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SPECTRA OF EXTENDED DOUBLE COVER GRAPHS

� � ��� ��� � � 	
, McKeesport

(Received March 14, 2002)

Abstract. The construction of the extended double cover was introduced by N. Alon [1]
in 1986. For a simple graph G with vertex set V = {v1, v2, . . . , vn}, the extended dou-
ble cover of G, denoted G∗, is the bipartite graph with bipartition (X, Y ) where X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, in which xi and yj are adjacent iff i = j or vi

and vj are adjacent in G.
In this paper we obtain formulas for the characteristic polynomial and the spectrum

of G∗ in terms of the corresponding information of G. Three formulas are derived for the
number of spanning trees in G∗ for a connected regular graph G. We show that while
the extended double covers of cospectral graphs are cospectral, the converse does not hold.
Some results on the spectra of the nth iterared double cover are also presented.

Keywords: charateristic polynomial of graph, graph spectra, extended double cover of
graph

MSC 2000 : 05C50, 05C30

1. Introduction

The spectra of graphs have long been studied and the study in this field has found
applications in a variety of problems in theoretical chemistry, quantum mechan-
ics, statistical physics, computer and information sciences, as well as some areas of
mathematics including spectral Riemannian geometry (see [2], [4]–[7], [9]–[11] and
the cited references there).

For studying networks N. Alon [1] introduced, in 1986, the extended double over of
a graph to obtain expanders from magnifiers. This motivated our interest in studying
the spectra of the extended double cover graphs.

This work was supported in part by the RDG grant from the Penn State University.
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Throughout the paper G is always used to denote a simple graph with n > 1
vertices. For a simple graph G with vertex set V = {v1, v2, . . . , vn}, the extended
double cover ofG, denoted asG∗, is the bipartite graph with bipartition (X, Y ) where
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, in which xi and yj are adjacent iff
i = j or vi and vj are adjacent in G.
For example, the complete bipartite graph Kn,n is the extended double cover of

the complete graph Kn. It is easy to see that G∗ is connected iff G is connected,
and G∗ is regular of degree r + 1 iff G is regular of degree r.
For a graph G with adjacency matrix A, the charateristic polynomial of G is

χ(G, λ) = |λI − A|, where I denotes the identity matrix. The eigenvalues of A

(i.e. the zeros of χ(G, λ)) and the spectrum of A (which consists of the n eigenvalues)
are called the eigenvalues and the spectrum of G, respectively. For other notation
and terminology not defined here the reader may refer to the books [2] and [3].
In the next section we shall give formulas for the characteristic polynomial and

the spectrum of G∗ in terms of the corresponding information of G. Three formulas
are derived for the number of spanning trees in G∗ for a connected regular graph G.
While the extended double covers of cospectral graphs are cospectral, we show the

converse does not hold. Some results on the spectra of the nth iterated double cover
are also presented.

2. Results

Theorem 1.
(i) χ(G∗, λ) = (−1)nχ(G, λ− 1)χ(G,−λ− 1).
(ii) Let λ1, λ2, . . . , λn be the spectrum of G.
Then the spectrum of G∗ consists of ±(λ1 + 1),±(λ2 + 1), . . . ,±(λn + 1).

������

. Let G have the adjacency matrix A. Then it is not difficult to see that

the partitioned matrix

[
0 A + I

A + I 0

]
is the adjacency matrix of G∗, in which all

0, A and I are n× n matrices. So,

χ(G∗, λ) =
∣∣∣∣

λI −(A + I)
−(A + I) λI

∣∣∣∣ = λn

∣∣∣∣
I −λ−1(A + I)

−(A + I) λI

∣∣∣∣ .

It is well known in matrix theory (see, for example, [8, p. 45]) that if M is an

invertible matrix then

∣∣∣∣
M N

P Q

∣∣∣∣ = |M | · |Q− PM−1N |. So,

χ(G∗, λ) = λn|λI − λ−1(A + I)2| = |λ2I − (A + I)2|
= |λI − (A + I)| · |λI + (A + I)| = (−1)n|(λ− 1)I −A| · |(−λ− 1)I −A|
= (−1)nχ(G, λ− 1)χ(G,−λ− 1).
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This completes the proof of (i). Then (ii) follows as a direct consequence of (i). �
Example 1. Since Kn,n = (Kn)∗, and it is well known that the spectrum of Kn

consists of n− 1 and −1 (with multiplicity n− 1), then by Theorem 1, the spectrum
of Kn,n consists of ±n and 0 (with multiplicity 2n− 2).

It should be pointed out that it is not difficult to determine if a given graph is the
extended double cover of some graph. First, it must be bipartite. Secondly, for a
connected bipartite graph G = (V, E) with bipartition V = X∪Y , G is the extended
double cover of some graph iff G has a perfect matching M = {ei | ei = xiyi, xi ∈
X, yi ∈ Y ; i = 1, 2, . . . , n} such that for any distinct ei, ej in M , we have either
{xiyj , xjyi} ⊂ E or {xiyj , xjyi} ∩E = ∅.
Example 2. Let Mn denotes the Möbius ladder (see [6]) that is the graph with

2n vertices 1, 2, . . . , 2n in which the following pairs of vertices are adjacent:

(i, i + 1), i = 1, 2, . . . , 2n− 1,

(1, 2n),

(i, i + n), i = 1, 2, . . . , n.

Clearly, Mn is bipartite iff n is odd. It is not difficult to see that when n > 3 is
odd Mn = (Cn)∗ where Cn is the cycle with n vertices. It is well known that the
spectrum of Cn consists of 2 cos(2 � i/n), i = 1, 2, . . . , n. Then by Theorem 1, the
spectrum of Mn (n is odd) consists of ±(2 cos(2 � i/n) + 1), i = 1, 2, . . . , n.

Example 3. Let Kn,n ./ Km,m denote the graph obtained by idetifying one edge
ofKn,n with one edge ofKm,m. ThenKn,n./Km,m = (Kn ./ Km)∗, whereKn ./ Km

denotes the graph obtained by idetifying one vertex of Kn with one vertex of Km.
Applying a formula of Schwenk [10] (also see [9, p. 210]), it is easy to calculate
χ(Kn ./ Km, λ). Then χ(Kn,n ./ Km,m, λ) can be obtained easily from Theorem 1.
The detail is left to the reader.

Let τ(G∗) (τ(G), resp.) denote the number of spanning trees of G∗ (G, resp.). To
obtain formulas for τ(G∗) we need the following well known result (see, for example,
Corollary 6.5 in [2]).

Lemma 1. Let G be a connected regular graph of degree r with the spectrum
r = λ1 > λ2 > . . . > λn. Then

τ(G) =
1
n

n∏

i=2

(r − λi) =
1
n

χ′(G, r)

where χ′ denotes the derivative of the characteristicc polynomial χ of G.

Now we are ready to give formulas for τ(G∗).
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Corollary 1. Let G be a connected regular graph of degree r with the spectrum
r = λ1 > λ2 > . . . > λn. Then

(i) τ(G∗) = n−1(r + 1)
n∏

i=2

[(r − λi)(r + λi + 2)],

(ii) τ(G∗) = τ(G) · (r + 1)
n∏

i=2

(r + λi + 2).


������
. (i) From the given condition, we can see that G∗ is a connected regular

graph of degree r+1 with 2n vertices. By Theorem 1 we can get the spectrum of G∗.
Then by Lemma 1 we have

τ(G∗) =
1
2n

[(r + 1)− (−λ1 + 1))]

×
n∏

i=2

[
(r + 1)− (λi + 1)

][
(r + 1)− (−λi + 1))

]

=
r + 1

n

n∏

i=2

[(r − λi)(r + λi + 2)].

(ii) directly follows from (i) and Lemma 1. �

Using Corollary 1 we can get the number of spanning trees ofG∗ from the spectrum
of graph G. However, it often happens that the accurate spectrum of G is not easy,
even impossible to determine although we can find the characteristic polynomial
of G. The following Corollary 2 allows us to obtain the number τ(G∗) directly from
the characteristic polynomial of graph G.

Corollary 2. Let G be a connected regular graph of degree r with n vertices.
Then

τ(G∗) =
(−1)n

2n
χ′(G, r)χ(G,−r − 2),

where χ′ denotes the derivative of the characteristic polynomial χ.


������
. By Lemma 1, we have

τ(G∗) =
1
2n

χ′(G∗, r + 1),

where χ′ denotes the derivative of the characteristic polynomial χ.

By Theorem 1, χ(G∗, x) = (−1)nχ(G, x− 1)χ(G,−x− 1). So

χ′(G∗, x) = (−1)n[χ(G, x− 1)χ(G,−x− 1)]′

= (−1)n[χ′(G, x− 1)χ(G,−x− 1)− χ(G, x − 1)χ′(G,−x− 1)].

1080



Since G is regular of degree r, r is an eigenvalue of G. So, χ(G, x − 1) = 0 when
x = r + 1. Therefore, we have

τ(G∗) =
(−1)n

2n
χ′(G, r)χ(G,−r − 2).

�

From Theorem 1, it is clear that if two graphs have the same spectrum, then their
extended double covers also have the same spectrum. A natural question is whether
the converse is also true. By looking at the spectrum given in Theorem 1, it seems
that an affirmative answer is plausible. However, contrary to the intuition, the answer
to the above question is negative. This can been seen from the following result, where
we use the notation G1 ×G2 to denote the cartesian product of graphs G1 and G2.
Recall that the vertex set of G1 ×G2 is the cartesian product V (G1)× V (G2), and
two vertices (u1, u2) and (v1, v2) of G1×G2 are adjacent if and only if either u1 = v1

and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). (Note that this graph is denoted
differently as G1 + G2 in [6].)

Theorem 2. Let G be a connected graph. Then
(i) G∗ and G×K2 have the same spectrum if f G is bipartite or G = K1.
(ii) (G∗)∗ and (G×K2)∗ have the same spectrum.

������

. (i) It is easy to verify the case when G has only one vertex. So we may
assume G has n > 2 vertices. Let λ1 > λ2 > . . . > λn be the spectrum of G. Then
by Theorem 1, the spectrum of G∗ consists of λ1 + 1 > λ2 + 1 > . . . > λn + 1, and
−λ1− 1 6 −λ2− 1 6 . . . 6 −λn − 1. Recall from [6, p. 70] that if λi is an eigenvalue
of Gi, i = 1, 2, then λ1 + λ2 is an eigenvalue of the cartesian product G1 ×G2, and
that K2 has eigenvalues 1 and −1. Then we see that the spectrum of G×K2 consists
of λ1 + 1 > λ2 + 1 > . . . > λn + 1, and λ1 − 1 > λ2 − 1 > . . . > λn − 1. Thus,
G∗ and G × K2 have the same spectrum iff λi = −λn−i+1 for i = 1, 2, . . . , n. It is
well known [6, Theorem 3.11] that a graph containing at least one edge is bipartite
iff its spectrum, considered as the set of points on the real axis, is symmetric with
respect to the zero point. Therefore, G∗ and G×K2 have the same spectrum iff G is
bipartite or G = K1.
(ii) Since G∗ is bipartite, we immediately see from (i) that (G∗)∗ and G∗ × K2

have the same spectrum. So we only need show that G∗ ×K2 and (G ×K2)∗ have
the same spectrum. Let λ1, λ2, . . . , λn be the spectrum of a graph G. By Theorem 1,
the spectrum of G∗ consists of ±(λ1 +1),±(λ2 +1), . . . ,±(λn +1). Using the known
result on the spectrum of cartesian product, we obtain that the spectrum of G∗×K2

consists of ±(λ1 + 1)± 1,±(λ2 + 1)± 1, . . . ,±(λn + 1)± 1, and that the spectrum of
G ×K2 consists of λ1 ± 1, λ2 ± 1, . . . , λn ± 1. Then by Theorem 1, we see that the
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spectrum of (G ×K2)∗ consists of ±(λ1 ± 1 + 1),±(λ2 ± 1 + 1), . . . ,±(λn ± 1 + 1),
which obviously is the same as the spectrum of G∗ ×K2. �

From Theorem 2, we see that for any connected graph G with an odd cycle, (G∗)∗

and (G×K2)∗ have the same spectrum, but G∗ and G×K2 have different spectra.
This gives the negative answer to the question before Theorem 2.
Finally, let’s consider the k-th iterated double cover Gk∗ of G, which is defined as

follows:
G1∗ = G∗ and Gk∗ = (G(k−1)∗)∗ for k > 1.

Corollary 3. Let λ1, λ2, . . . , λn be the spectrum of the graph G. Then the
spectrum of Gk∗ consists of ±(λi + 1)±1± 1± . . .± 1︸ ︷︷ ︸

k−1

, i = 1, 2, . . . , n.


������
. By induction and Theorem 1. �

The following two corollaries are directly obtained from Corollary 3.

Corollary 4. The spectrum of G contains an ineger if f there is a positive integer k
such that the spectrum of Gk∗ contains zero.

Corollary 5. If the spectrum of G contains zero with multiplicity m, then the
spectrum of G2k∗ contains zero with multiplicity at least

(
2k
k

)
m.
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