����
. Suppose there is. Put a′ = uva. By (p5) we have u → a′ → v. Since

a′ → uv, we get a contradiction with 1.1(1). �

1.3. Proposition. Let u ∈ U , v ∈ V , u ‖ v. Then there is no element w ∈ V

with u → w.

�
	�����
. Suppose there is. By 1.1.(2), v � w. By 1.2, w � v. Hence v ‖ w. If

vw ‖ u, we get a contradiction with 1.1(2), since u → w and vw → w. If u → vw,
we get a contradiction with 1.2, since u → vw → v. Hence vw → u. Then also

vw → uv. We have uvw = vuw = vwuvw = vwvw = vw. Clearly, vw 6= uv and
vw 6= w. Hence uv ‖ w. But then uvw ∈ U , a contradiction with uvw = vw ∈ V . �
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For v1, v2 ∈ V we write v1 ≡ v2 if for every u ∈ U , one of the following three cases

takes place:
(1) u → v1 and u → v2;
(2) v1 → u and v2 → u;

(3) u ‖ v1, u ‖ v2 and uv1 = uv2.
Clearly, ≡ is an equivalence on V .

1.4. Proposition. Let v1, v2 ∈ V , v1 ‖ v2. Then v1 ≡ v2 ≡ v1v2.
�
	�����

. Let u ∈ U .

Let u → v1. By 1.3, u is comparable with both v2 and v1v2. If v2 → u, then
u → v1v2 by (p5) and we get a contradiction by 1.1(3). Hence u → v2, and then

u → v1v2.
Now let u → v1v2. By 1.3, u is comparable with both v1 and v2. We cannot have

v1 → u and v2 → u at the same time, since then v1v2 → u. Hence either u → v1 or
u → v2. But then we have both u → v1 and u → v2 by the first part of the proof.

This proves that for any u ∈ U , u → v1 iff u → v2 iff u → v1v2.
Let u ‖ v1. Then uv1 → v1 implies uv1 → v2 and uv1 → v1v2. We have v1v2u =

v1uv2v1u = v1uv1u = v1u. Hence u ‖ v1v2. We cannot have u → v2. If v2 → u, then
v1v2 → v2 → u and uv1 → v2 contradict (p5). Hence u ‖ v2. Similarly as for v1, we

get v1v2u = v2u.
The rest is clear. �

1.5. Proposition. Let u1, u2 ∈ U and v ∈ V be such that u1 ‖ u2 and u1 → v →
u2. Then v → u1u2 and there is no w ∈ V with u2 → w → u1.
�
	�����

. If v ‖ u1u2, then u1u2 → u1 → v contradicts 1.2. By (p5) we get
v → u1u2. Suppose there is an element w ∈ V with u2 → w → u1. Then w → u1u2,

and v l w by 1.4. But then the elements u1, u2, v, w, u1u2 constitute a subalgebra
isomorphic to J3, a contradiction. �

1.6. Proposition. Let u ∈ U and v1, v2 ∈ V be such that u ‖ v1 and u ‖ v2.

Then uv1 = uv2.
�
	�����

. Suppose uv1 6= uv2. By 1.4, v1 l v2. Without loss of generality, we can
assume that v1 → v2. By 1.3, uv1 l v2. If uv1 → v2 then uv2v1 = uv1v2uv1 = uv1,

so that uv2 ‖ v1, a contradiction by 1.3. Hence v2 → uv1. From uv2v1 = v2uv1 =
v2v1uv2v1 = v1 we get v1 → uv2. If uv1 ‖ uv2, we get a contradiction by the second

part of 1.5. Hence uv1 l uv2. But then, by (p5), both uv1 → uv2 and uv2 → uv1, a
contradiction. �
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1.7. Proposition. Let u ∈ U , v ∈ V , u ‖ v. Then for every w ∈ V either

uw = uv or else w → u and w → uv.

�
	�����
. By 1.3 we cannot have u → w. If u ‖ w, then uw = uv by 1.6. It

remains to consider the case w → u. By 1.4, v l w. If w → v, then clearly w → uv.
Finally, let v → w. By 1.3 we have uv l w, and hence w → uv by (p5). �

2. Incomparabilities in V

By a basic pair we will mean a pair a, b of elements of V such that either a ‖ b or

b = ad for some d ∈ V with d ‖ a or a = bd for some d ∈ V with d ‖ b. In this section
we assume that there exists a basic pair a, b and a sequence c1, . . . , cn of elements of V

such that ac1 . . . cn 6≡ bc1 . . . cn. Then let us consider one such sequence a, b, c1, . . . , cn

minimal in the sense that n is as small as possible and, among all such sequences of

the same length, the number Y = |{i : ac1 . . . ci−1 ‖ ci}| + |{i : bc1 . . . ci−1 ‖ ci}| is
as small as possible. By 1.4, we have n > 1.
Two elements v, v′ of V are said to be connected through basic pairs if there exists

a finite sequence v0, . . . , vk of elements of V such that v0 = v, vk = v′ and for each
j = 1, . . . , k, vj−1, vj is a basic pair.

2.1. Proposition. Let i ∈ {1, . . . , n}. Then ac1 . . . ci 6= bc1 . . . ci and the ele-

ments ac1 . . . ci and bc1 . . . ci are not connected through basic pairs.

�
	�����
. Suppose the elements are connected through v0, . . . , vk. For each

j = 1, . . . , k we have vj−1ci+1 . . . cn ≡ vjci+1 . . . cn by the minimality of n. Hence,

by the transitivity of ≡, ac1 . . . cn ≡ bc1 . . . cn, a contradiction. �

2.2. Proposition. c1 l a and c1 l b.

�
	�����
. It is easy to see that if either c1 ‖ a or c1 ‖ b, then (in every one of

a small number of possible cases) ac1 and bc1 are connected through basic pairs, a

contradiction with 2.1. �

2.3. Proposition. If b = ad for some d ‖ a, then a → c1 → b and c1 → d.

�
	�����
. Suppose c1 → a. Due to 2.1 and 2.2, b → c1. But then c1d = b and

c1, b is a basic pair, a contradiction. Hence a → c1. Then c1 → b and, by (p3),

c1 → d. �
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2.4. Proposition. If a ‖ b then either a → c1 → b and c1 → ab, or b → c1 → a

and c1 → ab.
�
	�����

. Clearly, either a → c1 → b or b → c1 → a. By symmetry, it is sufficient

to consider the first case. Then ac1 = a and bc1 = c1. If c1 ‖ ab, then a, ab and ab, c1

are basic pairs, a contradiction. Hence c1 l ab and c1 → ab by (p5). �

It follows from these lemmas that without loss of generality, we can assume that

a ‖ b, a → c1 → b and c1 → ab. So, we will go on under this assumption. We will
assume that we have already proved for some index i the following: a → c1 → . . . →
ci → b, cj → b for all j 6 i, cj → a for all 2 6 j 6 i, ck → cj for 1 6 j < j+2 6 k 6 i,
cj → ab for all j 6 i, and a ≡ c1 ≡ . . . ≡ ci−1 ≡ b. (This has been proved for i = 1.)
Put c0 = a. Clearly, {ac1 . . . cj , bc1 . . . cj} = {cj−1, cj} for 1 6 j 6 i.

2.5. Proposition. ci ≡ a. Consequently, n > i.
�
	�����

. Let u ∈ U . Let a → u, so that also b → u, ab → u and cj → u for

j < i. Suppose u → ci. Then all these elements constitute a subalgebra isomorphic
toMi+2, a contradiction. So, a → u implies that either ci → u or u ‖ ci.

Let ci → u. Suppose u → a. Then all these elements together with e (with
respect to a → c1 → . . . → ci → u → b) constitute a subalgebra isomorphic toMi+3,

a contradiction. So, ci → u implies that either a → u or a ‖ u.
If u → ci then by 1.3 we cannot have a ‖ u, so we get a → u. If u → a then we

cannot have u ‖ ci, so we get u → ci. So, u → a if and only if u → ci.
Let u ‖ ci. Then uci ∈ U and uci → ci. Hence uci → a. By 1.7 we get ua = uci.

Quite similarly, if u ‖ a then uci = ua. The rest is clear. �

2.6. Proposition. ci+1 l ci.
�
	�����

. Suppose ci+1 ‖ ci. If also ci+1 ‖ ci−1 then ci−1ci+1, cici+1 can be

connected through basic pairs, a contradiction. If ci+1 → ci−1 then ci−1ci+1, cici+1

is a basic pair, a contradiction. Hence ci−1 → ci+1 and thus ci−1 → cici+1. We

have {ci−1ci+1, cici+1} = {ci−1, cici+1}. But then ci+1 can be replaced with cici+1,
a contradiction with the minimality of Y . �

2.7. Proposition. ci+1 l ci−1.
�
	�����

. Suppose ci+1 ‖ ci−1. If ci+1 → ci then ci−1ci+1, cici+1 is a basic pair,
a contradiction. If ci → ci+1 then {ci−1ci+1, cici+1} = {ci−1ci+1, ci}, ci−1ci+1 l
ci, ci → ci−1ci+1 and ci+1 can be replaced with ci1ci+1, a contradiction with the
minimality of Y . �
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2.8. Proposition. ci → ci+1 → ci−1.

�
	�����
. Suppose, on the contrary, that ci−1 → ci+1 → ci, so that {ci−1ci+1,

cici+1} = {ci−1, ci+1}. Of course, i > 1.
Supppose there is an index j with 1 6 j < i − 1 and cj � ci+1, and let j be

the largest index with that property. If cj ‖ ci+1, then this is a basic pair and
{cjcj+1, ci+1cj+1} = {cj , cj+1}, a contradiction with the minimality of n. Hence

ci+1 → cj . By the minimality of n, cjci+1 . . . cn ≡ cj+1ci+1 . . . cn, i.e., ci+1 . . . cn ≡
cj+1ci+2 . . . cn. But also cj+1ci+2 . . . cn ≡ cj+2ci+2 . . . cn ≡ . . . ≡ ci−1ci+2 . . . cn

and hence ci−1ci+2 . . . cn ≡ ci+1ci+2 . . . cn, a contradiction. We have proved that
cj → ci+1 for all 1 6 j 6 i− 1.
Suppose a ‖ ci+1. Then aci+2 . . . cn ≡ ci+1ci+2 . . . cn, but also aci+2 . . . cn ≡

c1ci+2 . . . cn ≡ . . . ci−1ci+2 . . . cn, so that ci−1ci+2 . . . cn ≡ ci+1ci+2 . . . cn, a contra-
diction.

Suppose ci+1 → a. Then aci+1ci+2 . . . cn ≡ c1ci+1 . . . cn, i.e., ci+1ci+2 . . . cn ≡
c1ci+2 . . . cn. But also c1ci+2 . . . cn ≡ c2ci+2 . . . cn ≡ . . . ≡ ci−1ci+2 . . . cn, so that
ci−1ci+2 . . . cn ≡ ci+1ci+2 . . . cn, a contradiction.

Hence a → ci+1.

Suppose b ‖ ci+1. Then ci+1cici+2 . . . cn ≡ bcici+2 . . . cn, i.e., ci+1ci+2 . . . cn ≡
cici+2 . . . cn. But also ci−1ci+2 . . . cn ≡ cici+2 . . . cn and thus ci−1ci+2 . . . cn ≡
ci+1ci+2 . . . cn, a contradiction.

Suppose ci+1 → b. Then aci+1ci+2 . . . cn ≡ bci+1ci+2 . . . cn, i.e., aci+2 . . . cn ≡
ci+1ci+2 . . . cn. But also aci+2 . . . cn ≡ c1ci+2 . . . cn ≡ . . . ≡ ci−1ci+2 . . . cn, so that
ci−1ci+2 . . . cn ≡ ci+1ci+2 . . . cn, a contradiction.

Hence b → ci+1. Then also ab → ci+1. But then all these elements constitute a

subalgebra isomorphic to Mi+2, a contradiction. �

2.9. Proposition. ci+1 → cj for all 1 6 j 6 i− 1.
�
	�����

. Suppose, on the contrary, that j is the largest index with 1 6
j < i − 1 and ci+1 � cj . If ci+1 ‖ cj then ci+1ci+2 . . . cn ≡ cjci+2 . . . cn ≡
cj+1ci+2 . . . cn ≡ . . . ≡ cici+2 . . . cn, a contradiction. If cj → ci+1 then cjci+1 ×
ci+2 . . . cn ≡ cj+1ci+1ci+2 . . . cn, i.e., cjci+2 . . . cn ≡ ci+1ci+2 . . . cn, but also cj ×
ci+2 . . . cn ≡ cj+1ci+2 . . . cn ≡ . . . ≡ cici+2 . . . cn, so that cici+2 . . . cn ≡ ci+1 ×
ci+2 . . . cn, a contradiction. �

2.10. Proposition. ci+1 → a.

�
	�����
. If a ‖ ci+1, then a contradiction can be obtained in the same way

as in 2.9, with cj = c0. If a → ci+1 then aci+1ci+2 . . . cn ≡ c1ci+1ci+2 . . . cn,
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i.e., aci+2 . . . cn ≡ ci+1ci+2 . . . cn, but also aci+2 . . . cn ≡ c1ci+2 . . . cn ≡ . . . ≡
cici+2 . . . cn, so that cici+2 . . . cn ≡ ci+1ci+2 . . . cn, a contradiction. �

2.11. Proposition. ci+1 → b and ci+1 → ab.

�
	�����
. If ci+1 ‖ b then ci+1ci+2 . . . cn ≡ bci+2 . . . cn ≡ aci+2 . . . cn ≡

c1ci+2 . . . cn ≡ . . . ≡ cici+2 . . . cn, a contradiction. Suppose b → ci+1. Then

ci+1 ‖ ab, since otherwise ci+1 → ab and b → ci+1 → a with c1 and ab would give a
subalgebra isomorphic to J3. Hence ci+1ci+2 . . . cn ≡ (ab)ci+2 . . . cn ≡ aci+2 . . . cn ≡
c1ci+2 . . . cn ≡ . . . ≡ cici+2 . . . cn, a contradiction. Hence ci+1 → b and, consequently,
ci+1 → ab. �

The assumption taken at the beginning of this section turns out to be contradic-

tory, as by 2.5 we get n > i for all positive integers i. As a consequence, we get the
following result.

2.12. Theorem. Let A, B be two algebras in T ∗ such that B is an extension

of A by an element e, and let V = {a ∈ A : a → e}. The congruence of B generated
by the pairs (a, b) ∈ V 2 such that a ‖ b is contained in V 2 ∪ idB .

3. More results

3.1. Proposition. Let u ∈ U , v ∈ V and u ‖ v. Then there is no a ∈ A with

u → a → uv.

�
	�����
. Suppose there is. We have a → v by (p3), a contradiction with 1.2. �

3.2. Proposition. Let u1, u2 ∈ U and v ∈ V be such that u1 ‖ u2 and u1 → v →
u2. Then there is no w ∈ V with u2 → w.

�
	�����
. Suppose there is. Since u1 → v, by 1.3 we cannot have u1 ‖ w. By 1.5

we have v → u1u2 and we cannot have w → u1. Hence u1 → w. Since v → u2 → w,

by 1.4 we cannot have v ‖ w. If w → v then these elements constitute a subalgebra
isomorphic toM3, a contradiction. Hence v → w. But then these elements together

with e (with u1 → v → e → u2) constitute a subalgebra isomorphic to M4, a
contradiction. �
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3.3. Proposition. Let u ∈ U , v ∈ V , u ‖ v. Then for any s ∈ A, s → uv implies

s → u.
�
	�����

. Let s → uv. Let us first consider the case s ∈ V . If s ‖ u then by 1.6
we have us = uv, a contradiction with s → uv. If u → s, we get a contradiction

by 3.1. Hence s → u.
Now consider the case s ∈ U . Again by 3.1, we cannot have u → s. Suppose s ‖ u.

Since s → uv → v, by 1.2 we cannot have s ‖ v. If v → s then s → u by (p3).
So, let s → v. Since us → s → v, by 1.2 we cannot have us ‖ v. If us → v then

us → uv, a contradiction with (p5). Hence v → us. But then v → u by (p3), a
contradiction. �

3.4. Proposition. Let u ∈ U , v ∈ V , u ‖ v. Then for any s ∈ A, u → s implies

uv → s.
�
	�����

. Let u → s. Then s ∈ U by 1.3. By 3.1, s � uv. So, suppose s ‖ uv.
By 3.1, we cannot have u → uvs. Hence, by (p5), u ‖ uvs and uv → uvsu. By (p1)

we get v ‖ uvsu and v · uvsu = uv. But uvsu → uvs → uv, a contradiction by 3.1.
�

3.5. Proposition. Let u ∈ U , v ∈ V , u ‖ v. Then there are no elements r, s ∈ U

with u → r → s → uv.
�
	�����

. Suppose there are. By 3.3 and 3.4, s → u and uv → r.

Suppose s → v. Then, by 1.2, we cannot have r ‖ v. Again by 1.2, we cannot
have r → v. Hence v → r. But then these elements together with e (with respect to

v → e → s → u) constitute a subalgebra isomorphic toM4, a contradiction.
Since s → uv → v, by 1.2 we cannot have s ‖ v. It follows that v → s.

By 1.2 we cannot have r → v. If v → r then these elements, with respect to
v → s → u, constitute a subalgebra isomorphic toM3, a contradiction. Hence v ‖ r.

We have vru = vurvu = uvuv = uv. Consequently, the elements r, s, u, vr, uv (with
respect to vr → s → u) constitute a subalgebra isomorphic toM3, a contradiction.

�

3.6. Proposition. Let a, b, p ∈ U and v ∈ V be such that a ‖ v, b → a, p → a

and av = bv. Then bpv = pv.
�
	�����

. Let p → v. Then p → av = bv → b, so p → b by 3.3. Hence bp = p and

bpv = pv.
Let v → p. Then bpv = pbv = pvbpv = vbpv = vapv = avpv = apvp = pvp = pv.

It remains to consider the case p ‖ v. Since pv → p → a, by 3.4 we have pv → a.
Hence pv → av. We have avp = apvap = pvap = pvp = pv. By three-variable
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equations, bpv · pv = bvpv = avpv = pvv = pv, so that pv → bpv. We have

bpvp = bvpv = pv.
If either bp ‖ v or bp → v then bpv → p, bpvp = bpv, so bpv = pv and we are

through. So, the case v → bp remains. Then v = bpv = bvpbv = avpbv = pvbv =
pbvb = vb, a contradiction. �

3.7. Proposition. Let u ∈ U , v ∈ V , u ‖ v; let a ∈ U . Then uv · ua = uva and

uvaw = uaw for all w ∈ V .
�
	�����

. Since uva → uv, we have uva → u by 3.3. Hence uv · ua = uv · ua · u =
a ·u ·uv ·u = a ·uv ·u ·uv = uvau ·uv = uva ·uv = uva. In order to prove the rest, it is
sufficient to assume that a → u. By 1.7 we have either uw = uv or uvw = uw = w,

so uvw = uw in any case. Hence, by 3.6, it is sufficient to consider the case u l w.
By 1.7 we have w → u and w → uv.

If w → a then w → uva and uvaw = w = aw.
Let a → w. Then a l v. If a → v then uva = uavua = a and we are through.

So, let v → a. Then v → a → u gives v → uva by (p5). We have uv → v → a,
a → w → uv and (obviously) uv ‖ a, a contradiction by 1.5.

It remains to consider the case a ‖ w. Then aw → u by 3.4. Since aw → w,
by 1.3 we cannot have aw ‖ v. If aw → v then aw → uv, hence aw → uva,

and aw → uva → a implies uvaw = aw by (p1). So, let v → aw. We have
uvaw = uvwa(uv)w = (aw · uv)w. By the previous part of the proof (the case
a → w) we have (uv · aw)w = aww = aw. Hence uvaw = aw. �

3.8. Proposition. Let u ∈ U , v ∈ V , u ‖ v; let a ∈ U be such that a → u and

a ‖ uv. Then there is no element b ∈ U with a → b → uva.
�
	�����

. Suppose there is. We have uvav = uava = av. So, if uva → v then
av = uva, a contradiction with a → b → uva by 3.1. Since uva → uv → v, we

cannot have uva ‖ v. Hence v → uva. From uvav = av we get v → a. By (p3),
b → uv. Since b → uv → v, we cannot have b ‖ v. Now either b → v or v → b, and

in each case the elements uv, v, a, b, uva constitute a subalgebra isomorphic to J3,
a contradiction. �

3.9. Proposition. Let u1, u2 ∈ U , v, w ∈ V , u1 ‖ u2, u1 → v → u2 and u2 ‖ w.

Then one of the following two cases takes place:

(1) u1u2 = u2w, v → u1u2, u1 l w, v l w;

(2) v → w → u1, v → u1u2, v → u2w → u1, u1u2w = u2w.
�
	�����

. We have u1 l w by 1.3 and v l w by 1.4. Let u1u2 6= u2w. Since
v → u2, we have v → u2w by 1.7. Since u1 → v → u2w → w, we have u1 l u2w
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by 3.2. If u1 → u2w then u1 → u2 by 3.3, a contradiction. Hence u2w → u1. Since

also u2w → u2, we get u2w → u1u2. Since u2w → u1u2 → u2, by (p2) we get
u1u2w = u2w. If u1 → w then u1u2 = u2w by (p2), a contradiction. Since u1 l w,
we get w → u1. It remains to prove v → w. We have v l w, and if w → v then

the elements w, v, u1u2, u2w, u1 (with respect to w → v → u1u2) constitute a
subalgebra isomorphic to M3, a contradiction. �

3.10. Proposition. Let u1, u2 ∈ U , v ∈ V , u1 ‖ u2, u1 → v → u2. Then for

every w ∈ V one of the following cases takes place:

(1) u2 ‖ w, u1u2 = u2w, v → u1u2, u1 l w, v l w;

(2) u2 ‖ w, v → w → u1, v → u1u2, v → u2w → u1, u1u2w = u2w;

(3) w → u2, w → u1u2, v → u1u2, w l u1, and if w → u1 then w l v.

�
	�����
. By 3.2 and 3.9, it remains to consider the case w → u2. According

to 1.3 we have w l u1, and according to 1.4 if w → u1 then w l v. By 1.5, v → u1u2.

Suppose w ‖ u1u2. By 3.4 we have u1u2w → u1 and u1u2w → u2. If u1 → w then

u1 → w → u2 implies u1 → u1u2w by (p5), a contradiction. Hence w → u1. But
then w → u1u2, a contradiction.

Hence w l u1u2. It follows that if u1 → w then w → u1u2. If w → u1, then
w → u1u2 is clear. So, w → u1u2 in all cases. �

3.11. Proposition. Let u1, u2 ∈ U , v ∈ V , u1 ‖ u2, u1 → v → u2. Then there

is no element u ∈ A with u2 → u → u1u2, and there is no element u ∈ A with

u2 → u → u1.

�
	�����
. In each case, we would have u ∈ U according to 3.2. By 1.5 we have

v → u1u2. Suppose u2 → u → u2u2. By (p3), u → u1. Since u → u1 → v, by 1.2 we

cannot have u ‖ v. But then, the elements u1, u, u2, u1u2, v constitute a subalgebra
isomorphic to J3, a contradiction.

Now suppose u2 → u → u1. Then u2 → u1u2u → u1u2, which has been proved to

be impossible. �

3.12. Proposition. Let u ∈ U , v ∈ V , u ‖ v and ci ∈ U (i = 1, . . . , n) be
elements with cn → cn−1 → . . . c1 → u. Then uvc1 . . . cnv = cnv.

�
	�����
. The quasiequation zn → zn−1 → . . . → z1 → x =⇒ xyz1 . . . zny = zny

is satisfied in all tournaments and is equivalent to an equation, so it is satisfied in A.
�
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3.13. Proposition. Let n be the least number for which there exist elements

u ∈ U , v ∈ V , w ∈ V and ci ∈ U (i = 1, . . . , n) such that u ‖ v, cn → cn−1 → . . . →
c1 → u and uvc1 → cnw 6= cnw. Then

(1) v → ci and v → uvc1 . . . ci for all i > 1.
(2) w → cn−1, w → uvc1 . . . cn1 and w → uvc1 . . . cn.

(3) It is sufficient to consider only the case cn → w.
�
	�����

. By 3.7 we have n > 2. Suppose that for some i, v � uvc1 . . . ci.

By 3.12, uvc1 . . . civ = civ. If civ = ci then uvc1 . . . civ = ci, so that ci → uvc1 . . . ci

and hence uvc1 . . . ci = ci, a contradiction. Hence ci ‖ v. By the minimality of n,

cnw = civci+1 . . . cnw = uvc1 . . . civci+1 . . . cnw. Hence uvc1 . . . civ 6= uvc1 . . . ci.
Using uvc1 . . . cn → uvc1 . . . cn−1 → . . . → uvc1 . . . ci, by the minimality of n we

have

uvc1 . . . cnw = uvc1 . . . civ(uvc1 . . . ci+1) . . . (uvc1 . . . cn)w

= vci(uvc1 . . . ci+1) . . . (uvc1 . . . cn)w.

But this last expression equals vcici+1 . . . cnw, since the quasiequation

zn → . . . z1 → x =⇒ uzi . . . zn = yzi(xyz1 . . . zi+1) . . . (xyz1 . . . zn)

is satisfied in all tournaments and is equivalent to an equation. We get uvc1 . . . cnw =
vcici+1 . . . cnw = cnw, a contradiction.

Hence v → uvc1 . . . ci for all i. From this we get v → ci by (p3).
We have cn−1w = uvc1 . . . cn−1w by the minimality of n. If w ‖ cn−1 then cnw =

uvc1 . . . cn−1cnw by 3.6, a contradiction. Hence w → cn−1. Consequently, w →
uvc1 . . . cn−1.

Suppose w � uvc1 . . . cn. Then uvc1 . . . cnw → uvc1 . . . cn → cn implies
uvc1 . . . cnw → cn; hence uvc1 . . . cnw → wcn. We get

uvc1 . . . cn−1wcn = (uvc1 . . . cn−1w · uvc1 . . . cn)(uvc1 . . . cn−1w · wcn),

i.e.,

wcn = uvc1 . . . cnw · wcn = uvc1 . . . cn,

a contradiction.

Hence w → uvc1 . . . cn. Then w � cn and wc→cn−1. The quasiequation

y → zn → . . . → z1 → x =⇒ xyz1 . . . zn−1 · uzn−1znzn−1

= xyz1 . . . zn · uzn−1znzn−1

is satisfied in all tournaments and is equivalent to an equation; we get uvc1 . . . cn−1 ·
wcn = uvc1 . . . cn · wcn. From this it follows that if cn is replaced with wcn, all the
above conditions are satisfied and, moreover, cn → w. �
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3.14. Proposition. Let u ∈ U , v ∈ V , u ‖ v, c1, c2 ∈ U , c2 → c1 → u. Then

uvc1c2w = c2w for all w ∈ V .
�
	�����

. Suppose uvc1c2w 6= c2w. By 3.13 we have v → c1, v → c2, v → uvc1,

v → uvc1c2, w → c1, w → uvc1, w → uvc1c2 and it is sufficient to consider the
case c2 → w. Since uv → v → uvc1c2 and (by (p5)) uvc1c2 → uv · uvc1c2 · uvc1 →
uv · uvc1c2, by 3.11 we have uv l uvc1c2. Since uv → v → c2 and c2 → w, by 3.2
we have uv l c2. If c2 → uv then c2 → uvc1, so that uvc1c2 = c2, a contradiction.

Hence uv → c2. Then uv → uvc1c2. But c2 ‖ uvc1, so that c2 → w → uvc1 and
uvc1 → uv → uvc1c2 give a contradiction by 3.11. �
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[2] J. Ježek, P. Marković, M. Maróti and R. McKenzie: Equations of tournaments are not
finitely based. Discrete Math. 211 (2000), 243–248.
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