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Abstract. The independent domination number i(G) (independent number β(G)) is
the minimum (maximum) cardinality among all maximal independent sets of G. Havi-
land (1995) conjectured that any connected regular graph G of order n and degree δ 6 1

2n

satisfies i(G) 6 d2n/3δe 12δ. For 1 6 k 6 l 6 m, the subset graph Sm(k, l) is the bipartite
graph whose vertices are the k- and l-subsets of an m element ground set where two vertices
are adjacent if and only if one subset is contained in the other. In this paper, we give a
sharp upper bound for i(Sm(k, l)) and prove that if k + l = m then Haviland’s conjecture
holds for the subset graph Sm(k, l). Furthermore, we give the exact value of β(Sm(k, l)).
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1. Introduction

Let G = (V,E) be a simple graph of order n. The degree, neighborhood and
closed neighborhood of a vertex v in the graph G are denoted by d(v), N(v) and
N [v] = N(v) ∪ {v} respectively. The minimum degree and maximum degree of the
graph G are denoted by δ(G) and ∆(G) respectively. The graph induced by S ⊆ V

is denoted by 〈S〉. Let ε(S, V −S) denote the number of edges between S and V −S.
For integers 1 6 k 6 l 6 m, we define the subset graph Sm(k, l) to be the bipartite

graph (χ,E, ψ) where the vertices of χ are the k-subsets of [m] = {1, 2, . . . ,m}, the
vertices of ψ are the l-subsets of [m], and for X ∈ χ and Y ∈ ψ, X is adjacent to Y
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if and only if X ⊆ Y . Notice that the subset graph Sm(k, k) is a matching with
(
m
k

)

edges, and if k + l = m then Sm(k, l) is a regular graph.
An independent set is a set of pairwise nonadjacent vertices of G. The independent

domination number i(G) is the minimum cardinality of a maximal independent set
of G, while the maximum cardinality of an independent set of vertices of G is the
independent number of G and is denoted by β(G).
A set of vertices is a dominating set if N [S] = V . The domination number of a

graph G, denoted γ(G), is the minimum cardinality of a dominating set in G, and
the upper domination number Γ(G) is the maximum cardinality of a dominating set
in G.

For x ∈ X ⊆ V , if N [x] −N [X − {x}] = ∅, then x is said to be redundant in X .
A set X containing no redundant vertex is called irredundant. The irredundant

number of G, denoted by ir(G), is the minimum cardinality taken over all maximal
irredundant sets of G. The upper irredundant number of G, denoted by IR(G),
is the maximum cardinality of an irredundant set of G. Let EPN(v,X) = {u ∈
V −X : u is only adjacent to v but to no other vertex of X}.
The parameter i(G) was introduced by Cockayne and Hedetniemi in [1] and some

results on it can be found in [1]–[7]. Favaron [2] and Haviland [3] established upper

bounds for i(G) in terms of n and δ. For regular graphs of degree different from
zero, we can prove that i(G) 6 1

2n. However, for most values of δ, this is far from

the best possible. In [2], it was shown that for any graph with 1
2n 6 δ 6 n, we have

i(G) 6 n−δ, and this bound could be attained only by complete multipartite graphs
with vertex classes all of the same order. By adapting the arguments from [3], the
following results can readily be proved (see [4]).

Proposition 1.1. Let G be a regular graph. If 1
4n 6 δ 6 1

2

(
3 −

√
5
)
n, then

i(G) 6 n−
√
nδ, and if 1

2

(
3−

√
5
)
n 6 δ 6 1

2n, then i(G) 6 δ.

If n = 2mδ, then i(mKδ,δ) = 1
2n and mKδ,δ is disconnected for m > 1. Havi-

land [3] thought that if G was connected then the upper bound for i(G) could be a
function of n and δ. She also stated the following conjecture in [4].

Conjecture 1.2. If G is a connected r-regular graph with r = δ 6 1
2n, then

i(G) 6 d2n/3δe 1
2δ.

However, Pear Che Bor Lam et al. [7] provided counterexamples to Conjecture 1.2.

In this paper, we give a sharp upper bound for i(Sm(k, l)) and prove that if k+ l =
m then Haviland’s conjecture holds for the subset graph Sm(k, l). Furthermore, we
give the exact value of β(Sm(k, l)).
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2. Main results

By the definition of the subset graph, it is easy to prove the following two lemmas.

Lemma 1. If k = l, then i(Sm(k, l)) = β(Sm(k, l)) =
(
m
k

)
.

Lemma 2. If 1 6 k < l = m, then i(Sm(k, l)) = 1 and β(Sm(k, l)) =
(
m
k

)
.

Now, we give the main results of this paper.

Theorem 1. If 1 6 k 6 l 6 m, then i(Sm(k, l)) 6
(
m−l+k

k

)
and the bound is

sharp.
���������

. Let d = l−k. By Lemma 1 and Lemma 2, if k = l or l = m, Theorem 1

holds. So, we only consider 1 6 k < l < m. Let

A = {X ∈ χ : i /∈ X for m− d 6 i 6 m}

and

B = {Y ∈ ψ : i ∈ Y for m− d 6 i 6 m}.

We have the following claims.

Claim 1. A ∪ B is an independent set of Sm(k, l).

Let t1 and t2 be arbitrary two vertices of A ∪ B. If t1, t2 ∈ A or t1, t2 ∈ B, then
it is obvious that t1 is not adjacent to t2. Without loss of generality, we assume

that t1 ∈ A and t2 ∈ B. Let t1 = {x1, x2, . . . , xk} and t2 = {y1, y2, . . . , yl} where
1 6 x1 < x2 < . . . < xk < m and 1 6 y1 < y2 < . . . < yl < m. Since i /∈ t1 and

i ∈ t2 for m− d 6 i 6 m, {y1, y2, . . . , yl} has at most l− (d+ 1) elements which are
identical to elements of {x1, x2, . . . , xk}. Since l − (d + 1) = k − 1 < k, it follows

that {x1, x2, . . . , xk} 6⊆ {y1, y2, . . . , yl}. Hence, t1 is not adjacent to t2. Since t1 and
t2 are arbitrary two vertices of A ∪B, A ∪ B is an independent set of Sm(k, l).

Claim 2. A ∪ B is a dominating set of Sm(k, l).

For an arbitrary vertex t ∈ (V (Sm(k, l))− (A∪B)), we prove that t is dominated
by at least one vertex of A ∪ B.�	 "!�#%$

: t ∈ (χ−A). Let t = {x1, x2, . . . , xk} where 1 6 x1 < x2 < . . . < xk < m.
Then there exists a xi such that xi ∈ {m − d,m − d + 1, . . . ,m}. Without loss of
generality, we assume that xs is the first number such that xs ∈ {m − d,m − d +
1, . . . ,m}. Let C = {x1, x2, . . . , xs−1, xm−d, . . . , xm}. Since k > s, |C| = s− 1 + d+
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1 = s+ d = s+ l− k = l− (k− s) 6 l. So there exists a vertex Y ∈ ψ ∩B such that
{x1, x2, . . . , xk} ⊆ {x1, x2, . . . , xs−1, xm−d, . . . , xm} ⊆ Y . Hence t is adjacent to Y .�	 "!�#'&

: t ∈ (ψ−B). Let t = {y1, y2, . . . , yl} where 1 6 y1 < y2 < . . . < yl < m.
Then there exists an i ∈ {m − d, . . . ,m} such that yj 6= i for 1 6 j 6 l. Let ys be

the first number that belongs to {m− d, . . . ,m} and let C = {y1, y2, . . . ys−1}. Since
l − (s − 1) < d + 1 = l − k + 1, it follows that k < s and |C| > k. Hence if X is a

k-subset of C, then X ⊆ A and X is adjacent to t. Since t is an arbitrary vertex, by
Case 1 and Case 2, it follows that A∪B is a dominating set of Sm(k, l). By Claim 1
and Claim 2, A ∪ B is an independent dominating set of Sm(k, l). Hence,

i(Sm(k, l)) 6 |A ∪ B| = |A| + |B| =
(
m− (d+ 1)

k

)
+

(
m− (d+ 1)
l − (d+ 1)

)

=
(
m− (d+ 1)

k

)
+

(
m− (d+ 1)

k − 1

)
=

(
m− l + k

k

)
.

Corollary 1. If 1 6 k 6 l < m and k + l = m, then i(Sm(k, l)) 6
(
2k
k

)
and the

bound is sharp.

The sharpness of Theorem 1 and Corollary 1 can be seen from the following result.

Theorem 2. If 1 < l < m and l + 1 = m, then i(Sm(1, l)) = 2 =
(
2
1

)
=

(
2k
k

)
.

���������
. Since 1 < l < m, it follows that m > 3 and Sm(1, l) is not a star.

Hence, γ(Sm(1, l)) > 2. Since 2 6 γ(Sm(1, l)) 6 i(Sm(1, l)) 6 2, it follows that
i(Sm(1, l)) = 2. �

Theorem 3. i(S5(2, 3)) = 6 =
(
4
2

)
=

(
2k
k

)
.

���������
. Since S5(2, 3) is a 3-regular graph,

i(S5(2, 3)) > γ(S5(2, 3)) > |V (S5(2, 3))|
∆(S5(2, 3)) + 1

=
2
(
5
2

)

4
= 5.

If γ(S5(2, 3)) = 5, then let I be a dominating set of S5(2, 3) with cardinality 5. We
have the following claims.

Claim 1. I is an independent set of S5(2, 3).

Otherwise, if I is not an independent set, then there exists at least one edge in 〈I〉.
Hence, ε(I, V − I) 6

∑
v∈I

d(v)− 2 = 3× 5− 2 = 13 < 15 = |V (S5(2, 3))− I |. So there
exists a vertex v ∈ V −I such that v is not dominated by I , which is a contradiction.
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Claim 2. For each vertex v ∈ I , |EPN(v, I)| = 3.

By Claim 1, I is an independent dominating set of S5(2, 3). If there exists a vertex
v ∈ I such that |EPN(v, I)| < 3, then I dominates at most

∑
v∈I

d(v)−1 = 3×5−1 =

14 < 15 = |V (S5(2, 3))− I | vertices, which is a contradiction.
Let A = χ∩ I and B = ψ ∩ I . Since |I | = 5, without loss of generality, we assume

that |A| > 3. It is obvious that |A| 6 4. So, 3 6 |A| 6 4.�	 "!�#%$
: If |A| = 4, then by Claim 1 and Claim 2 the set A dominates 12 vertices

of ψ, which is a contradiction since ψ has 10 vertices.�	 "!�#'&
: If |A| = 3, then by Claim 1 and Claim 2 the set A dominates 9 vertices

of ψ. So, there is only one vertex of ψ that belongs to I , which is a contradiction

with |B| = 2.
Hence, γ(S5(2, 3)) > 6. Since 6 6 γ(S5(2, 3)) 6 i(S5(2, 3)) 6 6, it follows that

i(S5(2, 3)) = 6.

123 124 125 134 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

Figure 1.

By Figure 1, it is easy to see that the black vertices form an independent domi-
nating set of S5(2, 3) with cardinality 6.
The following theorem proves that conjecture 1.2 holds for the subset graph

Sm(k, l) if 1 6 k < l < m and k + l = m.

Theorem 4. If 1 6 k < l < m and k + l = m, then Conjecture 1.2 holds for the
subset graph Sm(k, l).
���������

. Let d = l − k. If 1 6 k < l < m and k + l = m then Sm(k, l) is a
connected regular graph with n = |V (Sm(k, l))| = 2

(
m
k

)
and δ 6 1

2n. By Corollary 1,
i(Sm(k, l)) 6

(
2k
k

)
. It follows that

i(Sm(k, l))
|V (Sm(k, l))| 6

(
2k
k

)

2
(
m
k

) =

(
2k
k

)

2
(
2k+d

k

) 6
(
2k
k

)

2
(
2k+1

k

) =
(2k)!
2k!k!

k!(k + 1)!
(2k + 1)!

=
k + 1

2(2k + 1)
6 1

3
.

Hence,

i(Sm(k, l)) 6 |V (Sm(k, l))|
3

=
n

3
6 2n

3δ
δ

2
6

⌈2n
3δ

⌉δ
2
.

The exact value of β(Sm(k, l)) is given by the following result.
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Lemma 3 [5]. For every r-regular graph G = (V,E) of order n, IR(G) 6 1
2n.

Lemma 4 [6]. If G is bipartite, then β = Γ = IR.

Theorem 5. If 1 6 k < l 6 m, then β(Sm(k, l)) = Γ(Sm(k, l)) = IR(Sm(k, l)) =
max

{(
m
k

)
,
(
m
l

)}
.

���������
. Since Sm(k, l) is the bipartite graph, then by Lemma 4, β(Sm(k, l)) =

Γ(Sm(k, l)) = IR(Sm(k, l)).�	 "!�#($
: If k + l = m, then Sm(k, l) is a regular graph. By Lemma 3, IR(G) 6

1
2 |V (Sm(k, l))| =

(
m
k

)
. Since β(Sm(k, l)) >

(
m
k

)
, it follows that β(Sm(k, l)) =

Γ(Sm(k, l)) = IR(Sm(k, l)) = max
{(

m
k

)
,
(
m
l

)}
.�	 "!�#)&

: If k + l 6= m, then β(Sm(k, l)) > max
{(

m
k

)
,
(
m
l

)}
. Without loss of

generality, assume
(
m
k

)
= max

{(
m
k

)
,
(
m
l

)}
. That is to say |χ| > |ψ| and β(Sm(k, l)) >(

m
k

)
. For arbitrary vertices X ∈ χ and Y ∈ ψ, d(X) < d(Y ). If β(Sm(k, l)) >

(
m
k

)
=

|χ|, then let I be a maximal independent set with cardinality β(Sm(k, l)). Hence,
I must contain some vertices of χ and some vertices of ψ. Let X1 = I ∩ χ and

Y1 = I ∩ ψ. Let X2 = χ−X1 and Y2 = ψ − Y1. So Xi 6= ∅ and Yi 6= ∅ for i = 1, 2.
Since

ε(Y1, V − I) = ε(Y1, X2) =
∑

Y ∈Y1

d(Y ) = d(Y )|Y1| 6
∑

X∈X2

d(X) = d(X)|X2|

and d(X) < d(Y ), it follows that |Y1| < |X2|. Hence |I | = |X1| + |Y1| < |X1| +
|X2| = |X |, which is a contradiction. Hence, β(Sm(k, l)) =

(
m
k

)
. So, β(Sm(k, l)) =

Γ(Sm(k, l)) = IR(Sm(k, l)) = max
{(

m
k

)
,
(
m
l

)}
.
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