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Abstract. In this paper, we study the s-Perron, sap-Perron and ap-McShane integrals.
In particular, we show that the s-Perron integral is equivalent to the McShane integral and
that the sap-Perron integral is equivalent to the ap-McShane integral.
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1. Introduction

The major and minor functions are first defined using the upper and lower
derivates, and then the Perron integral is defined using the major and minor func-

tions. Similarly, the ap-major and ap-minor functions are first defined using the
upper and lower approximate derivates, and then the ap-Perron integral is defined

using the ap-major and ap-minor functions.

It is well-known [4] that the Perron integral is equivalent to the Henstock integral
and that the ap-Perron integral is equivalent to the ap-Henstock integral.

In this paper, we change the definitions of major and minor functions by strong

derivates and strong approximate derivates rather than ordinary derivates and ap-
proximate derivates, and then define the s-Perron and sap-Perron integrals using

such major and minor functions. We also define the ap-McShane integral, and then
show that the s-Perron integral is equivalent to the McShane integral and that the

sap-Perron integral is equivalent to the ap-McShane integral.
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2. The s-Perron and McShane integrals

Let F : [a, b] → ' be a function. The upper and lower derivates of F at c are
defined by

DF (c) = lim
δ→0+

sup
{

F (x)− F (c)
x− c

: 0 < |x− c| < δ

}
;

DF (c) = lim
δ→0+

inf
{

F (x)− F (c)
x− c

: 0 < |x− c| < δ

}
.

The function F is said to be differentiable at c ∈ [a, b] if DF (c) and DF (c) are
finite and equal. This common value is called the derivative of F at c and is denoted

by F ′(c).

We first define the strong derivates of a function.

Definition 2.1. Let F : [a, b] → ' be a function and let c ∈ [a, b]. The upper
and lower strong derivates of F at c are defined by

SDF (c) = lim
δ→0+

sup
{

F (y)− F (x)
y − x

: [x, y] ⊆ (c− δ, c + δ) ∩ [a, b]
}

;

SDF (c) = lim
δ→0+

inf
{

F (y)− F (x)
y − x

: [x, y] ⊆ (c− δ, c + δ) ∩ [a, b]
}

.

The function F is strongly differentiable at c if SDF (c) and SDF (c) are finite and
equal. This common value is called the strong derivative of F at c and is denoted by

F ′
s(c).

Note that the interval [x, y] need not contain the point c in the above definition.
From definition, it is clear that

SDF 6 DF 6 DF 6 SDF.

From this relation, it is obvious that if F is strongly differentiable at c, then it is
differentiable at c and F ′

s(c) = F ′(c).

The derivative F ′ of a differentiable function F : [a, b] → ' need not be continuous
on [a, b]. Nonetheless, the following theorem shows that the strong derivative F ′

s of
a strongly differentiable function F is in fact continuous on [a, b].
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Theorem 2.2. Let F : [a, b] → ' be a function. If F is strongly differentiable on
[a, b], then F ′

s is continuous on [a, b].
($)+*,*.-

. Let c ∈ [a, b] and let ε > 0. Since F is strongly differentiable at c, there
exists δ > 0 such that ∣∣∣∣

F (y)− F (x)
y − x

− F ′
s(c)

∣∣∣∣ < ε

for every interval [x, y] ⊆ (c − δ, c + δ) ∩ [a, b]. If |z − c| < δ and z ∈ [a, b], then
there exists δ1 > 0 such that (z − δ1, z + δ1) ∩ [a, b] ⊆ (c − δ, c + δ) ∩ [a, b] and∣∣F (q)−F (p)

q−p − F ′
s(z)

∣∣ < ε for every interval [p, q] ⊆ (z − δ1, z + δ1) ∩ [a, b], since
F is strongly differentiable at z. Choose an interval [p0, q0] such that [p0, q0] ⊆
(z − δ1, z + δ1) ∩ [a, b]. Then we have

|F ′
s(z)− F ′

s(c)| 6
∣∣∣∣F ′

s(z)− F (q0)− F (p0)
q0 − p0

∣∣∣∣ +
∣∣∣∣
F (q0)− F (p0)

q0 − p0
− F ′

s(c)
∣∣∣∣

< ε + ε = 2ε.

Hence F ′
s is continuous at c. This completes the proof. �

Example 2.3. Let f : [a, b] → ' be a continuous function and let F (x) =
∫ x

a
f

be the indefinite Lebesgue integral of f for each x ∈ [a, b]. Then F is strongly
differentiable on [a, b] and F ′

s = f on [a, b].

To show this, let c ∈ [a, b] and let ε > 0. Since f is continuous at c, there
exists δ > 0 such that |f(x) − f(c)| < ε if |x − c| < δ and x ∈ [a, b]. Let [s, t] ⊆
(c− δ, c + δ) ∩ [a, b]. Then we have

∫ t

s

{f(c)− ε} <

∫ t

s

f <

∫ t

s

{f(c) + ε};

f(c)− ε <
F (t)− F (s)

t− s
< f(c) + ε;

and it follows that
∣∣F (t)−F (s)

t−s −f(c)
∣∣ < ε. Hence F is strongly differentiable at c and

F ′
s(c) = f(c).
Let f : [a, b] → ' e be a function, where ' e = ' ∪ {±∞}. A measurable function

U : [a, b] → ' is called a major function of f on [a, b] if DU(x) > −∞ and DU(x) >
f(x) for all x ∈ [a, b]. A measurable function V : [a, b] → ' is called a minor function
of f on [a, b] if DV (x) < ∞ and DV (x) 6 f(x) for all x ∈ [a, b].
Recall that a function f : [a, b] → ' e is Perron integrable on [a, b] if f has at least

one major function and one minor function on [a, b] and the numbers

inf{U b
a : U is a major function of f on [a, b]};

sup{V b
a : V is a minor function of f on [a, b]}

are equal, where U b
a = U(b)− U(a) and V b

a = V (b)− V (a).
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Using upper and lower strong derivates, we define the strong major and strong

minor functions.

Definition 2.4. Let f : [a, b] → ' e be a function.

(1) A measurable function U : [a, b] → ' e is an s-major function of f on [a, b] if
SDU(x) > −∞ and SDU(x) > f(x) for all x ∈ [a, b].

(2) A measurable function V : [a, b] → ' is an s-minor function of f on [a, b] if
SDV (x) < ∞ and SDV (x) 6 f(x) for all x ∈ [a, b].

Now we define the s-Perron integral.

Definition 2.5. A function f : [a, b] → ' e is s-Perron integrable on [a, b] if f has
at least one s-major function and one s-minor function on [a, b] and the numbers

inf{U b
a : U is an s-major function of f on [a, b]};

sup{V b
a : V is an s-minor function of f on [a, b]}

are equal. This common value is called the s-Perron integral of f on [a, b] and is
denoted by (SP)

∫ b

a
f . The function f is s-Perron integrable on a measurable set

E ⊆ [a, b] if fχE is s-Perron integrable on [a, b].

It follows easily from the definition that every s-Perron integrable function is

Perron integrable.
The following theorem is an immediate consequence of the definition.

Theorem 2.6. A function f : [a, b] → ' e is s-Perron integrable on [a, b] if and
only if for each ε > 0 there exist an s-major function U and an s-minor function V

of f on [a, b] such that U b
a − V b

a < ε.

Let δ(·) be a positive function defined on the interval [a, b]. A tagged interval
(x, [c, d]) consists of an interval [c, d] ⊆ [a, b] and a point x ∈ [c, d], and a free tagged
interval (x, [c, d]) consists of an interval [c, d] ⊆ [a, b] and a point x ∈ [a, b]. The
(free) tagged interval (x, [c, d]) is said to be subordinate to δ if

[c, d] ⊆ (x− δ(x), x + δ(x)).

Let P = {(xi, [ci, di]) : 1 6 i 6 n} be a finite collection of non-overlapping (free)
tagged intervals in [a, b]. If (xi, [ci, di]) is subordinate to δ for each i, then we say

that P is subordinate to δ. If P is subordinate to δ and [a, b] =
n⋃

i=1

[ci, di], then we

say that P is a (free) tagged partition of [a, b] that is subordinate to δ.

Recall that a function f : [a, b] → ' is McShane integrable on [a, b] if there exists
a real number A with the following property: for every ε > 0 there exists a positive
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function δ on [a, b] such that |f(P)−A| < ε wheneverP is a free tagged partition of

[a, b] that is subordinate to δ, where f(P) =
n∑

i=1

f(xi)(di − ci) if P = {(xi, [ci, di]) :

1 6 i 6 n} is a free tagged partition of [a, b]. The real numberA is called theMcShane
integral of f on [a, b] and is denoted by (M)

∫ b

a f . The function f : [a, b] → ' is said
to be Henstock integrable on [a, b] if we replace ‘free tagged partition’ by ‘tagged
partition’ in the definition of the McShane integral.
The following two theorems show that the s-Perron integral is equivalent to the

McShane integral.

Theorem 2.7. If f : [a, b] → ' is s-Perron integrable on [a, b], then f is McShane

integrable on [a, b] and the integrals are equal.
($)+*,*.-

. Let ε > 0. By the definition, there exist an s-major function U and an

s-minor function V of f on [a, b] such that

−ε < V b
a − (SP)

∫ b

a

f 6 0 6 U b
a − (SP)

∫ b

a

f < ε.

Since SDV 6 f 6 SDU on [a, b], for each c ∈ [a, b] there exists δ(c) > 0 such that

U(y)− U(x)
y − x

> f(c)− ε and
V (y)− V (x)

y − x
6 f(c) + ε

whenever [x, y] ⊆ (c− δ(c), c + δ(c)) ∩ [a, b]. Now let

P = {(xi, [ci, di]) : 1 6 i 6 n}

be a free tagged partition of [a, b] that is subordinate to δ. Then we have

n∑

i=1

f(xi)(di − ci)− (SP)
∫ b

a

f =
n∑

i=1

(f(xi)(di − ci)− Udi
ci

) + U b
a − (SP)

∫ b

a

f

<
n∑

i=1

ε(di − ci) + ε = ε(b− a + 1).

Similarly, using the s-minor function V , we arrive at

n∑

i=1

f(xi)(di − ci)− (SP)
∫ b

a

f > −ε(b− a + 1).

Since |f(P)−(SP)
∫ b

a f | < ε(b−a+1), f is McShane integrable on [a, b] and (M)
∫ b

a f =
(SP)

∫ b

a
f . �
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Theorem 2.8. If f : [a, b] → ' is McShane integrable on [a, b], then f is s-Perron

integrable on [a, b].
($)+*,*.-

. Let ε > 0. By the definition, there exists a positive function δ on [a, b]
such that

∣∣f(P)− (M)
∫ b

a
f
∣∣ < ε wheneverP is a free tagged partition of [a, b] that

is subordinate to δ. For each x ∈ (a, b], let

U(x) = sup{f(P) : P is a free tagged partition of [a, x] that is subordinate to δ};
V (x) = inf{f(P) : P is a free tagged partition of [a, x] that is subordinate to δ};

and let U(a) = 0 = V (a). By the Saks-Henstock Lemma, the functions U and V

are finite-valued on [a, b]. We prove that U is an s-major function of f on [a, b]; the
proof that V is an s-minor function of f on [a, b] is quite similar.
Fix a point c ∈ [a, b] and let [x, y] be any interval such that [x, y] ⊆ (c− δ(c), c +

δ(c)) ∩ [a, b]. For each free tagged partition P of [a, x] that is subordinate to δ, we
find that

U(y) > f(P) + f(c)(y − x)

and it follows that U(y) > U(x) + f(c)(y − x). This shows that U(y)−U(x)
y−x > f(c)

and hence SDU(c) > f(c) > −∞. Since −∞ < SDU 6 DU on [a, b], U is BV G∗
on [a, b] by [4, Theorem 6.21] and it follows that U is measurable on [a, b] by [4,
Corollary 6.9]. Hence, U is an s-major function of f .
Since |f(P1) − f(P2)| < 2ε for any two free tagged partitions P1 and P2 of

[a, b] that are subordinate to δ, it follows that U b
a − V b

a 6 2ε. By Theorem 2.6, the
function f is s-Perron integrable on [a, b]. �

3. The sap-Perron and ap-McShane integrals

Let E be a measurable set and let c be a real number. The density of E at c is
defined by

dcE = lim
h→0+

µ(E ∩ (c− h, c + h))
2h

,

provided the limit exists. The point c is called a point of density of E if dcE = 1
and a point of dispersion of E if dcE = 0. The set Ed represents the set of all points

x ∈ E such that x is a point of density of E. From the definition, it is obvious that
a point c is a point of density of E if and only if c is a point of dispersion of the

complement Ec of E.
A function F : [a, b] → ' is said to be approximately differentiable at c ∈ [a, b] if

there exists a measurable set E ⊆ [a, b] such that c ∈ Ed and F |E is differentiable
at c. The approximate derivative of F at c is denoted by F ′

ap(c).
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For a measurable function F : [a, b] → ' , the upper and lower approximate
derivates of F at c ∈ [a, b] are defined by

ADF (c) = inf
{

α ∈ ' : c is a point of dispersion of
{

x ∈ [a, b] :
F (x)− F (c)

x− c
> α

}}
;

ADF (c) = sup
{

β ∈ ' : c is a point of dispersion of
{

x ∈ [a, b] :
F (x)− F (c)

x− c
6 β

}}
.

The measurable function F : [a, b] → ' is approximately differentiable at c ∈ [a, b]
if and only if ADF (c) and ADF (c) are finite and equal [4, Corollary 16.13].
Then we have the following result.

Theorem 3.1. Let F : [a, b] → ' be measurable and let c ∈ [a, b]. Then

ADF (c) = inf
E

sup
x∈E

F (x)− F (c)
x− c

;

ADF (c) = sup
E

inf
x∈E

F (x)− F (c)
x− c

,

where the infimum and supremum are taken over all measurable sets E containing c

as a density point.
($)+*,*.-

. Suppose that ADF (c) < α. By the definition, c is a point of dispersion

of the set
{
x ∈ [a, b] : F (x)−F (c)

x−c > α
}
. Let D =

{
x ∈ [a, b] : F (x)−F (c)

x−c < α
}
.

Then c is a point of density of the set D. Since sup
x∈D

F (x)−F (c)
x−c 6 α, we have

inf
E

sup
x∈E

F (x)−F (c)
x−c 6 α. Hence ADF (c) > inf

E
sup
x∈E

F (x)−F (c)
x−c .

To prove the reverse inequality, let inf
E

sup
x∈E

F (x)−F (c)
x−c < β. Then there exists

a measurable set E with c ∈ Ed such that sup
x∈E

F (x)−F (c)
x−c < β. Since E ⊆

{
x :

F (x)−F (c)
x−c < β

}
, we have Ec ⊇

{
x : F (x)−F (c)

x−c > β
}
and c is a point of dispersion

of the set
{
x : F (x)−F (c)

x−c > β
}
. This shows that ADF (c) 6 β. Hence we have

ADF (c) 6 inf
E

sup
x∈E

F (x)−F (c)
x−c . The case for the lower approximate derivate is similar.

This completes the proof. �

Now we define the upper and lower strong approximate derivates of a measurable
function.
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Definition 3.2. Let F : [a, b] → ' be measurable and let c ∈ [a, b]. The upper
and lower strong approximate derivates of F at c are defined by

SADF (c) = inf
E

sup
{

F (x) − F (y)
x− y

: x, y ∈ E, x 6= y

}
;

SADF (c) = sup
E

inf
{

F (x) − F (y)
x− y

: x, y ∈ E, x 6= y

}
,

where the infimum and supremum are taken over all measurable sets E containing c

as a density point. The function F is strongly approximately differentiable at c ∈ [a, b]
if SADF (c) and SADF (c) are finite and equal. This common value is called the
strong approximate derivative of F at c and is denoted by F ′

sap(c).

For a measurable function F : [a, b] → ' , it is easy to see that

SDF 6
{

SADF

DF
6 ADF 6 ADF 6

{
SADF

DF
6 SDF.

Using strong approximate derivates, it is possible to define the strong approximate

major and strong approximate minor functions, and then the sap-Perron integral can
be defined.

Definition 3.3. Let f : [a, b] → ' e be a function.
(1) A measurable function U : [a, b] → ' is an sap-major function of f on [a, b] if

SADU(x) > −∞ and SADU(x) > f(x) for all x ∈ [a, b].
(2) A measurable function V : [a, b] → ' is an sap-minor function of f on [a, b] if

SADV (x) < ∞ and SADV (x) 6 f(x) for all x ∈ [a, b].

Suppose that U is an sap-major function and that V is an sap-minor function

of f on [a, b]. Since 0 6 SADU − SADV = SAD(U − V ) 6 AD(U − V ), U − V

is nondecreasing on [a, b] by [4, Theorem 17.3]. It follows that V b
a 6 U b

a and that

0 6 Ud
c − V d

c 6 U b
a − V b

a whenever [c, d] is a subinterval of [a, b].
In particular,

−∞ < sup{V b
a : V is an sap-minor function of f on [a, b]}

6 inf{U b
a : U is an sap-major function of f on [a, b]} < ∞.

Definition 3.4. A function f : [a, b] → ' e is sap-Perron integrable on [a, b] if
f has at least one sap-major function and one sap-minor function on [a, b] and the
numbers

inf{U b
a : U is an sap-major function of f on [a, b]};

sup{V b
a : V is an sap-minor function of f on [a, b]}
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are equal. This common value is called the sap-Perron integral of f on [a, b] and is
denoted by (SAP)

∫ b

a f . The function f is sap-Perron integrable on E ⊆ [a, b] if fχE

is sap-Perron integrable on [a, b].

The following theorem is an immediate consequence of the definition.

Theorem 3.5. A function f : [a, b] → ' e is sap-Perron integrable on [a, b] if
and only if for each ε > 0 there exist an sap-major function U and an sap-minor

function V of f on [a, b] such that U b
a − V b

a < ε.

An approximate neighborhood (or ap-nbd) of x ∈ [a, b] is a measurable set Sx ⊆
[a, b] containing x and having density 1 at x. For every x ∈ [a, b], choose an ap-nbd
Sx ⊆ [a, b] of x. Then we say that S = {Sx : x ∈ [a, b]} is a choice on [a, b].
A (free) tagged interval (x, [c, d]) is said to be subordinate to the choice S if

c, d ∈ Sx. LetP = {(xi, [ci, di]) : 1 6 i 6 n} be a finite collection of non-overlapping
(free) tagged intervals. If (xi, [ci, di]) is subordinate to S for each i, then we say that

P is subordinate to S. If P is subordinate to S and [a, b] =
n⋃

i=1

[ci, di], then we say

that P is a (free) tagged partition of [a, b] that is subordinate to S.

A function f : [a, b] → ' is said to be ap-Henstock integrable on [a, b] if there exists
a real number A with the following property: for each ε > 0 there exists a choice S

on [a, b] such that |f(P)−A| < ε whenever P is a tagged partition of [a, b] that is
subordinate to S.

It is well-known [4] that the ap-Henstock integral is equivalent to the ap-Perron
integral.

We now present the definition of the ap-McShane integral.

Definition 3.6. A function f : [a, b] → ' is ap-McShane integrable on [a, b] if
there exists a real number A with the following property: for every ε > 0 there exists
a choice S on [a, b] such that |f(P)−A| < ε wheneverP is a free tagged partition of

[a, b] that is subordinate to S. The real number A is called the ap-McShane integral
of f on [a, b] and is denoted by (AM)

∫ b

a
f . The function f is ap-McShane integrable

on a measurable set E ⊆ [a, b] if fχE is ap-McShane integrable on [a, b].

It is clear from the definitions of both integrals that every McShane integrable
function is ap-McShane integrable and every ap-McShane integrable function is ap-

Henstock integrable.

The following two theorems show that the sap-Perron integral is equivalent to the

ap-McShane integral.
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Theorem 3.7. If f : [a, b] → ' is sap-Perron integrable on [a, b], then f is ap-

McShane integrable on [a, b] and the integrals are equal.

($)+*,*.-
. Let ε > 0. By the definition, there exist an sap-major function U and

an sap-minor function V of f on [a, b] such that

−ε < V b
a − (SAP)

∫ b

a

f 6 0 6 U b
a − (SAP)

∫ b

a

f < ε.

Since SADV 6 f 6 SADU , for each x ∈ [a, b] there exists an ap-nbd Sx such that

f(x)− ε <
U(d)− U(c)

d− c
and

V (d)− V (c)
d− c

< f(x) + ε

for all c, d ∈ Sx with c 6= d. Let P = {(xi, [ci, di]) : 1 6 i 6 n} be a free tagged
partition of [a, b] that is subordinate to the choice {Sx}. Then for each i,

V (di)− V (ci)− ε(di − ci) < f(xi)(di − ci)

< U(di)− U(ci) + ε(di − ci).

Summing over i,

V b
a − ε(b− a) < f(P) < U b

a + ε(b− a).

Hence, we have

−ε(b− a + 1) < {f(P)− V b
a }+

{
V b

a − (SAP)
∫ b

a

f

}

= f(P)− (SAP)
∫ b

a

f

= {f(P)− U b
a}+

{
U b

a − (SAP)
∫ b

a

f

}

< ε(b− a + 1).

This shows that ∣∣∣∣f(P)− (SAP)
∫ b

a

f

∣∣∣∣ < ε(b− a + 1)

for every free tagged partitionP of [a, b] that is subordinate to {Sx}. It follows that
f is ap-McShane integrable on [a, b] and (AM)

∫ b

a
f = (SAP)

∫ b

a
f . �
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Theorem 3.8. If f : [a, b] → ' is ap-McShane integrable on [a, b], then f is

sap-Perron integrable on [a, b].
($)+*,*.-

. Let ε > 0. By the definition, there exists a choice S = {Sx} on [a, b]
such that

∣∣f(P) − (AM)
∫ b

a f
∣∣ < ε whenever P is a free tagged partition of [a, b]

that is subordinate to S. Without loss of generality, we may assume that each point

of Sx is a point of density of Sx. For each x ∈ (a, b], let

U(x) = sup{f(P) : P is a free tagged partition of [a, x] that is subordinate to S};
V (x) = inf{f(P) : P is a free tagged partition of [a, x] that is subordinate to S};

and let U(a) = 0 = V (a). By the Saks-Henstock Lemma, the functions U and V are
finite-valued on [a, b]. We prove that U is an sap-major function of f on [a, b]; the
proof that V is an sap-minor function of f on [a, b] is quite similar.
From the proof of [4, Theorem 17.15], it follows that U is a measurable func-

tion. Fix c ∈ [a, b]. Let [p, q] be any interval with p, q ∈ Sc. For each free tagged
partition P of [a, p] that is subordinate to S we have

U(q) > f(P) + f(c)(q − p)

and it follows that

U(q) > U(p) + f(c)(q − p);
U(q)− U(p)

q − p
> f(c).

Since p and q are arbitrary points of Sc with p < q, we have inf
p,q∈Sc

U(q)−U(p)
q−p > f(c)

and hence SADU(c) > f(c) > −∞. This shows that U is an sap-major function of f

on [a, b].
Since

|f(P1)− f(P2)| 6
∣∣∣∣f(P1)− (AM)

∫ b

a

f

∣∣∣∣ +
∣∣∣∣(AM)

∫ b

a

f − f(P2)
∣∣∣∣ < 2ε

for any two free tagged partitions P1 and P2 of [a, b] that are subordinate to S, it
follows that U b

a −V b
a 6 2ε. Hence the function f is sap-Perron integrable on [a, b] by

Theorem 3.5. �

Let f : [a, b] → ' be ap-McShane integrable on [a, b] and let F (x) = (AM)
∫ x

a
f

for each x ∈ [a, b]. At this time, we do not know whether or not the function F is
strongly approximately differentiable on [a, b]. But we can get the following result.
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Theorem 3.9. Let f : [a, b] → ' be ap-McShane integrable on [a, b] and let
F (x) = (AM)

∫ x

a f for each x ∈ [a, b]. If there exists a measurable set E ⊆ [a, b] with
µ([a, b]− E) = 0 such that f is relatively continuous on E (i.e., for each c ∈ E and

for each ε > 0, there exists δ > 0 such that |f(x)−f(c)| < ε if |x− c| < δ and x ∈E),
then F is strongly approximately differentiable a.e. on [a, b] and F ′

sap = f a.e. on

[a, b].
($)+*,*.-

. Without loss of generality, we may assume that each point of E is

a point of density of E. Let c ∈ E and let ε > 0. Suppose that f is relatively
continuous on E. Then there exists δ > 0 such that |f(x) − f(c)| < ε if |x − c| < δ

and x ∈ E. Let Sc = E ∩ (c− δ, c + δ). If x, y ∈ Sc and x < y, then

f(c)− ε =
1

y − x
(AM)

∫ y

x

{f(c)− ε} =
1

y − x
(AM)

∫

E∩[x,y]

{f(c)− ε}

6 1
y − x

(AM)
∫

E∩[x,y]

f =
1

y − x
(AM)

∫ y

x

f =
F (y)− F (x)

y − x

6 1
y − x

(AM)
∫

E∩[x,y]

{f(c) + ε} =
1

y − x
(AM)

∫ y

x

{f(c) + ε}

= f(c) + ε.

It follows that
∣∣F (y)−F (x)

y−x − f(c)
∣∣ < ε. Hence F is strongly approximately differen-

tiable at c and F ′
sap(c) = f(c). This completes the proof. �

Now we present a diagram relating the integrals we have been discussing: McShane
integral (M), Henstock integral (H), Perron integral (P), s-Perron integral (SP), ap-

McShane integral (AM), ap-Henstock integral (AH), ap-Perron integral (AP), and
sap-Perron integral (SAP).

SP

��tt

44

iiiiiiiiiiiiiiiiiiiii

M //

��

H //oo P

��
AM // AH //oo P

SAP

OOjj

**

UUUUUUUUUUUUUUUUUUU

In the above diagram, an arrow stands for implication. For example, the implica-
tion dAM → AHc represents that if a function f is ap-McShane integrable, then it is

ap-Henstock integrable and dAH ↔ APc represents that a function f is ap-Henstock
integrable if and only if f is ap-Perron integrable.
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