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Abstract. In the present paper we are concerned with convergence in µ-density and
µ-statistical convergence of sequences of functions defined on a subset D of real numbers,
where µ is a finitely additive measure. Particularly, we introduce the concepts of µ-statistical
uniform convergence and µ-statistical pointwise convergence, and observe that µ-statistical
uniform convergence inherits the basic properties of uniform convergence.
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1. Introduction

Steinhaus [19] introduced the idea of statistical convergence (see also Fast [10]).

If K is a subset of � , the set of natural numbers, then the asymptotic density of K,
denoted by δ(K), is given by

δ(K) := lim
n

1
n
|{k 6 n : k ∈ K}|

whenever the limit exists, where |B| denotes the cardinality of the set B. A sequence
x = (xk) of numbers is statistically convergent to L if

δ({k : |xk − L| > ε}) = 0

for every ε > 0. In this case we write st-lim x = L or xk → L (stat). Note that
convergent sequences are statistically convergent but not conversely ([2], [11]).

Statistical convergence has been investigated in a number of recent papers [2],
[6], [11], [12], [13], [14], [18]. Some generalizations of statistical convergence have

413



appeared in the study of locally convex spaces [16], strong integral summability [5],

finitely additive set functions [6]. It is also connected with subsets of the Stone-Čech
compactification of the set of natural numbers [7], [9]. Some results on characterizing
Banach spaces with separable duals via statistical convergence may be found in [8].

This notion of convergence is also considered in measure theory [17] and trigonometric
series [21].

Connor [3] gave an extension of the notion of statistical convergence where the

asymptotic density is replaced by a finitely additive set function. Through the present
paper, let µ be a finitely additive set function taking values in [0, 1] defined on a field Γ
of subsets of � such that if |A| < ∞, then µ(A) = 0; if A ⊂ B and µ(B) = 0, then
µ(A) = 0; µ( � ) = 1. Such a set function satisfying the above criteria will be called
a measure. Following Connor [3], [4] we say that:

(i) x is µ-density convergent to L if there is an A ∈ Γ such that (x − L)χA is a

null sequence and µ(A) = 1, where χA is the characteristic function of A.

(ii) x is µ-statistically convergent to L, and write stµ-lim x = L, provided µ({k :
|xk − L| > ε}) = 0 for every ε > 0.
If T = (tnk) is a nonnegative regular summability method, then T can be used to

generate a measure as follows: for each n ∈ � , set µn(A) =
∞∑

k=1

tnkχA(k) for each

A ⊆ � . Let Γ: = {A ⊆ � : lim
n

µn(A) = 0 or lim
n

µn(A) = 1}. Define µT : Γ → [0, 1]
by

µT (A) = lim
n→∞

µn(A) = lim
n→∞

∞∑

k=1

tnkχA(k).

Then µT and Γ satisfy the requirements of the preceding definitions. If T is the

Cesàro matrix of order one, then µT -statistical convergence is equivalent to statistical
convergence.

It is known (Connor [3]) that (i) implies (ii), but not conversely. These two
definitions are equivalent ([3], [4]) if µ has the so-called additive property for null sets:

if, given a collections of null sets {Aj}j∈ � ⊆ Γ, there exists a collection {Bi}i∈ � ⊆ Γ

with the properties |Ai 4Bi| < ∞ for each i ∈ � , B =
∞⋃

i=1

Bi ∈ Γ, and µ(B) = 0.

In the present paper we are concerned with convergence in µ-density and
µ-statistical convergence of sequences of functions defined on a subset D of � , the
set of real numbers. Particularly, we introduce the concepts of µ-statistical uniform
convergence and µ-statistical pointwise convergence, and observe that µ-statistical

uniform convergence inherits the basic properties of uniform convergence.
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2. µ-statistically and µ-density convergent function sequences

Let D ⊂ � and let (fn) be a sequence of real functions on D.

Definition 2.1. (fn) converges µ-density pointwise to f ⇔ ∀ε > 0 and ∀x ∈
D, ∃Kx ∈ Γ, µ(Kx) = 1 and ∃n0 = n0(ε, x) ∈ Kx 3 ∀n > n0 and n ∈ Kx,

|fn(x)− f(x)| < ε.
In this case we will write fn → f (µ-density) on D.

Definition 2.2. (fn) converges µ-density uniform to f ⇔ ∀ε > 0, ∃K ∈ Γ,
µ(K) = 1 and ∃n0 = n0(ε) ∈ K 3 ∀n > n0 and n ∈ K and ∀x ∈ D,

|fn(x)− f(x)| < ε.
In this case we will write fn ⇒ f (µ-density) on D.

Definition 2.3. (fn) converges µ-statistically pointwise to f ⇔ ∀ε > 0 and
∀x ∈ D, µ({n : |fn(x) − f(x)| > ε}) = 0.
In this case we will write fn → f (µ-stat) on D. We note that this definition

includes the definition given in [20].

Definition 2.4. The sequence (fn) of bounded functions on D converges

µ-statistically uniformly to f ⇔ stµ-lim ‖fn − f‖B = 0, where the norm ‖ · ‖B

is the usual supremum norm on B(D), the space of bounded functions on D.

In this case we will write fn ⇒ f (µ-stat) on D. Observe that fn ⇒ f (µ-stat)
on D if and only if stµ-lim

(
sup
x∈D

|fn(x) − f(x)|
)

= 0.

As in the ordinary case the property of Definition 2.1 implies that of Definition 2.3;
and, of course for bounded functions, the property of Definition 2.2 implies that of

Definition 2.4. If µ has the additive property for null sets, then Definitions 2.1 and
2.3 are equivalent, and Definitions 2.2 and 2.4 are equivalent.

The next result is a µ-statistical analogue of a well-known result.

Theorem 2.1. Let all functions fn be continuous on D. If fn ⇒ f (µ-density)

on D, then f is continuous on D.
���������

. Assume fn ⇒ f (µ-density) on D. Then, for every ε > 0, there exists
a set K ∈ Γ of measure 1 and n0 = n0(ε) ∈ K such that |fn(x) − f(x)| < ε/3 for
each x ∈ D and for all n > n0 and n ∈ K. Let x0 ∈ D. Since fn0 is continuous at
x0 ∈ D, there is a δ > 0 such that |x− x0| < δ implies |fn0(x) − fn0(x0)| < ε/3 for
each x ∈ D. Now for all x ∈ D for which |x− x0| < δ, we have

|f(x)− f(x0)| 6 |f(x)− fn0(x)|+ |fn0(x)− fn0(x0)|
+ |fn0(x0)− f(x0)| < ε.

Since x0 ∈ D is arbitrary, f is continuous on D. �
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Now Theorem 2.1 yields immediately the following

Corollary 2.2. Let all functions fn be continuous on a compact subset D of � ,
and let µ be a measure with the additive property for null sets. If fn ⇒ f (µ-stat)
on D, then f is continuous on D.

The next example shows that neither of the converses of Theorem 2.1 and Corol-
lary 2.2 are true.

Example 2.1. Let µ(K) = 1. Define fn : [0, 1] → � by

fn(x) =





1, n /∈ K,

2nx

1 + n2x2
, n ∈ K.

Then we have fn → f = 0 (µ-density) on [0, 1]. Hence we get fn → f = 0 (µ-stat)
on [0, 1]. Though all fn and f are continuous on [0, 1], it follows from Definition 2.4
that the µ-statistical convergence of (fn) is not uniform for

cn := max
06x61

|fn(x) − f(x)| = 1 and stµ-lim cn = 1 6= 0.

The following result is an analogue of Dini’s theorem.

Theorem 2.3. Let µ be a measure with the additive property for null sets. Let

D be a compact subset of � and let (fn) be a sequence of continuous functions on D.

Assume that f is continuous and fn → f (µ-stat) on D. Also, let (fn) be monotonic
decreasing on D; i.e. fn(x) > fn+1(x) (n = 1, 2, . . .) for every x ∈ D. Then fn ⇒ f

(µ-stat) on D.

���������
. Write gn(x) := fn(x)− f(x). By hypothesis, each gn is continuous and

gn → 0 (µ-stat) on D, also (gn) is a monotonic decreasing sequence on D. Now,
since gn → 0 (µ-stat) on D and µ has the additive property for null sets, gn → 0
(µ-density) on D. Hence for every ε > 0 and each x ∈ D there exists Kx ∈ Γ of
measure 1 and a number n(x) := n(ε, x) ∈ Kx such that 0 6 gn(x) < ε/2 for all
n > n(x) and n ∈ Kx. Since gn(x) is continuous at x ∈ D, for every ε > 0 there is an
open set J(x) which contains x such that |gn(x)(t)− gn(x)(x)| < ε/2 for all t ∈ J(x).
Hence given ε > 0, by monotonicity we have

0 6 gn(t) 6 gn(x)(t) = gn(x)(t)− gn(x)(x) + gn(x)(x)

6 |gn(x)(t)− gn(x)(x)|+ gn(x)(x) < ε
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for every t ∈ J(x) and for all n > n(x) and n ∈ Kx. Since D ⊂ ⋃
x∈D

J(x) and

D is a compact set, by the Heine-Borel theorem D has a finite open covering such
that D ⊂ J(x1) ∪ J(x2) ∪ . . . ∪ J(xm). Now, let K := Kx1 ∩ Kx2 ∩ . . . ∩ Kxm and

N = max{n(x1), n(x2), . . . , n(xm)}. Observe that µ(K) = 1. Then 0 6 gn(t) < ε

for every t ∈ D and for all n > N and n ∈ K. So gn ⇒ 0 (µ-density) on D.

Consequently, gn ⇒ 0 (µ-stat) on D, which completes the proof. �

The following theorem is the Cauchy criterion for µ-statistical uniform conver-

gence.

Theorem 2.4. Let µ be a measure with the additive property for null sets, and let
(fn) be a sequence of bounded functions on D. Then (fn) is µ-statistically uniformly

convergent on D if and only if for every ε > 0 there is an n(ε) ∈ � such that
(2.1) µ({n : ‖fn − fn(ε)‖B < ε}) = 1.

Note. The sequence (fn) satisfying the property (2.1) is said to be µ-statistically

uniformly Cauchy on D.
���������

. Assume that (fn) converges µ-statistically uniformly to a function f

defined on D. Let ε > 0. Then we have µ({n : ‖fn − f‖B < ε/2}) = 1. We can
select an n(ε) ∈ � such that ‖fn(ε) − f‖B < ε/2. The triangle inequality yields
that µ({n : ‖fn − fn(ε)‖B < ε}) = 1. Since ε was arbitrary, (fn) is µ-statistically
uniformly Cauchy on D.

Conversely, assume that (fn) is µ-statistically uniformly Cauchy on D. Let x ∈ D

be fixed. By (2.1), for every ε > 0 there is an n(ε) ∈ � such that µ({n : |fn(x) −
fn(ε)(x)| < ε}) = 1. Hence {fn(x)} is µ-Cauchy, so by Proposition 3 of Connor [4]
we have that {fn(x)} converges µ-statistically to f(x). Then fn → f (µ-stat) on D.

Now we shall show that this convergence must be uniform. Note that since µ has
the additive property for null sets, by (2.1) there is a K ∈ Γ of measure 1 such that
‖fn − fn(ε)‖B < ε/2 for all n > n(ε) and n ∈ K. So for every ε > 0 there is a K ∈ Γ
of measure 1 and n(ε) ∈ � such that
(2.2) |fn(x)− fm(x)| < ε

for all n, m > n(ε) and n, m ∈ K and for each x ∈ D. Fixing n and applying the

limit operator on m ∈ K in (2.2), we conclude that for every ε > 0 there is a K ∈ Γ
of measure 1 and an n(ε) ∈ � such that |fn(x)−f(x)| < ε for all n > n0 and for each

x ∈ D. Hence fn ⇒ f (µ-density) on D, consequently fn ⇒ f (µ-stat) on D. �
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3. Applications

Using µ-statistical uniform convergence, we can also get some applications. We
merely state the following theorems and omit the proofs.

Theorem 3.1. Let µ be a measure with the additive property for null sets. If

a function sequence (fn) converges µ-statistically uniformly on [a, b] to a function f

and each fn is integrable on [a, b], then f is integrable on [a, b]. Moreover,

stµ-lim
∫ b

a

fn(x) dx =
∫ b

a

stµ-lim fn(x) dx =
∫ b

a

f(x) dx.

Theorem 3.2. Let µ be a measure with the additive property for null sets. Sup-

pose that (fn) is a function sequence such that each (fn) has a continuous derivative
on [a, b]. If fn → f (µ-stat) on [a, b] and f ′n ⇒ g (µ-stat) on [a, b], then fn ⇒ f

(µ-stat) on [a, b], where f is differentiable, and f ′ = g.

4. Function sequences that preserve µ-statistical convergence

This section is motivated by a paper of Kolk [15]. Recall that a function se-
quence (fn) is called convergence-preserving (or conservative) on D ⊂ � if the
transformed sequence {fn(xn)} converges for each convergent sequence x = (xn)
from D [15]. In this section, analogously, we describe the function sequences

which preserve the µ-statistical convergence of sequences. Our arguments also give
a sequential characterization of the continuity of µ-statistical limit functions of

µ-statistically uniformly convergent function sequences. This result is complemen-
tary to Theorem 2.1.

First we introduce the following definition.

Definition 4.1. Let D ⊂ � and let (fn) be a sequence of real functions on D.

Then (fn) is called a function sequence preserving µ-statistical convergence (or
µ-statistically conservative) on D if the transformed sequence {fn(xn)} converges
µ-statistically for each µ-statistically convergent sequence x = (xn) from D. If (fn)
is µ-statistically conservative and preserves the limits of all µ-statistically convergent

sequences from D, then (fn) is called µ-statistically regular on D.

Hence, if (fn) is conservative on D, then (fn) is µ-statistically conservative on D.
But the following example shows that the converse of this result is not true.
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Example 4.1. Let K ∈ Γ be a set such that � \ K is infinite and µ(K) = 1.
Define fn : [0, 1] → � by

fn(x) =

{
0, n ∈ K,

1, n /∈ K.

Suppose that (xn) from [0, 1] is an arbitrary sequence such that stµ-lim xn = L.
Then, for every ε > 0, µ({n : |fn(x) − 0| > ε}) = µ( � \ K) = 0. Hence
stµ-lim fn(xn) = 0, so (fn) is µ-statistically conservative on [0, 1]. But observe
that (fn) is not conservative on [0, 1].
Now we have

Theorem 4.1. Let µ be a measure with the additive property for null sets and

let (fk) be a sequence of functions defined on a closed interval [a, b] ⊂ � . Then (fk)
is µ-statistically conservative on [a, b] if and only if (fk) converges µ-statistically

uniformly on [a, b] to a continuous function.
���������

. Necessity. Assume that (fk) is µ-statistically conservative on [a, b].
Choose the sequence (vk) = (t, t, . . .) for each t ∈ [a, b]. Since stµ-lim vk = t,

stµ-lim fk(vk) exists, hence stµ-lim fk(t) = f(t) for all t ∈ [a, b]. We claim that f

is continuous on [a, b]. To prove this we suppose that f is not continuous at a

point t0 ∈ [a, b]. Then there exists a sequence (uk) in [a, b] such that lim uk = t0,
but lim f(uk) exists and lim f(uk) 6= f(t0). Since (fk) is µ-statistically pointwise

convergent to f on [a, b] and µ has the additive property for null sets, we obtain
fk → f (µ-density) on [a, b]. Hence, for each j, {fk(uj) − f(uj)} → 0 (µ-density).
It follows from Corollary 9 of Connor [4] that there exists λ : � → � such that
µ({λ(k) : k ∈ � }) = 1 and

lim
k

[fλ(k)(uj)− f(uj)] = 0

for each j. Now, by the “diagonal process” [1, p. 192] we can choose an increasing

index sequence (nk) in such a way that µ({nk : k ∈ � }) = 1 and lim
k

[fnk
(uk) −

f(uk)] = 0. Now define a sequence x = (ti) by

ti =





t0, i = nk and i is odd,

uk, i = nk and i is even,

0, otherwise.

Hence ti → t0 (µ-density), which implies stµ-lim ti = t0. But if i = nk and i is odd,

then lim fnk
(t0) = f(t0), and if i = nk and i is even, then lim fnk

(uk) = lim[fnk
(uk)−

f(uk)] + lim f(uk) 6= f(t0). Hence {fi(ti)} is not µ-density convergent since the
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sequence {fi(ti)} has two disjoint subsequences of positive measure that converge to
two different limit values. So, the sequence {fi(ti)} is not µ-statistically convergent,
which contradicts the hypothesis. Thus f must be continuous on [a, b]. It remains to
prove that (fk) converges µ-statistically uniformly on [a, b] to f . Assume that (fk)
is not µ-statistically uniformly convergent to f on [a, b], then (fk) is not µ-density
uniformly convergent to f on [a, b]. Hence, for an arbitrary index sequence (nk) with
µ({nk : k ∈ � }) = 1, there exists a number ε0 > 0 and numbers tk ∈ [a, b] such that
|fnk

(tk)−f(tk)| > 2ε0 (k ∈ � ). The bounded sequence x = (tk) contains a convergent
subsequence (tki), stµ-lim tki = α, say. By the continuity of f , lim f(tki) = f(α). So
there is an index i0 such that |f(tki)− f(α)| < ε0 (i > i0). For the same i’s, we have

(4.1) |fnki
(tki)− f(α)| > |fnki

(tki)− f(tki)| − |f(tki)− f(α)| > ε0.

Now, defining

uj =





α, j = nki and j is odd,

tki , j = nki and j is even,

0, otherwise,

we get uj → α (µ-density). Hence stµ-lim uj = α. But if j = nki and j is odd,
then lim fnki

(α) = f(α), and if j = nki and j is even, then, by (4.1), lim fnki
(tki) 6=

f(α). Hence {fj(tj)} is not µ-density convergent since the sequence {fj(tj)} has
two disjoint subsequences of positive measure that converge to two different limit

values. So, the sequence {fj(tj)} is not µ-statistically convergent, which contradicts
the hypothesis. Thus (fk) must be µ-statistically uniformly convergent to f on [a, b].
Sufficiency. Assume that fn ⇒ f (µ-stat) on [a, b] and f is continuous. Let

x = (xn) be a µ-statistically convergent sequence in [a, b] with stµ-lim xn = x0. Since

µ has the additive property for null sets, xn → x0 (µ-density), so there is an index
sequence {nk} such that lim

k
xnk

= x0 and µ({nk : k ∈ � }) = 1. By the continuity

of f at x0, lim
k

f(xnk
) = f(x0). Hence f(xn) → f(x0) (µ-density). Let ε > 0 be

given. Then there exists K1 ∈ Γ of measure 1 and a number n1 ∈ K1 such that
|f(xn)− f(x0)| < ε/2 for all n > n1 and n ∈ K1. By assumption µ has the additive

property for null sets. Hence the µ-statistical uniform convergence is equivalent to
the µ-density uniform convergence, so there exists a K2 ∈ Γ of measure 1 and a
number n2 ∈ K2 such that |fn(t)− f(t)| < ε/2 for every t ∈ [a, b] for all n > n2 and
n ∈ K2. Let N := max{n1, n2} and K := K1 ∩K2. Observe that µ(K) = 1. Hence
taking t = xn we have

|fn(xn)− f(x0)| 6 |fn(xn)− f(xn)|+ |f(xn)− f(x0)| < ε

for all n > N and n ∈ K. This shows that fn(xn) → f(x0) (µ-density) which
necessarily implies that stµ-lim fn(xn) = f(x0), whence the proof follows. �
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Theorem 4.1 contains the following necessary and sufficient condition for the

continuity of µ-statistical limit functions of function sequences that converge
µ-statistically uniformly on a closed interval.

Theorem 4.2. Let µ be a measure with the additive property for null sets and let
(fk) be a sequence of functions that converges µ-statistically uniformly on a closed

interval [a, b] to a function f . The stµ-lim function f is continuous on [a, b] if and
only if (fk) is µ-statistically conservative on [a, b].

Now, we study the µ-statistical regularity of function sequences. If (fk) is
µ-statistically regular on [a, b], then obviously stµ-lim fk(t) = t for all t ∈ [a, b]. So,
taking f(t) = t in Theorem 4.1, we immediately get the following

Theorem 4.3. Let µ be a measure with the additive property for null sets and let
(fk) be a sequence of functions on [a, b]. Then (fk) is µ-statistically regular on [a, b]
if and only if (fk) is µ-statistically uniformly convergent on [a, b] to the function f

defined by f(t) = t.
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