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Abstract. W. Blaschke and H. R. Müller [4, p. 142] have given the following theorem as
a generalization of the classic Holditch Theorem: Let E/E′ be a 1-parameter closed planar
Euclidean motion with the rotation number ν and the period T . Under the motion E/E ′,
let two points A = (0, 0), B = (a+ b, 0) ∈ E trace the curves kA, kB ⊂ E′ and let FA, FB

be their orbit areas, respectively. If FX is the orbit area of the orbit curve k of the point
X = (a, 0) which is collinear with points A and B then

FX =
[aFB + bFA]

a+ b
− � νab.

In this paper, under the 1-parameter closed planar homothetic motion with the homothetic
scale h = h(t), the generalization given above by W. Blaschke and H. R. Müller is expressed
and

FX =
[aFB + bFA]

a+ b
− h2(t0) � νab,

is obtained, where ∃t0 ∈ [0, T ].
Keywords: Holditch Theorem, homothetic motion, Steiner formula

MSC 2000 : 53A17

1. Introduction

Let E and E′ be moving and fixed Euclidean planes and {O; e1, e2} and
{O′; e′

1, e′
2} be their coordinate systems, respectively. By taking OO′ = u =

u1e1 + u2e2 for u1, u2 ∈ � , the motion defined by the transformation
(1.1) x′ = hx− u

is called 1-parameter planar homothetic motion and denoted by E/E ′, where h is
a homothetic scale of the motion E/E ′ and x and x′ are the position vectors with

337



respect to the moving and fixed rectangular coordinate systems of a point X ∈ E,

respectively. The homothetic scale h and the vectors x, x′ and u are continuously
differentiable functions of a real parameter t. Furthermore, at the initial time t = 0
the coordinate systems {O; e1, e2} and {O′; e′

1, e′
2} are coincident. Taking ϕ = ϕ(t)

as the rotation angle between e1 and e′
1, the equation

e1 = cosϕe′
1 + sin ϕe′

2(1.2)

e2 = − sinϕe′
1 + cosϕe′

2

can be written. If

uj(t + T ) = uj(t), j = 1, 2(1.3)

ϕ(t + T ) = ϕ(t) + 2πν, ∀t ∈ [0, T ]

then the motion E/E′ is called 1-parameter closed planar homothetic motion with
the period T > 0 and the rotation number ν ∈ Z. To avoid the cases of the pure

translation and the pure rotation we assume that

ϕ̇(t) =
dϕ

dt
6= 0.

Under the 1-parameter closed planar homothetic motions, if P = (p1, p2) is the
pole point of the motion at the time t then the sliding velocity of a fixed point
X = (x1, x2) ∈ E with respect to E ′ is

(1.4) dx′ = {(x1 − p1) dh− (x2 − p2)h dϕ}e1 + {(x1 − p1)h dϕ + (x2 − p2) dh}e2.

Furthermore, the orbit area FX of the point X , given by Gauss area formula [3], is

(1.5) FX =
1
2

∮
(x′

1 dx′
2 − x′

2 dx′
1),

where the integration is taken along the closed orbit curve of X . Then, we obtain

2FX = (x2
1 + x2

2)
∫ T

0

h2(t) dϕ(t)− 2x1

∫ T

0

p1(t)h2(t) dϕ(t)(1.6)

− 2x2

∫ T

0

p2(t)h2(t) dϕ(t) +
∫ T

0

{u1(t)p1(t)h(t) dϕ(t)

+ u2(t)p2(t)h(t) dϕ(t) + u1(t)p2(t) dh(t)− u2(t)p1(t) dh(t)}

+ x1

∫ T

0

{u2(t) dh(t)− 2p2(t)h(t) dh(t) + h(t) du2(t)}

+ x2

∫ T

0

{−u1(t) dh(t) + 2p1(t)h(t) dh(t)− h(t) du1(t)}, [1].
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Moreover, using the mean value theorem of integral-calculus for the closed interval

0 6 t 6 T , there exists at least a point t0 ∈ [0, T ] such that

(1.7)
∫ T

0

h2(t) dϕ(t) =
∫ T

0

h2(t)ϕ̇(t) dt = 2h2(t0)πν.

By taking ν 6= 0, the Steiner point S = (s1, s2) for the closed planar homothetic
motion can be written as

(1.8) sj =

∫ T

0 h2(t)pj(t) dϕ(t)
∫ T

0 h2(t) dϕ(t)
, j = 1, 2.

Thus, from Eqs. (1.6), (1.7) and (1.8) we get

(1.9) FX = F0 + h2(t0)πν(x2
1 + x2

2 − 2x1s1 − 2x2s2) + µ1x1 + µ2x2, [1],

where F0 is the orbit area of the origin of the moving coordinate system and

µ1 =
1
2

∫ T

0

{−2h(t)p2(t) dh(t) + h(t) du2(t) + u2(t) dh(t)},(1.10)

µ2 =
1
2

∫ T

0

{2h(t)p1(t) dh(t)− h(t) du1(t)− u1(t) dh(t)}.

Eq. (1.9) is called the Steiner area formula for the 1-parameter closed planar homo-
thetic motion.

2. The generalized Holditch theorem for the closed planar
homothetic motions

Theorem 1. Let E/E ′ be 1-parameter planar homothetic motion with the rota-
tion number ν. Let FA, FB denote the orbit areas of the orbit curves kA, kB ⊂ E′ of

the points A = (0, 0), B = (a + b, 0) ∈ E, respectively. If FX is the orbit area of the

orbit curve k of the point X = (a, 0), which is collinear with points A and B, then

(2.1) FX =
[aFB + bFA]

a + b
− h2(t0)πνab.

���������
. From Eq. (1.9), for the orbit areas FA, FB and FX , we obtain

FA = F0,(2.2)

FB = F0 + h2(t0)πν[(a + b)2 − 2s1(a + b)] + µ1(a + b),(2.3)
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and

(2.4) FX = F0 + h2(t0)πν(a2 − 2s1a) + µ1a.

From Eqs. (2.2) and (2.3), we have

(2.5)
aFB + bFA

a + b
− h2(t0)πνab = F0 + h2(t0)πν(a2 − 2s1a) + µ1a.

Then, from Eqs. (2.4) and (2.5), we get Eq. (2.1). �

Special case 1. In the case of the homothetic scale h ≡ 1, we get

(2.6) FX =
[aFB + bFA]

a + b
− πνab,

which was given by [4].
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