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1. Introduction

It is well known that the one-dimensional Henstock-Kurzweil integral is equivalent

to the Denjoy-Perron integral. See, for example, [4, Theorems 11.3–11.4]. However,
the proof of this result is real-line dependent, so an analogous characterization of the

higher dimensional Henstock-Kurzweil integral remained open for many years (see,
for example, [6, p. 527] or [3, Problem 5.6 (4)]). In this paper we will use certain
versions of the generalized absolute continuity condition to obtain some descriptive

characterizations of the higher dimensional Henstock-Kurzweil integral, answering a
question of Claude-Alain Faure [3, Problem 5.6 (4)]. Moreover, one of our results

also sharpens a result of Kurzweil and Jarník [7, Theorem 4.2], whose original proof
does not seem to include the case for the Henstock-Kurzweil integral because of its

dependence on the regularity assumption [7, Condition 3.2]. Furthermore, we also
give an affirmative answer to a question of Lu and Lee [16]. In the last section of

this paper, we sharpen the above results by showing that if f is Henstock-Kurzweil
integrable on an m-dimensional compact interval E ⊂  m , then there exists an

increasing sequence {Xn}∞n=1 of closed subsets of E such that f ∈ L (Xn) for all

positive integers n and E \
∞⋃

n=1
Xn has m-dimensional Lebesgue measure zero. More-
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over, the gauge function in the definition of generalized absolute continuity of the

indefinite Henstock-Kurzweil integral of f on each Xn can be chosen to be a positive
constant for each ε > 0. See Theorem 5.3 and Remark 5.4 for details.

2. Preliminaries

Unless stated otherwise, the following conventions and notation will be used. The
set of all real numbers is denoted by  , and the ambient space of this paper is  m ,

where m is a fixed positive integer. The norm in  m is the maximum norm. For
x ∈  m and r > 0, the open ball B(x, r) is the open cube centered at x with sides

equal to 2r. Let E =
m∏

i=1

[ai, bi] be a fixed non-degenerate interval in  m . For

a set A ⊂ E we denote by χA, diam(A) and µ∗m(A) the characteristic function,
diameter and m-dimensional Lebesgue outer measure of A, respectively. If Z ⊆ E,
we denote its interior, boundary and closure with respect to the subspace topology

of E by int(Z), ∂Z and Z, respectively. The distance between x ∈ E and Z ⊆ E

will be denoted by dist(x, Z). The expressions “measure”, “measurable”, “almost
all”, “almost everywhere” refer to the m-dimensional Lebesgue measure µm. A set
Z ⊂ E is called negligible whenever µm(Z) = 0. Given two subsets X , Y of E, the

symmetric difference of X and Y is denoted by X∆Y . We say that X and Y are
non-overlapping if their intersection is negligible. A function is always real-valued.

When no confusion is possible, we do not distinguish between a function defined on
a set Z and its restriction to a set W ⊂ Z. If Z is a measurable subset of E, L (Z)
will denote the space of Lebesgue integrable functions on Z, and M denotes the
σ-algebra of all measurable subsets of E. If f ∈ L (Z), the Lebesgue integral of f

over Z will be denoted by (L)
∫

Z f .

An interval is a compact non-degenerate interval of E. I denotes the family of all
non-degenerate subintervals of E. If I ∈ I , we write µm(I) as |I |. For each J ∈ I ,

the regularity of an m-dimensional interval J ⊆ E, denoted by reg(J), is the ratio
of its shortest and longest sides. A function F defined on I is said to be additive if

F (I ∪J) = F (I)+F (J) for each non-overlapping intervals I, J ∈ I with I ∪J ∈ I .
In particular, it is shown in [10, Corollary 6.2.4] that if F is an additive interval

function on I with J ∈ I and {K1, K2, . . . , Kr} is a collection of non-overlapping
subintervals of J with

r⋃
i=1

Ki = J , then

F (J) =
r∑

i=1

F (Ki).
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A partition P is a collection {(Ii, ξi)}p
i=1, where I1, I2, . . . , Ip are non-overlapping

intervals and ξi ∈ Ii for i = 1, 2, . . . , p. Given Z ⊆ E, a positive function δ on Z is
called a gauge on Z. We say that a partition {(Ii, ξi)}p

i=1 is

(i) a partition in Z if
p⋃

i=1

Ii ⊂ Z,

(ii) a partition of Z if
p⋃

i=1

Ii = Z,

(iii) anchored in Z if {ξ1, ξ2, . . . , ξp} ⊂ Z,

(iv) δ-fine if Ii ⊂ B(ξi, δ(ξi)) for each i = 1, 2, . . . , p,

(v) α-regular for some α ∈ (0, 1] if reg(Ii) > α for each i = 1, 2, . . . , p.

Lemma 2.1 [10, Lemma 6.2.6]. Given a gauge δ on E, δ-fine partitions of E

exist.

Definition 2.2. A function f : E −→  is said to be Henstock-Kurzweil inte-
grable on E if there exists A ∈  such that for any given ε > 0 there exists a gauge δ

on E such that

(1)

∣∣∣∣
p∑

i=1

f(ξi)|Ii| −A

∣∣∣∣ < ε

for each δ-fine partition {(Ii, ξi)}p
i=1 of E. Here A is called the Henstock-Kurzweil

integral of f over E, and we write A = (HK)
∫

E
f .

Remark 2.3.

(a) The linear space of Henstock-Kurzweil integrable functions on E is denoted

by HK(E).
(b) It follows from [10, Theorem 6.4.2] that if f ∈ HK(E), then f ∈ HK(J) for
each subinterval J of E. The interval function F : J 7→ (HK)

∫
J

f is known as

the indefinite Henstock-Kurzweil integral, or in short the indefinite HK-integral,
of f . By [10, Theorem 6.4.1], F is an additive interval function on I .

(c) By [10, p. 228] and [10, Theorem 3.13.3], we see that L (E) ⊂ HK(E). Fur-
thermore, (L)

∫
E f = (HK)

∫
E f for each f ∈ L (E).

(d) If f is a non-negative, Henstock-Kurzweil integrable function on E, then it

follows from [10, p. 228] that f ∈ L (E).

By specializing [5, Lemma 1.7] to the case of the Henstock-Kurzweil integral (see [5,

Note 1.5]), we have the following important Saks-Henstock Lemma.
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Theorem 2.4 (Saks-Henstock). If F is the indefinite HK-integral of a function
f ∈ HK(E), then for ε > 0 there exists a gauge δ on E such that

p∑

i=1

∣∣f(ξi)|Ii| − F (Ii)
∣∣ < ε

for each δ-fine partition {(Ii, ξi)}p
i=1 in E.

Theorem 2.5. If F is the indefinite HK-integral of a function f ∈ HK(E), then
F is continuous on I in the following sense: given ε > 0 there exists η > 0 such that

|F (E1)− F (E2)| < ε

whenever E1 and E2 are subintervals of E with µm(E1∆E2) < η.

���������
. This follows from [12, Theorem 3.5] and [12, Lemma 3.6]. �

By using the Vitali covering theorem, it is possible to prove that if F is the
indefinite HK-integral of a function belonging to HK(E), then F is differentiable in

the ordinary sense [17, p. 106] at almost all x ∈ E.

Theorem 2.6. If F is the indefinite HK-integral of some function f ∈ HK(E),
then the ordinary derivative F ′ of F exists almost everywhere on E, and F ′(x) = f(x)
for almost all x ∈ E.

���������
. The proof is similar to that of [5, Theorem 2.8]. �

Let F be an interval function on I , and let X be an arbitrary subset of E. If δ is

a gauge on X , we set

V (F, X, δ) := sup
P

p∑

i=1

|F (Ii)|,

where the supremum is taken over all δ-fine partitions P = {(Ii, ξi)}p
i=1 anchored

in X .

We put

VHKF (X) := inf
δ

V (F, X, δ),

where the infimum is taken over all gauges δ on X . Then the extended real-valued
set function VHKF (·) is a metric outer measure [3, Proposition 3.3]. Moreover, it
follows from [1, Theorem 3.7] that VHKF is a Borel measure, known as the Henstock
variational measure generated by F .
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For an additive interval function F on I , we say that VHKF is absolutely contin-

uous if the following condition is satisfied:

Z ⊂ E with µm(Z) = 0 =⇒ VHKF (Z) = 0.

The next theorem is given in [14, Theorem 3.7].

Theorem 2.7. Let F be an additive interval function onI . If VHKF is absolutely

continuous, then VHKF is a measure on M .

The next theorem is given in [14, Theorem 4.3].

Theorem 2.8. Let F be an additive interval function on I . Then the following

conditions are equivalent:

(i) F is the indefinite HK-integral of some function belonging to HK(E);
(ii) the variational measure VHKF is absolutely continuous.

3. Henstock variational measure and Lebesgue integrability

Our first lemma is a special case of [11, Lemma 3].

Lemma 3.1. Let f ∈ HK(E). If f is Lebesgue integrable on a non-empty

measurable set X ⊆ E, then given ε > 0 there exists a gauge δ on X such that

p∑

i=1

∣∣∣∣(L)
∫

Ii∩X

f − (HK)
∫

Ii

f

∣∣∣∣ < ε

for each δ-fine partition {(Ii, ξi)}p
i=1 anchored in X .

The next theorem, which was given in [14, Theorem 3.9], can also be deduced from
Lemma 3.1.

Theorem 3.2. Let X ⊆ E be measurable. If F is the indefinite HK-integral of
some f ∈ HK(E), then f ∈ L (X) if and only if VHKF (X) is finite. Moreover,

VHKF (X) = (L)
∫

X

|f |

even if one of the sides is equal to ∞.
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���������
. We may assume that X is non-empty. Suppose that f ∈ L (X) and

let ε > 0 be given. An application of Lemma 3.1 shows that there exists a gauge δ

on X such that

V (F, X, δ) 6 (L)
∫

X

|f |+ ε,

from which the inequality

VHKF (X) 6 (L)
∫

X

|f |

follows by the arbitrariness of ε > 0. In particular, VHKF (X) is finite. By mimicking
the proof of [15, Lemma 3.8], we obtain the following equality

(2) (L)
∫

X

|f | = VHKF (X).

Conversely, we assume that VHKF (X) < ∞. We shall prove that (2) holds. For
any fixed positive integer n, we set

Xn := {x ∈ X : |f(x)| 6 n}.

Since f is measurable and bounded on the measurable set Xn, we see that f ∈
L (Xn). Consequently, it follows from (2) (with X replaced by Xn) that

(3) (L)
∫

Xn

|f | = VHKF (Xn).

By letting n → ∞ in (3), we see that (2) follows by the Monotone Convergence
Theorem and Theorem 2.7. The proof is complete. �

Lemma 3.3. Let F be a continuous additive interval function on I . If X ⊆ E

is non-empty and δc is a constant gauge on X , then

V (F, X, δc) 6 3mV (F, X, δc).

���������
. This follows from assertion (ii) of [14, Theorem 5.11]. �

The next theorem, which is a special case of [7, Theorem 2.10], will be proved by

means of Theorem 3.2 and Lemma 3.3.
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Theorem 3.4. If f ∈ HK(E), then there exists a sequence {Xn} of closed sets
whose union is E, and f ∈ L (Xn) for each positive integer n.

���������
. Choose a gauge δ1 on E corresponding to ε = 1 in the Saks-Henstock

Lemma. For each positive integer n, put

Yn =
{
x ∈ E : |f(x)| 6 n and δ1(x) > 1

n

}

and Xn := Yn. Clearly, E =
∞⋃

n=1
Xn with

V
(
F, Yn,

1
n

)
6 n|E|+ 1.

An application of Theorem 2.5 and Lemma 3 yields

V
(
F, Xn,

1
n

)
6 3m(n|E|+ 1),

which implies that VHKF (Xn) is finite. In view of Theorem 3.2, f ∈ L (Xn). �

As a consequence of Theorem 3.4 and the Baire Category Theorem, we have

Corollary 3.5 [2]. If f belongs to HK(E), then f is Lebesgue integrable on a

portion of E.

4. Main results

In this section, we will give some new descriptive characterizations of the higher
dimensional Henstock-Kurzweil integral. We begin with

Definition 4.1. Let F be an interval function F on I .

(i) F is ACs(X) for some X ⊆ E (the so called “absolutely continuous on X” in the
paper [3, Definition 3.6 (b)]) if for ε > 0 there exists η > 0 such that whenever
A ⊆ X with µ∗m(A) < η, we have VHKF (A) < ε.

(ii) F is ACGs(E) if E =
∞⋃

k=1

Xk for a sequence {Xk} of sets such that F is ACs(Xk)

for each positive integer k.

The next theorem gives an affirmative answer to [3, Open problems 5.6 (4)].
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Theorem 4.2. Let F be an additive interval function on I and let f : E →  .
Then the following conditions are equivalent:

(i) f ∈ HK(E) and F is the indefinite HK-integral of f ;
(ii) F is ACGs(E) with F ′ = f almost everywhere on E.

���������
. (ii) =⇒ (i) If F is ACGs(E), then it follows from [3, Lemma 3.9 (2)]

that VHKF is absolutely continuous. An application of Theorem 2.8 shows that

f ∈ HK(E) with F being the indefinite HK-integral of f .
(i) =⇒ (ii) Suppose that f ∈ HK(E) and F denotes the indefinite HK-integral

of f . In view of [3, Proposition 4.1] and [3, Lemma 3.9 (1)], F is ACGs(E). The
conclusion F ′ = f almost everywhere on E follows from Theorem 2.6. The proof is
complete. �

Definition 4.3.
(i) An interval function F on I is said to be AC∗δ(X) if for ε > 0 there exist η > 0
and a gauge δ on X such that

p∑

i=1

|F (Ii)| < ε

for each δ-fine partition {(Ii, ξi)}p
i=1 anchored in X satisfying

p∑
i=1

|Ii| < η.

(ii) F is ACG∗
δ(E) if E =

∞⋃
k=1

Xk for a sequence {Xk} of sets such that F is AC∗δ(Xk)

for each positive integer k.

For the case when m = 1, it is well known that F is the indefinite HK-integral of
some function f ∈ HK(E) if and only if F ∈ ACG∗

δ(E). For a proof, see for exam-
ple, [4, p. 148]. Since this proof depends strongly on derivatives, it does not seem to

work well for higher dimensions. The following theorem, which is an extension of [4,
p. 148], also improves a result of Lee Peng-Yee and Ng Wee-Leng [9, Theorem 10].

Theorem 4.4. Let F be an additive interval function on I and let f : E →  .
Then the following conditions are equivalent:

(i) f ∈ HK(E) and F is the indefinite HK-integral of f ;
(ii) F is ACG∗

δ(E) with F ′ = f almost everywhere on E.

���������
. (i) =⇒ (ii) This follows from Theorem 3.4, Lemma 3.1 and the absolute

continuity of the indefinite L -integral.

(ii) =⇒ (i) If F is ACG∗
δ(E), then VHKF is absolutely continuous. Hence the

result follows from Theorem 2.8. The proof is complete. �
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We shall next prove that the Henstock-Kurzweil integral can also be characterized

in terms of ACG∇ functions [7]. In [7], the Z -integral, which includes the Henstock-
Kurzweil integral and the α-regular integral [8], is introduced so that various kinds
of integrals can be studied by means of a unified approach. In particular, a full

descriptive definition of the Z -integral can be obtained by means of an additive
interval function satisfying certain generalized absolute continuity condition. This

interesting characterization, however, depends strongly on the assumption of a cer-
tain regularity condition [7, Condition 3.2]. See [7, Theorem 4.2] for more details.

Since the definition of the multidimensional Henstock-Kurzweil integral does not in-
volve regular intervals, it is unclear whether [7, Theorem 4.2] remains valid for this

particular integral. Our next aim is to give an affirmative answer to this problem.

Definition 4.5 [7, Definition 1.5]. Let F be an interval function on I , and
X ⊆ E. F is said to be AC∇(X) if for each ε > 0 there exists a gauge δ on X and

η > 0 such that whenever P1 and P2 are δ-fine partitions anchored in X satisfying

µm

(( ⋃

(I,ξ)∈P1

I

)
4

( ⋃

(I,ξ)∈P2

I

))
< η,

we have ∣∣∣∣
∑

(I,ξ)∈P1

F (I)−
∑

(I,ξ)∈P2

F (I)
∣∣∣∣ < ε.

The next definition is a special case of [7, Definition 3.2].

Definition 4.6. Let F be an additive interval function on I . F is said to be
ACG∇(E) if E can be expressed as a countable union of measurable sets {Xn} and
F is AC∇(Xn) for each positive integer n.

The next theorem is a special case of [7, Theorem 3.7].

Theorem 4.7. If F is ACG∇(E), then VHKF is absolutely continuous.

Theorem 4.8. Let F be an additive interval function on I and let f : E →  .
Then f ∈ HK(E) and F is the indefinite HK-integral of f if and only if F is

ACG∇(E) with F ′ = f almost everywhere on E.

���������
. (=⇒) Suppose that f ∈ HK(E) and F denotes the indefinite HK-

integral of f . Then it follows from [7, Theorem 4.1] that F is ACG∇(E). By
Theorem 2.6 F ′ = f almost everywhere on E.

(⇐=) This follows from Theorems 4.7 and 2.8. �
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Definition 4.9. Let F be an additive interval function on I .

(i) F is AC∗∗(X) for a non-empty set X ⊆ E if for ε > 0 there exist a gauge δ

on X and η > 0 such that whenever {(Ii, ξi)}p
i=1 and

{(Jr, xr) : Jr ⊆ Ii(r) for some i(r) ∈ {1, 2, . . . , p}}q
r=1

are δ-fine partitions anchored in X with

µm

(( p⋃

i=1

Ii

)
\

q⋃

r=1

Jr

)
< η,

we have
p∑

i=1

∣∣∣∣F (Ii)−
∑

{F (Jr) : Jr ⊆ Ii}
∣∣∣∣ < ε.

(ii) F is said to be ACG∗∗ on E if E can be written as a countable union of sets {Xn}
such that F is AC∗∗(Xn) for each positive integer n.

We can now give an affirmative answer to a question of Lu and Lee [16].

Theorem 4.10. Let F be an additive interval function on I and let f : E →  .
Then f ∈ HK(E) and F is the indefinite HK-integral of f if and only if F is ACG∗∗

on E with F ′ = f almost everywhere on E.
���������

. If f ∈ HK(E) and F is the indefinite HK-integral of f , then the
conclusion that F is ACG∗∗ on E follows from Theorem 3.4, Lemma 3.1 and the

absolute continuity of the indefinite L -integral.
Conversely, if F is ACG∗∗ on E, then F is ACG∗

δ on E. In view of Theorem 4.4,

the proof is complete.

5. On another necessary and sufficient condition for
Henstock-Kurzweil integrability

In this section, we will give a slight modification of [14, Theorem 3.10], which will
sharpen the results in the previous section. More precisely, if f is Henstock-Kurzweil
integrable on E, then there exists an increasing sequence {Xn}∞n=1 of closed subsets

of E such that f ∈ L (Xn) for all positive integers n and E \
∞⋃

n=1
Xn is negligible.

Moreover, the gauge function in the definition of the generalized absolute continuity

of the indefinite Henstock-Kurzweil integral of f on each Xn can be chosen to be a
positive constant for each ε > 0. In what follows, we write Xn ↑ X if {Xn} is an
increasing sequence of sets whose union is X .
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Theorem 5.1. Let F be the indefinite HK-integral of some function f ∈ HK(E).
If f is Lebesgue integrable on a non-empty measurable set X ⊆ E, and G denotes

the indefinite L -integral of fχX , then for ε > 0 there exists a gauge δ on X such

that

(i) V (F −G, X, δ) < ε/3m,

(ii) for each p = 1, 2, . . . we have V (F −G, {x ∈ X : δ(x) > 1/p}, 1/p) < ε,

(iii) {x ∈ X : δ(x) > 1/n} ↑ X , provided that X is closed.
���������

. Assertion (i) follows from Lemma 3.1. Assertion (ii) follows from

assertion (i) and Lemma 3.3. Assertion (iii) is obvious. �

We shall write εp ↓ 0 if {εp} is a decreasing null sequence of positive numbers.

Theorem 5.2. If f ∈ HK(E), then for εp ↓ 0 there exists a sequence {Yp} of
closed sets and a negligible set Z satisfying the following conditions:

(i) Yp ↑ E \ Z;

(ii) f ∈ L (Yp) for each positive integer p;

(iii) for each positive integer p there exists a constant δp > 0 such that

q∑

i=1

∣∣∣∣(L)
∫

Ii∩Yp

f − (HK)
∫

Ii

f

∣∣∣∣ < εp

for each δp-fine partition {(Ii, ξi)}q
i=1 anchored in Yp.

���������
. By Theorem 3.4 there exists a sequence {Xk} of closed sets with

Xk ↑ E, and f ∈ L (Xk) for each positive integer k. Moreover, we may assume that
µm(Xk) > 0 for all positive integers k.

If Fk denotes the indefinite L -integral of fχXk
, and let F denote the indefinite

HK-integral of f . Then it follows from assertions (ii) and (iii) of Theorem 5.2 that
there exists a sequence {Zk,n}∞n=1 of closed sets such that Zk,n ↑ Xk with

V
(
Fk − F, Zk,n,

1
n

)
<

εk

4
.

By the absolute continuity of the indefinite L -integral of fχXk
, there exists 0 <

ηk < µm(Xk) such that

(L)
∫

Q

|f | < εk

4

whenever Q is a measurable subset of Xk with µm(Q) < ηk.
Now, for X1 we choose a sequence of strictly increasing integers {n(1, k)}∞k=1 such

that

µm

(
X1 \

∞⋂

k=1

Zk,n(1,k)

)
< η1.
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In view of our choice of η1, we see that
∞⋂

k=1

Zk,n(1,k) is non-empty. Proceed induc-

tively: if a strictly increasing sequence of integers {n(p−1, k)}∞k=p−1 has been chosen

for some p > 1, we may choose a strictly increasing sequence of integers {n(p, k)}∞k=p

such that

µm

(
Xp \

∞⋂

k=p

Zk,n(p,k)

)
< ηp

and n(p, k) > n(p− 1, k) for each positive integer k > p.

For each positive integer p, we put Yp :=
∞⋂

k=p

Zk,n(p,k) and Z := E \
∞⋃

p=1
Yp. Since

Xk ↑ E and Zk,n ↑ Xk for each positive integer k, we see that Yp ↑ E \ Z.
Define δp : Yp −→  + by δp(ξ) = 1/n(p, p). To this end, selecting any δp-fine

partition {(Ii, ξi)}q
i=1 anchored in Yp, we have

q∑

i=1

∣∣∣∣(L)
∫

Ii∩Yp

f − (HK)
∫

Ii

f

∣∣∣∣ 6
q∑

i=1

∣∣∣∣(L)
∫

Ii∩Xp

f − (HK)
∫

Ii

f

∣∣∣∣ + (L)
∫

Xp\Yp

|f |

< V
(
Fp − F, Zp,n(p,p),

1
n(p, p)

)
+

εp

4
< εp.

The proof is complete. �

The next theorem, which follows from Theorem 5.2, is a slight modification of [14,
Theorem 3.10].

Theorem 5.3. Let F be an additive interval function on I and let f : E →  .
Then f ∈ HK(E) and F is the indefinite HK-integral of f if and only if the following
conditions are satisfied:

(i) there exists an increasing sequence {Xn}∞n=1 of closed subsets of E such that

X0 := E \
∞⋃

n=1
Xn is negligible;

(ii) f ∈ L (Xn) for each positive integer n;

(iii) for each positive integer n and ε > 0 there exists a constant ηn > 0 such that

p∑

i=1

∣∣∣∣(L)
∫

Ii∩Xn

f − F (Ii)
∣∣∣∣ < ε

for each ηn-fine partition {(Ii, ξi)}p
i=1 anchored in Xn;

(iv) VHKF (X0) = 0.

At this stage, it is still unclear whether we can choose {Xn}∞n=0 in Theorem 5.3
so that {fχXn∪X0}∞n=1 is Henstock-Kurzweil equi-integrable on E. Hence [13, Con-

jecture 3.5] remains unsolved for m > 2. If m = 1, then a version of Theorem 5.3 is
given in [13, Theorem 3.5]. However, we have the following remark.

636



Remark 5.4. By using Theorem 5.3, it is not difficult to sharpen the results from
the previous section. We omit the details.
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