Czechoslovak Mathematical Journal

Jaroslav Ježek

One-element extensions in the variety generated by tournaments

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 1, 233-246
Persistent URL: http://dml.cz/dmlcz/127880

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ONE-ELEMENT EXTENSIONS IN THE VARIETY GENERATED BY TOURNAMENTS

J. Ježek, Praha

(Received July 19, 2001)

Abstract

We investigate congruences in one-element extensions of algebras in the variety generated by tournaments.

Keywords: tournament, variety
MSC 2000: 08B30

0 . Introduction

Recently M. Maróti proved that every subdirectly irreducible algebra in the variety \mathcal{T} generated by tournaments is a tournament; equivalently, the variety generated by tournaments coincides with the quasivariety generated by tournaments. This has been a conjecture formulated in the paper [3]; in that paper and in [1] we have proved some particular cases. In [3] we have also formulated a stronger conjecture, which remains open: A groupoid belongs to the variety \mathcal{T} if and only if it satisfies the three-variable equations of tournaments and avoids the algebras \mathbf{J}_{3} and $\mathbf{M}_{n}(n \geqslant 3$; these algebras are defined below). This has been verified for all groupoids with at most ten elements.

The aim of this paper is to investigate one-element extensions in the variety \mathcal{T}. Let A and B be two groupoids such that $B \in \mathcal{T}$ and B is an extension of A by an element e. Denote by V the set of the elements $a \in A$ such that $a \rightarrow e$ in B. The main result of this paper states that the congruence of B generated by all pairs of incomparable elements from V has all nontrivial blocks contained in V. Since there is a hope that this could be useful for the solution of the stronger conjecture, we

[^0]will formulate and prove this result in terms of algebras satisfying the three-variable equations of tournaments and avoiding \mathbf{J}_{3} and \mathbf{M}_{n}. (See Theorem 2.12.)

For the terminology and notation see [4] and [2].
We denote by \mathbf{T} the class of tournaments, and by \mathcal{T} the variety generated by \mathbf{T}. For any $n \geqslant 1$, let \mathcal{T}_{n} denote the variety generated by all n-element tournaments, and let \mathcal{T}^{n} denote the variety determined by the at most n-variable equations of tournaments. So, $\mathcal{T}_{n} \subseteq \mathcal{T}_{n+1} \subseteq \mathcal{T} \subseteq \mathcal{T}^{n+1} \subseteq \mathcal{T}^{n}$ for all n.

For a variety V and a positive integer n, we denote by $\mathbf{F}_{n}(V)$ the free algebra in V on n generators. According to Theorem 3 of $[3], \mathbf{F}_{n}(\mathcal{T})=\mathbf{F}_{n}\left(\mathcal{T}_{n}\right)=\mathbf{F}_{n}\left(\mathcal{T}^{n}\right)$.

According to [3], the following four equations are a base for the equational theory of \mathcal{T}^{3} :
(e1) $x x=x$,
(e2) $x y=y x$,
(e3) $x y \cdot x=x y$,
(e4) $(x y \cdot x z)(x y \cdot y z)=x y z$
and the following are consequences of these four equations:
(e5) $(x y \cdot x z) x=x y \cdot x z$,
(e6) $(x y \cdot x z) \cdot y z=x y z y$,
(e7) $x y z y=x z y z$,
(e8) $(y z x)(x y \cdot x z)=x y \cdot x z$,
(e9) $x z y x z=x y z$.
According to Lemma 5 of [3], for any three elements a, b, c of an algebra $A \in \mathcal{T}^{3}$ we have:
(p1) If $a b \rightarrow c$, then a, b, c generate a semilattice.
(p2) If $a b \rightarrow c \rightarrow a$, then $b c=a b$.
(p3) If $a \rightarrow c \rightarrow a b$, then $c \rightarrow b$.
(p4) If $a \rightarrow c$ and $b \rightarrow c$, then $a b \rightarrow c$.
(p5) If $a \rightarrow c \rightarrow b$ and $a, b, c, a b$ are four distinct elements, then the subgroupoid generated by a, b, c either contains just these four elements and $c \rightarrow a b$, or else it contains precisely five elements $a, b, c, a b, a b \cdot c$ and $a \rightarrow a b \cdot c \rightarrow b$.

Our proof in [2] of the fact that the variety \mathcal{T} is not finitely based relied on an infinite sequence $\mathbf{M}_{n}(n \geqslant 3)$ of algebras with the following properties: \mathbf{M}_{n} is subdirectly irreducible, $\left|\mathbf{M}_{n}\right|=n+2$ and $\mathbf{M}_{n} \in \mathcal{T}^{n}-\mathcal{T}^{n+1}$. These algebras are
defined as follows. $\mathbf{M}_{n}=\left\{a, b, c, d_{1}, \ldots, d_{n-2}, e\right\} ;$

$$
\begin{aligned}
a b & =e, \\
e & \rightarrow a \rightarrow c, \\
e & \rightarrow b \rightarrow c, \\
e & \rightarrow c, \\
a & \rightarrow d_{1} \rightarrow d_{2} \rightarrow \ldots \rightarrow d_{n-2} \rightarrow b, \\
d_{i} & \rightarrow c \text { for } i<n-2, \\
c & \rightarrow d_{n-2}, \\
d_{i} & \rightarrow e \text { for all } i, \\
d_{i} & \rightarrow a \text { for } i>1, \\
d_{i} & \rightarrow b \text { for all } i, \\
d_{j} & \rightarrow d_{i} \text { for } j>i+1 .
\end{aligned}
$$

We will also need the five-element subdirectly irreducible algebra $\mathbf{J}_{3} \in \mathcal{T}^{3}$, introduced in [3] and defined on $\{a, b, c, d, e\}$ by $a \rightarrow d \rightarrow b \rightarrow c \rightarrow a, c \rightarrow e, d \rightarrow c, d \rightarrow e$ and $a b=e$. The algebras $\mathbf{M}_{3}, \mathbf{M}_{4}$ and \mathbf{J}_{3} are pictured in Fig. 1. (The monolith of \mathbf{M}_{n} identifies $a b$ with b; the monolith of \mathbf{J}_{3} identifies $a b$ with b with c.)

M_{3}

M_{4}

\mathbf{J}_{3}

Figure 1.

Two elements a, b of an algebra $A \in \mathcal{T}^{3}$ are said to be comparable if either $a \rightarrow b$ or $b \rightarrow a$; we write $a \uparrow b$ in that case. If a, b are incomparable, we write $a \| b$.

We say that an algebra A avoids an algebra B if A contains no subalgebra isomorphic to B. We denote by \mathcal{T}^{*} the class of the algebras belonging to \mathcal{T}^{3} and avoiding the algebras \mathbf{J}_{3} and \mathbf{M}_{n} for all $n \geqslant 3$.

1. One-Element extensions

Throughout this paper let A be an algebra belonging to \mathcal{T}^{*}; let $A=U \cup V$ be a partition of A into two disjoint subgroupoids such that $u \in U, v \in V$ and $u \| v$ imply $u v \in U$; let e be an element not belonging to A; define an algebra B with the underlying set $A \cup\{e\}$ in such a way that A is a subgroupoid and $v \rightarrow e \rightarrow u$ for all $u \in U$ and $v \in V$. Then, as it is easy to see, B belongs to \mathcal{T}^{3}. We will assume that B avoids \mathbf{J}_{3} and \mathbf{M}_{n} for all $n \geqslant 3$, so that $B \in \mathcal{T}^{*}$.
1.1 Proposition. The following are true:
(1) There are no elements $u \in U, v \in V$ and $a \in A$ with $u \| v, u \rightarrow a \rightarrow v$ and $a \rightarrow u v$.
(2) There are no elements $u \in U$ and $v, w \in V$ with $u \| v, u \rightarrow w$ and $v \rightarrow w$.
(3) There are no elements $u \in U$ and $v_{1}, v_{2} \in V$ with $v_{1} \| v_{2}, v_{1} \rightarrow u \rightarrow v_{2}$ and $u \rightarrow v_{1} v_{2}$.

Proof. Suppose there are such elements.
(1) Since $u \rightarrow a \rightarrow v \rightarrow e \rightarrow u, a \rightarrow u v, e \rightarrow u v$ and $a \uparrow e$, these five elements constitute a subalgebra isomorphic to \mathbf{J}_{3} (no matter whether $a \rightarrow e$ or $e \rightarrow a$).
(2) The elements $v \rightarrow e \rightarrow u$ with $u v$ and w constitute a subalgebra isomorphic to \mathbf{M}_{3}.
(3) The elements $v_{1} \rightarrow u \rightarrow v_{2}$ with $v_{1} v_{2}$ and e constitute a subalgebra isomorphic to M_{3}.

We get a contradiction in each case.
1.2. Proposition. Let $u \in U, v \in V, u \| v$. Then there is no element $a \in A$ with $u \rightarrow a \rightarrow v$.

Proof. Suppose there is. Put $a^{\prime}=u v a$. By (p5) we have $u \rightarrow a^{\prime} \rightarrow v$. Since $a^{\prime} \rightarrow u v$, we get a contradiction with 1.1(1).
1.3. Proposition. Let $u \in U, v \in V, u \| v$. Then there is no element $w \in V$ with $u \rightarrow w$.

Proof. Suppose there is. By 1.1.(2), $v \nrightarrow w$. By 1.2, $w \nrightarrow v$. Hence $v \| w$. If $v w \| u$, we get a contradiction with $1.1(2)$, since $u \rightarrow w$ and $v w \rightarrow w$. If $u \rightarrow v w$, we get a contradiction with 1.2 , since $u \rightarrow v w \rightarrow v$. Hence $v w \rightarrow u$. Then also $v w \rightarrow u v$. We have $u v w=v u w=v w u v w=v w v w=v w$. Clearly, $v w \neq u v$ and $v w \neq w$. Hence $u v \| w$. But then $u v w \in U$, a contradiction with $u v w=v w \in V$.

For $v_{1}, v_{2} \in V$ we write $v_{1} \equiv v_{2}$ if for every $u \in U$, one of the following three cases takes place:
(1) $u \rightarrow v_{1}$ and $u \rightarrow v_{2}$;
(2) $v_{1} \rightarrow u$ and $v_{2} \rightarrow u$;
(3) $u\left\|v_{1}, u\right\| v_{2}$ and $u v_{1}=u v_{2}$.

Clearly, \equiv is an equivalence on V.
1.4. Proposition. Let $v_{1}, v_{2} \in V, v_{1} \| v_{2}$. Then $v_{1} \equiv v_{2} \equiv v_{1} v_{2}$.

Proof. Let $u \in U$.
Let $u \rightarrow v_{1}$. By $1.3, u$ is comparable with both v_{2} and $v_{1} v_{2}$. If $v_{2} \rightarrow u$, then $u \rightarrow v_{1} v_{2}$ by (p5) and we get a contradiction by 1.1(3). Hence $u \rightarrow v_{2}$, and then $u \rightarrow v_{1} v_{2}$.

Now let $u \rightarrow v_{1} v_{2}$. By $1.3, u$ is comparable with both v_{1} and v_{2}. We cannot have $v_{1} \rightarrow u$ and $v_{2} \rightarrow u$ at the same time, since then $v_{1} v_{2} \rightarrow u$. Hence either $u \rightarrow v_{1}$ or $u \rightarrow v_{2}$. But then we have both $u \rightarrow v_{1}$ and $u \rightarrow v_{2}$ by the first part of the proof.

This proves that for any $u \in U, u \rightarrow v_{1}$ iff $u \rightarrow v_{2}$ iff $u \rightarrow v_{1} v_{2}$.
Let $u \| v_{1}$. Then $u v_{1} \rightarrow v_{1}$ implies $u v_{1} \rightarrow v_{2}$ and $u v_{1} \rightarrow v_{1} v_{2}$. We have $v_{1} v_{2} u=$ $v_{1} u v_{2} v_{1} u=v_{1} u v_{1} u=v_{1} u$. Hence $u \| v_{1} v_{2}$. We cannot have $u \rightarrow v_{2}$. If $v_{2} \rightarrow u$, then $v_{1} v_{2} \rightarrow v_{2} \rightarrow u$ and $u v_{1} \rightarrow v_{2}$ contradict (p5). Hence $u \| v_{2}$. Similarly as for v_{1}, we get $v_{1} v_{2} u=v_{2} u$.

The rest is clear.
1.5. Proposition. Let $u_{1}, u_{2} \in U$ and $v \in V$ be such that $u_{1} \| u_{2}$ and $u_{1} \rightarrow v \rightarrow$ u_{2}. Then $v \rightarrow u_{1} u_{2}$ and there is no $w \in V$ with $u_{2} \rightarrow w \rightarrow u_{1}$.

Proof. If $v \| u_{1} u_{2}$, then $u_{1} u_{2} \rightarrow u_{1} \rightarrow v$ contradicts 1.2. By (p5) we get $v \rightarrow u_{1} u_{2}$. Suppose there is an element $w \in V$ with $u_{2} \rightarrow w \rightarrow u_{1}$. Then $w \rightarrow u_{1} u_{2}$, and $v \uparrow w$ by 1.4. But then the elements $u_{1}, u_{2}, v, w, u_{1} u_{2}$ constitute a subalgebra isomorphic to \mathbf{J}_{3}, a contradiction.
1.6. Proposition. Let $u \in U$ and $v_{1}, v_{2} \in V$ be such that $u \| v_{1}$ and $u \| v_{2}$. Then $u v_{1}=u v_{2}$.

Proof. Suppose $u v_{1} \neq u v_{2}$. By 1.4, $v_{1} \uparrow v_{2}$. Without loss of generality, we can assume that $v_{1} \rightarrow v_{2}$. By $1.3, u v_{1} \uparrow v_{2}$. If $u v_{1} \rightarrow v_{2}$ then $u v_{2} v_{1}=u v_{1} v_{2} u v_{1}=u v_{1}$, so that $u v_{2} \| v_{1}$, a contradiction by 1.3. Hence $v_{2} \rightarrow u v_{1}$. From $u v_{2} v_{1}=v_{2} u v_{1}=$ $v_{2} v_{1} u v_{2} v_{1}=v_{1}$ we get $v_{1} \rightarrow u v_{2}$. If $u v_{1} \| u v_{2}$, we get a contradiction by the second part of 1.5. Hence $u v_{1} \downarrow u v_{2}$. But then, by (p5), both $u v_{1} \rightarrow u v_{2}$ and $u v_{2} \rightarrow u v_{1}$, a contradiction.
1.7. Proposition. Let $u \in U, v \in V, u \| v$. Then for every $w \in V$ either $u w=u v$ or else $w \rightarrow u$ and $w \rightarrow u v$.

Proof. By 1.3 we cannot have $u \rightarrow w$. If $u \| w$, then $u w=u v$ by 1.6. It remains to consider the case $w \rightarrow u$. By 1.4, $v \downarrow w$. If $w \rightarrow v$, then clearly $w \rightarrow u v$. Finally, let $v \rightarrow w$. By 1.3 we have $u v \uparrow w$, and hence $w \rightarrow u v$ by (p5).

2. Incomparabilities in V

By a basic pair we will mean a pair a, b of elements of V such that either $a \| b$ or $b=a d$ for some $d \in V$ with $d \| a$ or $a=b d$ for some $d \in V$ with $d \| b$. In this section we assume that there exists a basic pair a, b and a sequence c_{1}, \ldots, c_{n} of elements of V such that $a c_{1} \ldots c_{n} \not \equiv b c_{1} \ldots c_{n}$. Then let us consider one such sequence $a, b, c_{1}, \ldots, c_{n}$ minimal in the sense that n is as small as possible and, among all such sequences of the same length, the number $Y=\left|\left\{i: a c_{1} \ldots c_{i-1} \| c_{i}\right\}\right|+\left|\left\{i: b c_{1} \ldots c_{i-1} \| c_{i}\right\}\right|$ is as small as possible. By 1.4, we have $n \geqslant 1$.

Two elements v, v^{\prime} of V are said to be connected through basic pairs if there exists a finite sequence v_{0}, \ldots, v_{k} of elements of V such that $v_{0}=v, v_{k}=v^{\prime}$ and for each $j=1, \ldots, k, v_{j-1}, v_{j}$ is a basic pair.
2.1. Proposition. Let $i \in\{1, \ldots, n\}$. Then $a c_{1} \ldots c_{i} \neq b c_{1} \ldots c_{i}$ and the elements $a c_{1} \ldots c_{i}$ and $b c_{1} \ldots c_{i}$ are not connected through basic pairs.

Proof. Suppose the elements are connected through v_{0}, \ldots, v_{k}. For each $j=1, \ldots, k$ we have $v_{j-1} c_{i+1} \ldots c_{n} \equiv v_{j} c_{i+1} \ldots c_{n}$ by the minimality of n. Hence, by the transitivity of $\equiv, a c_{1} \ldots c_{n} \equiv b c_{1} \ldots c_{n}$, a contradiction.

2.2. Proposition. $c_{1} \uparrow a$ and $c_{1} \uparrow b$.

Proof. It is easy to see that if either $c_{1} \| a$ or $c_{1} \| b$, then (in every one of a small number of possible cases) $a c_{1}$ and $b c_{1}$ are connected through basic pairs, a contradiction with 2.1.
2.3. Proposition. If $b=a d$ for some $d \| a$, then $a \rightarrow c_{1} \rightarrow b$ and $c_{1} \rightarrow d$.

Proof. Suppose $c_{1} \rightarrow a$. Due to 2.1 and $2.2, b \rightarrow c_{1}$. But then $c_{1} d=b$ and c_{1}, b is a basic pair, a contradiction. Hence $a \rightarrow c_{1}$. Then $c_{1} \rightarrow b$ and, by (p3), $c_{1} \rightarrow d$.
2.4. Proposition. If $a \| b$ then either $a \rightarrow c_{1} \rightarrow b$ and $c_{1} \rightarrow a b$, or $b \rightarrow c_{1} \rightarrow a$ and $c_{1} \rightarrow a b$.

Proof. Clearly, either $a \rightarrow c_{1} \rightarrow b$ or $b \rightarrow c_{1} \rightarrow a$. By symmetry, it is sufficient to consider the first case. Then $a c_{1}=a$ and $b c_{1}=c_{1}$. If $c_{1} \| a b$, then $a, a b$ and $a b, c_{1}$ are basic pairs, a contradiction. Hence $c_{1} \uparrow a b$ and $c_{1} \rightarrow a b$ by (p5).

It follows from these lemmas that without loss of generality, we can assume that $a \| b, a \rightarrow c_{1} \rightarrow b$ and $c_{1} \rightarrow a b$. So, we will go on under this assumption. We will assume that we have already proved for some index i the following: $a \rightarrow c_{1} \rightarrow \ldots \rightarrow$ $c_{i} \rightarrow b, c_{j} \rightarrow b$ for all $j \leqslant i, c_{j} \rightarrow a$ for all $2 \leqslant j \leqslant i, c_{k} \rightarrow c_{j}$ for $1 \leqslant j<j+2 \leqslant k \leqslant i$, $c_{j} \rightarrow a b$ for all $j \leqslant i$, and $a \equiv c_{1} \equiv \ldots \equiv c_{i-1} \equiv b$. (This has been proved for $i=1$.)

Put $c_{0}=a$. Clearly, $\left\{a c_{1} \ldots c_{j}, b c_{1} \ldots c_{j}\right\}=\left\{c_{j-1}, c_{j}\right\}$ for $1 \leqslant j \leqslant i$.
2.5. Proposition. $c_{i} \equiv a$. Consequently, $n>i$.

Proof. Let $u \in U$. Let $a \rightarrow u$, so that also $b \rightarrow u, a b \rightarrow u$ and $c_{j} \rightarrow u$ for $j<i$. Suppose $u \rightarrow c_{i}$. Then all these elements constitute a subalgebra isomorphic to \mathbf{M}_{i+2}, a contradiction. So, $a \rightarrow u$ implies that either $c_{i} \rightarrow u$ or $u \| c_{i}$.

Let $c_{i} \rightarrow u$. Suppose $u \rightarrow a$. Then all these elements together with e (with respect to $a \rightarrow c_{1} \rightarrow \ldots \rightarrow c_{i} \rightarrow u \rightarrow b$) constitute a subalgebra isomorphic to \mathbf{M}_{i+3}, a contradiction. So, $c_{i} \rightarrow u$ implies that either $a \rightarrow u$ or $a \| u$.

If $u \rightarrow c_{i}$ then by 1.3 we cannot have $a \| u$, so we get $a \rightarrow u$. If $u \rightarrow a$ then we cannot have $u \| c_{i}$, so we get $u \rightarrow c_{i}$. So, $u \rightarrow a$ if and only if $u \rightarrow c_{i}$.

Let $u \| c_{i}$. Then $u c_{i} \in U$ and $u c_{i} \rightarrow c_{i}$. Hence $u c_{i} \rightarrow a$. By 1.7 we get $u a=u c_{i}$. Quite similarly, if $u \| a$ then $u c_{i}=u a$. The rest is clear.

2.6. Proposition. $c_{i+1} \uparrow c_{i}$.

Proof. Suppose $c_{i+1} \| c_{i}$. If also $c_{i+1} \| c_{i-1}$ then $c_{i-1} c_{i+1}, c_{i} c_{i+1}$ can be connected through basic pairs, a contradiction. If $c_{i+1} \rightarrow c_{i-1}$ then $c_{i-1} c_{i+1}, c_{i} c_{i+1}$ is a basic pair, a contradiction. Hence $c_{i-1} \rightarrow c_{i+1}$ and thus $c_{i-1} \rightarrow c_{i} c_{i+1}$. We have $\left\{c_{i-1} c_{i+1}, c_{i} c_{i+1}\right\}=\left\{c_{i-1}, c_{i} c_{i+1}\right\}$. But then c_{i+1} can be replaced with $c_{i} c_{i+1}$, a contradiction with the minimality of Y.

2.7. Proposition. $c_{i+1} \uparrow c_{i-1}$.

Proof. Suppose $c_{i+1} \| c_{i-1}$. If $c_{i+1} \rightarrow c_{i}$ then $c_{i-1} c_{i+1}, c_{i} c_{i+1}$ is a basic pair, a contradiction. If $c_{i} \rightarrow c_{i+1}$ then $\left\{c_{i-1} c_{i+1}, c_{i} c_{i+1}\right\}=\left\{c_{i-1} c_{i+1}, c_{i}\right\}, c_{i-1} c_{i+1} \downarrow$ $c_{i}, c_{i} \rightarrow c_{i-1} c_{i+1}$ and c_{i+1} can be replaced with $c_{i_{1}} c_{i+1}$, a contradiction with the minimality of Y.
2.8. Proposition. $c_{i} \rightarrow c_{i+1} \rightarrow c_{i-1}$.

Proof. Suppose, on the contrary, that $c_{i-1} \rightarrow c_{i+1} \rightarrow c_{i}$, so that $\left\{c_{i-1} c_{i+1}\right.$, $\left.c_{i} c_{i+1}\right\}=\left\{c_{i-1}, c_{i+1}\right\}$. Of course, $i>1$.

Supppose there is an index j with $1 \leqslant j<i-1$ and $c_{j} \nrightarrow c_{i+1}$, and let j be the largest index with that property. If $c_{j} \| c_{i+1}$, then this is a basic pair and $\left\{c_{j} c_{j+1}, c_{i+1} c_{j+1}\right\}=\left\{c_{j}, c_{j+1}\right\}$, a contradiction with the minimality of n. Hence $c_{i+1} \rightarrow c_{j}$. By the minimality of $n, c_{j} c_{i+1} \ldots c_{n} \equiv c_{j+1} c_{i+1} \ldots c_{n}$, i.e., $c_{i+1} \ldots c_{n} \equiv$ $c_{j+1} c_{i+2} \ldots c_{n}$. But also $c_{j+1} c_{i+2} \ldots c_{n} \equiv c_{j+2} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i-1} c_{i+2} \ldots c_{n}$ and hence $c_{i-1} c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, a contradiction. We have proved that $c_{j} \rightarrow c_{i+1}$ for all $1 \leqslant j \leqslant i-1$.

Suppose $a \| c_{i+1}$. Then $a c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, but also $a c_{i+2} \ldots c_{n} \equiv$ $c_{1} c_{i+2} \ldots c_{n} \equiv \ldots c_{i-1} c_{i+2} \ldots c_{n}$, so that $c_{i-1} c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, a contradiction.

Suppose $c_{i+1} \rightarrow a$. Then $a c_{i+1} c_{i+2} \ldots c_{n} \equiv c_{1} c_{i+1} \ldots c_{n}$, i.e., $c_{i+1} c_{i+2} \ldots c_{n} \equiv$ $c_{1} c_{i+2} \ldots c_{n}$. But also $c_{1} c_{i+2} \ldots c_{n} \equiv c_{2} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i-1} c_{i+2} \ldots c_{n}$, so that $c_{i-1} c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, a contradiction.

Hence $a \rightarrow c_{i+1}$.
Suppose $b \| c_{i+1}$. Then $c_{i+1} c_{i} c_{i+2} \ldots c_{n} \equiv b c_{i} c_{i+2} \ldots c_{n}$, i.e., $c_{i+1} c_{i+2} \ldots c_{n} \equiv$ $c_{i} c_{i+2} \ldots c_{n}$. But also $c_{i-1} c_{i+2} \ldots c_{n} \equiv c_{i} c_{i+2} \ldots c_{n}$ and thus $c_{i-1} c_{i+2} \ldots c_{n} \equiv$ $c_{i+1} c_{i+2} \ldots c_{n}$, a contradiction.

Suppose $c_{i+1} \rightarrow b$. Then $a c_{i+1} c_{i+2} \ldots c_{n} \equiv b c_{i+1} c_{i+2} \ldots c_{n}$, i.e., $a c_{i+2} \ldots c_{n} \equiv$ $c_{i+1} c_{i+2} \ldots c_{n}$. But also $a c_{i+2} \ldots c_{n} \equiv c_{1} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i-1} c_{i+2} \ldots c_{n}$, so that $c_{i-1} c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, a contradiction.

Hence $b \rightarrow c_{i+1}$. Then also $a b \rightarrow c_{i+1}$. But then all these elements constitute a subalgebra isomorphic to \mathbf{M}_{i+2}, a contradiction.
2.9. Proposition. $c_{i+1} \rightarrow c_{j}$ for all $1 \leqslant j \leqslant i-1$.

Proof. Suppose, on the contrary, that j is the largest index with $1 \leqslant$ $j<i-1$ and $c_{i+1} \nrightarrow c_{j}$. If $c_{i+1} \| c_{j}$ then $c_{i+1} c_{i+2} \ldots c_{n} \equiv c_{j} c_{i+2} \ldots c_{n} \equiv$ $c_{j+1} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i} c_{i+2} \ldots c_{n}$, a contradiction. If $c_{j} \rightarrow c_{i+1}$ then $c_{j} c_{i+1} \times$ $c_{i+2} \ldots c_{n} \equiv c_{j+1} c_{i+1} c_{i+2} \ldots c_{n}$, i.e., $c_{j} c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, but also $c_{j} \times$ $c_{i+2} \ldots c_{n} \equiv c_{j+1} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i} c_{i+2} \ldots c_{n}$, so that $c_{i} c_{i+2} \ldots c_{n} \equiv c_{i+1} \times$ $c_{i+2} \ldots c_{n}$, a contradiction.
2.10. Proposition. $c_{i+1} \rightarrow a$.

Proof. If $a \| c_{i+1}$, then a contradiction can be obtained in the same way as in 2.9, with $c_{j}=c_{0}$. If $a \rightarrow c_{i+1}$ then $a c_{i+1} c_{i+2} \ldots c_{n} \equiv c_{1} c_{i+1} c_{i+2} \ldots c_{n}$,
i.e., $a c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, but also $a c_{i+2} \ldots c_{n} \equiv c_{1} c_{i+2} \ldots c_{n} \equiv \ldots \equiv$ $c_{i} c_{i+2} \ldots c_{n}$, so that $c_{i} c_{i+2} \ldots c_{n} \equiv c_{i+1} c_{i+2} \ldots c_{n}$, a contradiction.
2.11. Proposition. $c_{i+1} \rightarrow b$ and $c_{i+1} \rightarrow a b$.

Proof. If $c_{i+1} \| b$ then $c_{i+1} c_{i+2} \ldots c_{n} \equiv b c_{i+2} \ldots c_{n} \equiv a c_{i+2} \ldots c_{n} \equiv$ $c_{1} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i} c_{i+2} \ldots c_{n}$, a contradiction. Suppose $b \rightarrow c_{i+1}$. Then $c_{i+1} \| a b$, since otherwise $c_{i+1} \rightarrow a b$ and $b \rightarrow c_{i+1} \rightarrow a$ with c_{1} and $a b$ would give a subalgebra isomorphic to \mathbf{J}_{3}. Hence $c_{i+1} c_{i+2} \ldots c_{n} \equiv(a b) c_{i+2} \ldots c_{n} \equiv a c_{i+2} \ldots c_{n} \equiv$ $c_{1} c_{i+2} \ldots c_{n} \equiv \ldots \equiv c_{i} c_{i+2} \ldots c_{n}$, a contradiction. Hence $c_{i+1} \rightarrow b$ and, consequently, $c_{i+1} \rightarrow a b$.

The assumption taken at the beginning of this section turns out to be contradictory, as by 2.5 we get $n>i$ for all positive integers i. As a consequence, we get the following result.
2.12. Theorem. Let A, B be two algebras in \mathcal{T}^{*} such that B is an extension of A by an element e, and let $V=\{a \in A: a \rightarrow e\}$. The congruence of B generated by the pairs $(a, b) \in V^{2}$ such that $a \| b$ is contained in $V^{2} \cup \operatorname{id}_{B}$.

3. More results

3.1. Proposition. Let $u \in U, v \in V$ and $u \| v$. Then there is no $a \in A$ with $u \rightarrow a \rightarrow u v$.

Proof. Suppose there is. We have $a \rightarrow v$ by (p3), a contradiction with 1.2.
3.2. Proposition. Let $u_{1}, u_{2} \in U$ and $v \in V$ be such that $u_{1} \| u_{2}$ and $u_{1} \rightarrow v \rightarrow$ u_{2}. Then there is no $w \in V$ with $u_{2} \rightarrow w$.

Proof. Suppose there is. Since $u_{1} \rightarrow v$, by 1.3 we cannot have $u_{1} \| w$. By 1.5 we have $v \rightarrow u_{1} u_{2}$ and we cannot have $w \rightarrow u_{1}$. Hence $u_{1} \rightarrow w$. Since $v \rightarrow u_{2} \rightarrow w$, by 1.4 we cannot have $v \| w$. If $w \rightarrow v$ then these elements constitute a subalgebra isomorphic to \mathbf{M}_{3}, a contradiction. Hence $v \rightarrow w$. But then these elements together with e (with $u_{1} \rightarrow v \rightarrow e \rightarrow u_{2}$) constitute a subalgebra isomorphic to \mathbf{M}_{4}, a contradiction.
3.3. Proposition. Let $u \in U, v \in V, u \| v$. Then for any $s \in A, s \rightarrow u v$ implies $s \rightarrow u$.

Proof. Let $s \rightarrow u v$. Let us first consider the case $s \in V$. If $s \| u$ then by 1.6 we have $u s=u v$, a contradiction with $s \rightarrow u v$. If $u \rightarrow s$, we get a contradiction by 3.1. Hence $s \rightarrow u$.

Now consider the case $s \in U$. Again by 3.1, we cannot have $u \rightarrow s$. Suppose $s \| u$. Since $s \rightarrow u v \rightarrow v$, by 1.2 we cannot have $s \| v$. If $v \rightarrow s$ then $s \rightarrow u$ by (p 3). So, let $s \rightarrow v$. Since $u s \rightarrow s \rightarrow v$, by 1.2 we cannot have $u s \| v$. If $u s \rightarrow v$ then $u s \rightarrow u v$, a contradiction with (p5). Hence $v \rightarrow u s$. But then $v \rightarrow u$ by (p 3), a contradiction.
3.4. Proposition. Let $u \in U, v \in V, u \| v$. Then for any $s \in A, u \rightarrow s$ implies $u v \rightarrow s$.

Proof. Let $u \rightarrow s$. Then $s \in U$ by 1.3. By 3.1, $s \nrightarrow u v$. So, suppose $s \| u v$. By 3.1, we cannot have $u \rightarrow u v s$. Hence, by (p5), $u \| u v s$ and $u v \rightarrow u v s u$. By (p1) we get $v \| u v s u$ and $v \cdot u v s u=u v$. But $u v s u \rightarrow u v s \rightarrow u v$, a contradiction by 3.1.
3.5. Proposition. Let $u \in U, v \in V, u \| v$. Then there are no elements $r, s \in U$ with $u \rightarrow r \rightarrow s \rightarrow u v$.

Proof. Suppose there are. By 3.3 and $3.4, s \rightarrow u$ and $u v \rightarrow r$.
Suppose $s \rightarrow v$. Then, by 1.2 , we cannot have $r \| v$. Again by 1.2 , we cannot have $r \rightarrow v$. Hence $v \rightarrow r$. But then these elements together with e (with respect to $v \rightarrow e \rightarrow s \rightarrow u$) constitute a subalgebra isomorphic to \mathbf{M}_{4}, a contradiction.

Since $s \rightarrow u v \rightarrow v$, by 1.2 we cannot have $s \| v$. It follows that $v \rightarrow s$.
By 1.2 we cannot have $r \rightarrow v$. If $v \rightarrow r$ then these elements, with respect to $v \rightarrow s \rightarrow u$, constitute a subalgebra isomorphic to \mathbf{M}_{3}, a contradiction. Hence $v \| r$. We have $v r u=v u r v u=u v u v=u v$. Consequently, the elements $r, s, u, v r, u v$ (with respect to $v r \rightarrow s \rightarrow u$) constitute a subalgebra isomorphic to \mathbf{M}_{3}, a contradiction.
3.6. Proposition. Let $a, b, p \in U$ and $v \in V$ be such that $a \| v, b \rightarrow a, p \rightarrow a$ and $a v=b v$. Then $b p v=p v$.

Proof. Let $p \rightarrow v$. Then $p \rightarrow a v=b v \rightarrow b$, so $p \rightarrow b$ by 3.3. Hence $b p=p$ and $b p v=p v$.

Let $v \rightarrow p$. Then $b p v=p b v=p v b p v=v b p v=v a p v=a v p v=a p v p=p v p=p v$.
It remains to consider the case $p \| v$. Since $p v \rightarrow p \rightarrow a$, by 3.4 we have $p v \rightarrow a$. Hence $p v \rightarrow a v$. We have $a v p=a p v a p=p v a p=p v p=p v$. By three-variable
equations, $b p v \cdot p v=b v p v=a v p v=p v v=p v$, so that $p v \rightarrow b p v$. We have $b p v p=b v p v=p v$.

If either $b p \| v$ or $b p \rightarrow v$ then $b p v \rightarrow p, b p v p=b p v$, so $b p v=p v$ and we are through. So, the case $v \rightarrow b p$ remains. Then $v=b p v=b v p b v=a v p b v=p v b v=$ $p b v b=v b$, a contradiction.
3.7. Proposition. Let $u \in U, v \in V, u \| v$; let $a \in U$. Then $u v \cdot u a=u v a$ and $u v a w=u a w$ for all $w \in V$.

Proof. Since $u v a \rightarrow u v$, we have $u v a \rightarrow u$ by 3.3. Hence $u v \cdot u a=u v \cdot u a \cdot u=$ $a \cdot u \cdot u v \cdot u=a \cdot u v \cdot u \cdot u v=u v a u \cdot u v=u v a \cdot u v=u v a$. In order to prove the rest, it is sufficient to assume that $a \rightarrow u$. By 1.7 we have either $u w=u v$ or $u v w=u w=w$, so $u v w=u w$ in any case. Hence, by 3.6 , it is sufficient to consider the case $u \uparrow w$. By 1.7 we have $w \rightarrow u$ and $w \rightarrow u v$.

If $w \rightarrow a$ then $w \rightarrow u v a$ and $u v a w=w=a w$.
Let $a \rightarrow w$. Then $a \uparrow v$. If $a \rightarrow v$ then $u v a=u a v u a=a$ and we are through. So, let $v \rightarrow a$. Then $v \rightarrow a \rightarrow u$ gives $v \rightarrow u v a$ by (p5). We have $u v \rightarrow v \rightarrow a$, $a \rightarrow w \rightarrow u v$ and (obviously) $u v \| a$, a contradiction by 1.5 .

It remains to consider the case $a \| w$. Then $a w \rightarrow u$ by 3.4. Since $a w \rightarrow w$, by 1.3 we cannot have $a w \| v$. If $a w \rightarrow v$ then $a w \rightarrow u v$, hence $a w \rightarrow u v a$, and $a w \rightarrow u v a \rightarrow a$ implies uvaw $=a w$ by (p 1). So, let $v \rightarrow a w$. We have $u v a w=u v w a(u v) w=(a w \cdot u v) w$. By the previous part of the proof (the case $a \rightarrow w)$ we have $(u v \cdot a w) w=a w w=a w$. Hence $u v a w=a w$.
3.8. Proposition. Let $u \in U, v \in V, u \| v$; let $a \in U$ be such that $a \rightarrow u$ and $a \| u v$. Then there is no element $b \in U$ with $a \rightarrow b \rightarrow u v a$.

Proof. Suppose there is. We have uvav $=u a v a=a v$. So, if $u v a \rightarrow v$ then $a v=u v a$, a contradiction with $a \rightarrow b \rightarrow u v a$ by 3.1. Since $u v a \rightarrow u v \rightarrow v$, we cannot have $u v a \| v$. Hence $v \rightarrow u v a$. From uvav $=a v$ we get $v \rightarrow a$. By (p 3), $b \rightarrow u v$. Since $b \rightarrow u v \rightarrow v$, we cannot have $b \| v$. Now either $b \rightarrow v$ or $v \rightarrow b$, and in each case the elements $u v, v, a, b, u v a$ constitute a subalgebra isomorphic to \mathbf{J}_{3}, a contradiction.
3.9. Proposition. Let $u_{1}, u_{2} \in U, v, w \in V, u_{1} \| u_{2}, u_{1} \rightarrow v \rightarrow u_{2}$ and $u_{2} \| w$. Then one of the following two cases takes place:
(1) $u_{1} u_{2}=u_{2} w, v \rightarrow u_{1} u_{2}, u_{1} \downarrow w, v \downarrow w$;
(2) $v \rightarrow w \rightarrow u_{1}, v \rightarrow u_{1} u_{2}, v \rightarrow u_{2} w \rightarrow u_{1}, u_{1} u_{2} w=u_{2} w$.

Proof. We have $u_{1} \uparrow w$ by 1.3 and $v \uparrow w$ by 1.4. Let $u_{1} u_{2} \neq u_{2} w$. Since $v \rightarrow u_{2}$, we have $v \rightarrow u_{2} w$ by 1.7. Since $u_{1} \rightarrow v \rightarrow u_{2} w \rightarrow w$, we have $u_{1} \uparrow u_{2} w$
by 3.2. If $u_{1} \rightarrow u_{2} w$ then $u_{1} \rightarrow u_{2}$ by 3.3 , a contradiction. Hence $u_{2} w \rightarrow u_{1}$. Since also $u_{2} w \rightarrow u_{2}$, we get $u_{2} w \rightarrow u_{1} u_{2}$. Since $u_{2} w \rightarrow u_{1} u_{2} \rightarrow u_{2}$, by (p2) we get $u_{1} u_{2} w=u_{2} w$. If $u_{1} \rightarrow w$ then $u_{1} u_{2}=u_{2} w$ by (p 2), a contradiction. Since $u_{1} \downarrow w$, we get $w \rightarrow u_{1}$. It remains to prove $v \rightarrow w$. We have $v \uparrow w$, and if $w \rightarrow v$ then the elements $w, v, u_{1} u_{2}, u_{2} w, u_{1}$ (with respect to $w \rightarrow v \rightarrow u_{1} u_{2}$) constitute a subalgebra isomorphic to \mathbf{M}_{3}, a contradiction.
3.10. Proposition. Let $u_{1}, u_{2} \in U, v \in V, u_{1} \| u_{2}, u_{1} \rightarrow v \rightarrow u_{2}$. Then for every $w \in V$ one of the following cases takes place:
(1) $u_{2} \| w, u_{1} u_{2}=u_{2} w, v \rightarrow u_{1} u_{2}, u_{1} \uparrow w, v \uparrow w$;
(2) $u_{2} \| w, v \rightarrow w \rightarrow u_{1}, v \rightarrow u_{1} u_{2}, v \rightarrow u_{2} w \rightarrow u_{1}, u_{1} u_{2} w=u_{2} w$;
(3) $w \rightarrow u_{2}, w \rightarrow u_{1} u_{2}, v \rightarrow u_{1} u_{2}, w \downarrow u_{1}$, and if $w \rightarrow u_{1}$ then $w \downarrow v$.

Proof. By 3.2 and 3.9, it remains to consider the case $w \rightarrow u_{2}$. According to 1.3 we have $w \downarrow u_{1}$, and according to 1.4 if $w \rightarrow u_{1}$ then $w \downarrow v$. By 1.5, $v \rightarrow u_{1} u_{2}$.

Suppose $w \| u_{1} u_{2}$. By 3.4 we have $u_{1} u_{2} w \rightarrow u_{1}$ and $u_{1} u_{2} w \rightarrow u_{2}$. If $u_{1} \rightarrow w$ then $u_{1} \rightarrow w \rightarrow u_{2}$ implies $u_{1} \rightarrow u_{1} u_{2} w$ by (p 5), a contradiction. Hence $w \rightarrow u_{1}$. But then $w \rightarrow u_{1} u_{2}$, a contradiction.

Hence $w \uparrow u_{1} u_{2}$. It follows that if $u_{1} \rightarrow w$ then $w \rightarrow u_{1} u_{2}$. If $w \rightarrow u_{1}$, then $w \rightarrow u_{1} u_{2}$ is clear. So, $w \rightarrow u_{1} u_{2}$ in all cases.
3.11. Proposition. Let $u_{1}, u_{2} \in U, v \in V, u_{1} \| u_{2}, u_{1} \rightarrow v \rightarrow u_{2}$. Then there is no element $u \in A$ with $u_{2} \rightarrow u \rightarrow u_{1} u_{2}$, and there is no element $u \in A$ with $u_{2} \rightarrow u \rightarrow u_{1}$.

Proof. In each case, we would have $u \in U$ according to 3.2. By 1.5 we have $v \rightarrow u_{1} u_{2}$. Suppose $u_{2} \rightarrow u \rightarrow u_{2} u_{2}$. By (p3), $u \rightarrow u_{1}$. Since $u \rightarrow u_{1} \rightarrow v$, by 1.2 we cannot have $u \| v$. But then, the elements $u_{1}, u, u_{2}, u_{1} u_{2}, v$ constitute a subalgebra isomorphic to \mathbf{J}_{3}, a contradiction.

Now suppose $u_{2} \rightarrow u \rightarrow u_{1}$. Then $u_{2} \rightarrow u_{1} u_{2} u \rightarrow u_{1} u_{2}$, which has been proved to be impossible.
3.12. Proposition. Let $u \in U, v \in V, u \| v$ and $c_{i} \in U(i=1, \ldots, n)$ be elements with $c_{n} \rightarrow c_{n-1} \rightarrow \ldots c_{1} \rightarrow u$. Then $u v c_{1} \ldots c_{n} v=c_{n} v$.

Proof. The quasiequation $z_{n} \rightarrow z_{n-1} \rightarrow \ldots \rightarrow z_{1} \rightarrow x \Longrightarrow x y z_{1} \ldots z_{n} y=z_{n} y$ is satisfied in all tournaments and is equivalent to an equation, so it is satisfied in A.
3.13. Proposition. Let n be the least number for which there exist elements $u \in U, v \in V, w \in V$ and $c_{i} \in U(i=1, \ldots, n)$ such that $u \| v, c_{n} \rightarrow c_{n-1} \rightarrow \ldots \rightarrow$ $c_{1} \rightarrow u$ and $u v c_{1} \rightarrow c_{n} w \neq c_{n} w$. Then
(1) $v \rightarrow c_{i}$ and $v \rightarrow u v c_{1} \ldots c_{i}$ for all $i \geqslant 1$.
(2) $w \rightarrow c_{n-1}, w \rightarrow u v c_{1} \ldots c_{n_{1}}$ and $w \rightarrow u v c_{1} \ldots c_{n}$.
(3) It is sufficient to consider only the case $c_{n} \rightarrow w$.

Proof. By 3.7 we have $n \geqslant 2$. Suppose that for some $i, v \nrightarrow u v c_{1} \ldots c_{i}$. By $3.12, u v c_{1} \ldots c_{i} v=c_{i} v$. If $c_{i} v=c_{i}$ then $u v c_{1} \ldots c_{i} v=c_{i}$, so that $c_{i} \rightarrow u v c_{1} \ldots c_{i}$ and hence $u v c_{1} \ldots c_{i}=c_{i}$, a contradiction. Hence $c_{i} \| v$. By the minimality of n, $c_{n} w=c_{i} v c_{i+1} \ldots c_{n} w=u v c_{1} \ldots c_{i} v c_{i+1} \ldots c_{n} w$. Hence $u v c_{1} \ldots c_{i} v \neq u v c_{1} \ldots c_{i}$. Using $u v c_{1} \ldots c_{n} \rightarrow u v c_{1} \ldots c_{n-1} \rightarrow \ldots \rightarrow u v c_{1} \ldots c_{i}$, by the minimality of n we have

$$
\begin{aligned}
u v c_{1} \ldots c_{n} w & =u v c_{1} \ldots c_{i} v\left(u v c_{1} \ldots c_{i+1}\right) \ldots\left(u v c_{1} \ldots c_{n}\right) w \\
& =v c_{i}\left(u v c_{1} \ldots c_{i+1}\right) \ldots\left(u v c_{1} \ldots c_{n}\right) w .
\end{aligned}
$$

But this last expression equals $v c_{i} c_{i+1} \ldots c_{n} w$, since the quasiequation

$$
z_{n} \rightarrow \ldots z_{1} \rightarrow x \Longrightarrow u z_{i} \ldots z_{n}=y z_{i}\left(x y z_{1} \ldots z_{i+1}\right) \ldots\left(x y z_{1} \ldots z_{n}\right)
$$

is satisfied in all tournaments and is equivalent to an equation. We get $u v c_{1} \ldots c_{n} w=$ $v c_{i} c_{i+1} \ldots c_{n} w=c_{n} w$, a contradiction.

Hence $v \rightarrow u v c_{1} \ldots c_{i}$ for all i. From this we get $v \rightarrow c_{i}$ by (p3).
We have $c_{n-1} w=u v c_{1} \ldots c_{n-1} w$ by the minimality of n. If $w \| c_{n-1}$ then $c_{n} w=$ $u v c_{1} \ldots c_{n-1} c_{n} w$ by 3.6, a contradiction. Hence $w \rightarrow c_{n-1}$. Consequently, $w \rightarrow$ $u v c_{1} \ldots c_{n-1}$.

Suppose $w \nrightarrow u v c_{1} \ldots c_{n}$. Then $u v c_{1} \ldots c_{n} w \rightarrow u v c_{1} \ldots c_{n} \rightarrow c_{n}$ implies $u v c_{1} \ldots c_{n} w \rightarrow c_{n}$; hence $u v c_{1} \ldots c_{n} w \rightarrow w c_{n}$. We get

$$
u v c_{1} \ldots c_{n-1} w c_{n}=\left(u v c_{1} \ldots c_{n-1} w \cdot u v c_{1} \ldots c_{n}\right)\left(u v c_{1} \ldots c_{n-1} w \cdot w c_{n}\right)
$$

i.e.,

$$
w c_{n}=u v c_{1} \ldots c_{n} w \cdot w c_{n}=u v c_{1} \ldots c_{n}
$$

a contradiction.
Hence $w \rightarrow u v c_{1} \ldots c_{n}$. Then $w \nrightarrow c_{n}$ and $w c_{\rightarrow} c_{n-1}$. The quasiequation

$$
\begin{aligned}
y \rightarrow z_{n} \rightarrow \ldots \rightarrow z_{1} \rightarrow x & \Longrightarrow x y z_{1} \ldots z_{n-1} \cdot u z_{n-1} z_{n} z_{n-1} \\
& =x y z_{1} \ldots z_{n} \cdot u z_{n-1} z_{n} z_{n-1}
\end{aligned}
$$

is satisfied in all tournaments and is equivalent to an equation; we get $u v c_{1} \ldots c_{n-1}$. $w c_{n}=u v c_{1} \ldots c_{n} \cdot w c_{n}$. From this it follows that if c_{n} is replaced with $w c_{n}$, all the above conditions are satisfied and, moreover, $c_{n} \rightarrow w$.
3.14. Proposition. Let $u \in U, v \in V, u \| v, c_{1}, c_{2} \in U, c_{2} \rightarrow c_{1} \rightarrow u$. Then $u v c_{1} c_{2} w=c_{2} w$ for all $w \in V$.

Proof. Suppose $u v c_{1} c_{2} w \neq c_{2} w$. By 3.13 we have $v \rightarrow c_{1}, v \rightarrow c_{2}, v \rightarrow u v c_{1}$, $v \rightarrow u v c_{1} c_{2}, w \rightarrow c_{1}, w \rightarrow u v c_{1}, w \rightarrow u v c_{1} c_{2}$ and it is sufficient to consider the case $c_{2} \rightarrow w$. Since $u v \rightarrow v \rightarrow u v c_{1} c_{2}$ and (by (p5)) uvc $c_{2} \rightarrow u v \cdot u v c_{1} c_{2} \cdot u v c_{1} \rightarrow$ $u v \cdot u v c_{1} c_{2}$, by 3.11 we have $u v \uparrow u v c_{1} c_{2}$. Since $u v \rightarrow v \rightarrow c_{2}$ and $c_{2} \rightarrow w$, by 3.2 we have $u v \uparrow c_{2}$. If $c_{2} \rightarrow u v$ then $c_{2} \rightarrow u v c_{1}$, so that $u v c_{1} c_{2}=c_{2}$, a contradiction. Hence $u v \rightarrow c_{2}$. Then $u v \rightarrow u v c_{1} c_{2}$. But $c_{2} \| u v c_{1}$, so that $c_{2} \rightarrow w \rightarrow u v c_{1}$ and $u v c_{1} \rightarrow u v \rightarrow u v c_{1} c_{2}$ give a contradiction by 3.11.

References

[1] J. Ježek: Constructions over tournaments. Czechoslovak Math. J 53 (2003), 413-428.
[2] J. Ježek, P. Marković, M. Maróti and R. McKenzie: Equations of tournaments are not finitely based. Discrete Math. 211 (2000), 243-248.
[3] J. Ježek, P. Marković, M. Maróti and R. McKenzie: The variety generated by tournament. Acta Univ. Carolinae 40 (1999), 21-41.
[4] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties. Volume I. Wadsworth \& Brooks/Cole, Monterey, 1987.

Author's address: J. Ježek, MFF UK, Sokolovská 83, 18675 Praha 8, e-mail: jezek @karlin.mff.cuni.cz.

[^0]: While working on this paper the author was partially supported by the Grant Agency of the Czech Republic, grant 201/99/0263 and by the institutional grant MSM113200007.

