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Abstract. In this paper we study semilinear second order differential inclusions involving a
multivalued maximal monotone operator. Using notions and techniques from the nonlinear
operator theory and from multivalued analysis, we obtain “extremal” solutions and we
prove a strong relaxation theorem.

Keywords: maximal monotone operator, pseudomonotone operator, Hartman condition,
convex and nonconvex problems, extremal solutions, strong relaxation

MSC 2000 : 34A60

1. Introduction

In this paper we study the following nonlinear multivalued boundary value prob-

lem:

(1.1)

{
(‖x′(t)‖p−2�

N x′(t))′ ∈ A(x(t)) + extF (t, x(t)) a.e. on [0, T ],

x(0) = x(T ) = 0,

where p > 2, A : � N ⊇ D(A) −→ 2
� N

is a maximal monotone map, F : [0, T ] ×
� N −→ 2

� N

is a multivalued vector field and ξ : � N × � N −→ 2
� N× � N

is a max-

imal monotone map describing the boundary conditions. By extF (t, ζ), we denote
the set of extreme points of F (t, ζ). We remark that ext F (t, ζ) need not be closed
and the multifunction � N 3 ζ 7−→ ext F (t, ζ) ∈ 2

� N

needs not have any contin-
uous properties, even if the multifunction � N 3 ζ 7−→ F (t, ζ) ∈ 2

� N

is regular
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enough (see Hu-Papageorgiou [19]). The solutions of problem (1.1) are called “ex-

tremal solutions” and their set is denoted by Se ⊆ C1([0, T ]; � N ). The nonempti-
ness of Se is the first major question that we address here. We show that under
reasonable hypotheses on F (t, ζ), the solution set Se of problem (1.1) is nonempty.

It is an interesting open problem whether this existence result remains valid if we
replace the Dirichlet boundary condition by the general nonlinear boundary condi-

tions of problem (1.1) or even by the periodic or Neumann boundary conditions.
The second major problem that is studied in this paper is whether the solutions

of the original “convexified” problem can be approximated in the C1([0, T ]; � N )-
norm by extremal solutions. Such a result is also of interest in control theory, since

in that context the extremal solutions are the states which are generated by ex-
tremal (bang-bang) controls which are physically realizable. Such an approximation

(density) result is known as “strong relaxation”. In this direction, we have only
a partial result, namely we prove it only when p = 2, i.e. the differential opera-
tor is the Laplacian x 7−→ x′′. More precisely, let us consider the following prob-
lems

{
x′′(t) ∈ A(x(t)) + ext conv F (t, x(t)) a.e. on [0, T ],

x(0) = x(T ) = 0
(1.2)

and
{

x′′(t) ∈ A(x(t)) + conv F (t, x(t)) a.e. on [0, T ],

x(0) = x(T ) = 0.
(1.3)

We denote the solution set of problem (1.2) by Sec ⊆ C1([0, T ]; � N ) and the solution

set of problem (1.3) by Sc ⊆ C1([0, T ]; � N ). We show that S
C([0,T ];

� N)

ec = Sc (strong
relaxation). It is a very interesting open problem whether this density result is still

valid, if we have the more general differential operator x 7−→ (‖x′(·)‖p−2�
N x′(·))′, with

p > 2. Also another open problem is whether in problem (1.1) the vector p-Laplacian
can be replaced by a more general operator of the form x 7−→ (a(x(·))ϕ(x′(·)))′.
We should mention that for first order multivalued Cauchy problems, the most im-

portant papers in this direction are those of De Blasi-Pianigiani [4], [5], [6], [7], who
essentially initiated the subject and developed the so-called “Baire category method”,

which culminated in a continuous selection theorem (see Hu-Papageorgiou [18,
p. 260]), which is a crucial tool in our study of extremal solutions.

Our basic hypothesis on F is the so called Hartman condition, which permits the

derivation of a priori bounds for the solutions of (1.1). This condition was first
employed by Hartman [15] (see also Hartman [16], p. 433]) for the vector Dirichlet
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problem {
x′′ = f(t, x),

x(0) = x(T ) = 0,

where the function f : [0, T ] × � N −→ � N is continuous. Later, it was used by
Knobloch [23] for the vector periodic problem for a vector field which is locally

Lipschitz in ζ ∈ � N . Variants and extensions can be found in the book of Gaines-
Mawhin [11] and the references therein. Very recently the periodic problem was

revisited by Mawhin [25], who used the vector p-Laplacian differential operator.

Recently there have been several papers involving the p-Laplacian differential
operator. We mention the papers of Dang-Oppenheimer [2], De Coster [8], Guo [13],

Kandilakis-Papageorgiou [22] (scalar equations) and Boccardo-Drábek-Giachetti-
Kučera [1] and Mawhin [25] (vector problems). On the other hand for differential

inclusions the previous papers deal with the semilinear problem (i.e. p = 2, the one-
dimensional Laplacian differential operator) and assume that A ≡ 0. However, they
go beyond the Dirichlet problem. We refer to the papers of Erbe-Krawcewicz [9],
Frigon [10], Halidias-Papageorgiou [14] and Kandilakis-Papageorgiou [21]. It should

be mentioned that only Halidias-Papageorgiou [14] address the existence of extremal
solutions, always for the semilinear (i.e. p = 2) problem with A ≡ 0. So our work
here appears to be the most general one in the direction of extremal solutions and
strong relaxation for second order multivalued boundary value problems.

Our approach is based on notions and results from multivalued analysis and from

the theory of nonlinear operators of monotone type. For the convenience of the
reader, in the next section we recall some basic definitions and facts from these

areas. Our main references are the books of Hu-Papageorgiou [19], [20] and Gasiński-
Papageorgiou [12].

2. Preliminaries

Let (Ω, Σ) be a measurable space and let X be a separable Banach space. We
introduce the following notation:

Pf(c)(X) df= {A ⊆ X : A is nonempty, closed (and convex)},
P(w)k(c)(X) df= {A ⊆ X : A is nonempty, (weakly-)compact (and convex)}.

A multifunction F : Ω −→ Pf (X) is said to be measurable if for all x ∈ X , the

function

Ω 3 ω 7−→ d(x, F (ω)) df= inf{‖x− y‖X : y ∈ F (ω)} ∈ � N
+
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is Σ-measurable. A multifunction F : Ω −→ 2X \ {∅} is said to be graph measurable,
if

Gr F
df= {(ω, x) ∈ Ω×X : x ∈ F (ω)} ∈ Σ× B(X),

with B(X) being the Borel σ-field of X . For Pf (X)-valued multifunctions, mea-
surability implies graph measurability, while the converse is true if Σ is complete
(i.e. Σ = Σ̂ = the universal σ-field). Recall that, if µ is a measure on Σ and Σ is
µ-complete, then Σ = Σ̂. Now, let (Ω, Σ, µ) be a finite measure space. For a given
multifunction F : Ω −→ 2X \ {∅} and 1 6 p 6 +∞, we introduce the set

Sp
F

df= {f ∈ Lp(Ω; X) : f(ω) ∈ F (ω)µ a.e. on Ω}.

In general, this set may be empty. It is easy to check that if the map Ω 3 ω 7−→
inf{‖x‖X : x ∈ F (ω)} is in Lp(Ω), then Sp

F 6= ∅.
Let Y , Z be Hausdorff topological spaces. A multifunction G : Y −→ 2Z \ {∅}

is said to be lower semicontinuous (respectively upper semicontinuous), if for every

closed set C ⊆ Z, the set G+(C) df= {y ∈ Y : G(y) ⊆ C} (respectively G−(C) df= {y ∈
Y : G(y) ∩ C 6= ∅}) is closed in Y . An upper semicontinuous multifunction with

closed values has a closed graph (i.e. Gr G
df= {(y, z) ∈ Y × Z : z ∈ G(y)} is closed),

while the converse is true if G is locally compact (i.e. if for every y ∈ Y , there exists
a neighbourhood U of y such that G(U) is compact in Z). Also, if Z is a metric

space, then G is lower semicontinuous if and only if for every sequence {yn}n>1 ⊆ Y

such that yn −→ y in Y , we have that

G(y) ⊆ lim inf
n→+∞

G(yn),

where
lim inf
n→+∞

G(yn) df=
{

z ∈ Z : lim
n→+∞

d(z, G(yn)) = 0
}

or equivalently

lim inf
n→+∞

G(yn) df=
{
z ∈ Z : z = lim

n→+∞
zn where zn ∈ G(yn), for n > 1

}
.

If Z is a metric space, then on Pf (Z) we can define a generalized metric h, known

in the literature as the Hausdorff metric, by setting

h(B, C) df= max
{

sup
b∈B

d(b, C), sup
c∈C

d(c, B)
}

∀B, C ∈ Pf (Z).

If Z is complete, then (Pf (Z), h) is complete too. A multifunction F : Y −→ Pf (Z)
is said to be Hausdorff continuous (h-continuous for short), if it is continuous from Y

into (Pf (Z), h).
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Next, let X be a reflexive Banach space and X∗ its topological dual. A map

A : X ⊇ D(A) −→ 2X∗
is said to be monotone if for all (x, x∗), (y, y∗) ∈ Gr A, we

have 〈x∗−y∗, x−y〉 > 0 (by 〈·, ·〉 we denote the duality brackets for the pair (X, X∗)).
If, additionally, the fact that 〈x∗ − y∗, x − y〉 = 0 implies that x = y, then we say

that A is strictly monotone. The map A is said to be maximal monotone, if it is
monotone and the fact that 〈x∗ − y∗, x − y〉 > 0 for all (x, x∗) ∈ Gr A implies that

(y, y∗) ∈ GrA. So, according to this definition, the graph of a maximal monotone
map is maximal monotone with respect to inclusion among the graphs of all monotone

maps from X into 2X∗
. It is easy to see that a maximal monotone map A has a

demiclosed graph, i.e. Gr A is sequentially closed in X ×X∗
w and in Xw ×X∗ (here

by Xw and X∗
w we denote the spaces X and X∗, respectively, furnished with their

weak topologies). If A : X −→ X∗ is everywhere defined and single-valued, we say

that A is demicontinuous if for every sequence {xn}n>1 ⊆ X such that xn −→ x in
X , we have A(xn) −→ A(x) weakly in X∗. If a map A : X −→ X∗ is monotone and

demicontinuous, then it is also maximal monotone. A map A : X ⊇ D(A) −→ 2X∗

is said to be coercive if D(A) ⊆ X is bounded or if D(A) is unbounded and we have

inf{〈x∗, x〉 : x∗ ∈ A(x)}
‖x‖X

−→ +∞ as ‖x‖X → +∞, with x ∈ D(A).

A maximal monotone and coercive map is surjective.

An operator A : X −→ 2X∗
is said to be pseudomonotone if

(a) for all x ∈ X , we have A(x) ∈ Pwkc(X∗);
(b) A is upper semicontinuous from every finite dimensional subspace Z of X into

X∗
w;

(c) if xn −→ x weakly in X , x∗n ∈ A(xn) and lim sup
n→+∞

〈x∗n, xn−x〉 6 0, then for every

y ∈ X , there exists x∗(y) ∈ A(x) such that

〈x∗(y), x− y〉 6 lim inf
n→+∞

〈x∗n, xn − y〉.

If A is bounded (i.e. it maps bounded sets into bounded ones) and satisfies condi-

tion (c), then it satisfies condition (b) too. An operator A : X −→ 2X∗
is said to be

generalized pseudomonotone if for all x∗n ∈ A(xn), with n > 1, such that xn −→ x

weakly in X , x∗n −→ x∗ weakly in X∗ and lim sup
n→+∞

〈x∗n, xn − x〉 6 0, we have

x∗ ∈ A(x) and 〈x∗n, xn〉 −→ 〈x∗, x〉.

Every maximal monotone operator is generalized pseudomonotone. Also a pseu-
domonotone operator is generalized pseudomonotone. The converse is true if the
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operator is everywhere defined and bounded. A pseudomonotone operator which is

also coercive is surjective.

Let Y , Z be Banach spaces and let K : Y −→ Z be a map. We say that K is

completely continuous if the fact that yn −→ y weakly in Y implies that K(yn) −→
K(y) in Z. We say that K is compact if it is continuous and maps bounded sets

into relatively compact sets. In general, these two notions are distinct. However,
if Y is reflexive, then complete continuity implies compactness. Moreover, if Y is

reflexive and K is linear, then the two notions are equivalent. Also a multifunction
F : Y −→ 2Z \ {∅} is said to be compact if it is upper semicontinuous and maps
bounded sets in Y into relatively compact sets in Z.

3. Extremal solutions

We start with an existence theorem for problem (1.1). We shall need the following
hypotheses on the multifunctions A and F :

H(A) A : � N −→ 2
� N

is a maximal monotone map, such that domA = � N and

0 ∈ A(0).

H(F)1 F : [0, T ]× � N −→ Pkc( � N ) is a multifunction such that

(i) the multifunction [0, T ] 3 t 7−→ F (t, ζ) ∈ 2
� N

is measurable, for all ζ ∈
� N ;

(ii) for almost all t ∈ [0, T ], the multifunction � N 3 ζ 7−→ F (t, ζ) ∈ 2
� N

is
h-continuous;

(iii) for all k > 0, there exists ak ∈ Lp′([0, T ])+ such that for almost all t ∈
[0, T ], all ζ ∈ � N with ‖ζ‖ � N 6 k and all u ∈ F (t, ζ), we have ‖u‖ � N 6
ak(t);

(iv) there exists M > 0 such that for almost all t ∈ [0, T ], all ζ ∈ � N with
‖ζ‖ � N = M and all u ∈ F (t, ζ), we have (u, ζ) � N > 0 (Hartman condition).

Theorem 3.1. If hypoheses H(A) and H(F)1 hold, then problem (1.1) has a
solution x ∈ C1([0, T ]; � N ).

� �"!#!%$
. Let ϕ : � N −→ � N be the homeomorphism defined by ϕ(ζ) df= ‖ζ‖p−2�

N ζ

and let pM : � N −→ � N be the M -radial retraction defined by

pM (ζ) df=





ζ if ‖ζ‖ � N 6 M,

Mζ

‖ζ‖ � N

if ‖ζ‖ � N > M,
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with M being as in hypothesis H(F)1 (iv). We consider the following modification of
the multifunction F (t, ζ):

F1(t, ζ) df= F (t, pM (ζ)) + ϕ(ζ) − ϕ(pM (ζ)),

which clearly satisfies the same conditions as F .

In what follows, by 〈·, ·〉 we denote the duality brackets for the pair (W 1,p
0 ([0, T ];

� N ), W−1,p′([0, T ]; � N )) (where 1/p + 1/p′ = 1). Consider the operator

U : W 1,p
0 ([0, T ]; � N ) −→ W−1,p′([0, T ]; � N )

defined by

〈U(x), y〉 =
∫ T

0

(‖x′(t)‖p−2�
N x′(t), y′(t)) � N dt ∀x, y ∈ W 1,p

0 ([0, T ]; � N ).

Clearly U is bounded, demicontinuous, and monotone, thus maximal monotone.
Also it is strictly monotone. Because U is everywhere defined, we infer that it is

pseudomonotone (see Section 2). Also let

Â : W 1,p
0 ([0, T ]; � N ) −→ 2Lp′ ([0,T ];

� N)

be defined by

Â(x) df= Sp′

A(x(·)) ∀x ∈ W 1,p
0 ([0, T ]; � N ).

Note that since W 1,p
0 ([0, T ]; � N ) ⊆ C([0, T ]; � N ) and dom A = � N , for every

x ∈ W 1,p
0 ([0, T ]; � N ) we see that A(B‖x‖

C([0,T ]; & N)
(0)) is compact and so Â has

nonempty, weakly compact and convex values in Lp′([0, T ]; � N ). Moreover, via
Theorem III.1.33, p. 309 of Hu-Papageorgiou [19], we see that Â is maximal mono-
tone as a map from W 1,p

0 ([0, T ]; � N ) into W−1,p′([0, T ]; � N ). Then by virtue of
Theorem III.3.3, p. 334 of Hu-Papageorgiou [19], the map

W 1,p
0 ([0, T ]; � N ) 3 x 7−→ U(x) + Â(x) ∈ W−1,p′([0, T ]; � N )

is maximal monotone and it is everywhere defined. Let h ∈ Â(x). Since 0 ∈ Â(0),
we have

〈U(x) + h, x〉 = 〈U(x), x〉 + 〈h, x〉

> 〈U(x), x〉 =
∫ T

0

‖x′(t)‖p�
N dt = ‖x′‖p

p,
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so the function x 7−→ U(x) + Â(x) is coercive (by Poincare’s inequality; see Hu-
Papageorgiou [20, Theorem A.1.24, p. 866]). Let

E
df= {g ∈ Lp′([0, T ]; � N ) : ‖g‖p′ 6 ‖aM‖p′}.

For every g ∈ E, we see that the operator inclusion

(3.1) g ∈ U(x) + Â(x)

has a solution x ∈ W 1,p
0 ([0, T ]; � N ). Using the fact that the map � N 3 ζ 7−→ ϕ(ζ) =

‖ζ‖p−2�
N ζ ∈ � N is a homeomorphism, we have x ∈ C1([0, T ]; � N ). Let K be the set

of all solutions of problem (3.1) as g varies in E. Because of the coercivity of the
map x 7−→ U(x) + Â(x), the set K ⊆ W 1,p

0 ([0, T ]; � N ) is bounded.

Claim 1. The set K is weakly closed (hence weakly compact) inW 1,p
0 ([0, T ]; � N ).

� �"!#!%$
. Since the weak W 1,p

0 ([0, T ]; � N )-topology on K is metrizable, we may

work with sequences. So, let {xn}n>1 ⊆ K be a sequence and assume that

xn −→ x weakly in W 1,p
0 ([0, T ]; � N ).

We have
〈U(xn), xn − x〉+ 〈hn, xn − x〉 = 〈gn, xn − x〉,

for some hn ∈ Â(xn) and gn ∈ E. Because of the compactness of the embedding
W 1,p

0 ([0, T ]; � N ) ⊆ C([0, T ]; � N ), we have xn −→ x in C([0, T ]; � N ). Hence

c1
df= sup

n>1
‖xn‖C([0,T ];

�
N) < +∞.

So, it follows that the set A
(
Bc1(0)

)
⊆ � N is compact (since dom A = � N ) and

from this we infer that the sequence {hn}n61 ⊆ Lp′([0, T ]; � N ) is bounded. As

〈hn, xn − x〉 = 〈hn, xn − x〉pp′ −→ 0,

〈gn, xn − x〉 = 〈gn, xn − x〉pp′ −→ 0,

so also
lim

n→+∞
〈U(xn), xn − x〉 = 0.

Because U is pseudomonotone and bounded, we conclude that U(xn) −→ U(x)
weakly in W−1,p′([0, T ]; � N ). Also, passing to a subsequence if necessary, we may
assume that hn −→ h and gn −→ g weakly in Lp′([0, T ]; � N ). Clearly g ∈ E and
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because hn(t) ∈ A(xn(t)) almost everywhere on [0, T ], using Proposition VII.3.9,
p. 694 of Hu-Papageorgiou [19], we see that

h(t) ∈ conv lim sup
n→+∞

A(xn(t)) ⊆ A(x(t)) a.e. on [0, T ]

(the last inclusion follows from the upper semicontinuity of A and the fact that A is
Pkc( � N )-valued). Hence h ∈ Â1(x). In the limit as n → +∞, we obtain

g = U(x) + h, with h ∈ Â1(x),

hence K is weakly closed in W 1,p
0 ([0, T ]; � N ) and Claim 1 is proved. �

Let i : W 1,p
0 ([0, T ]; � N ) −→ C([0, T ]; � N ) be the embedding operator. We know

that i is completely continuous and so i(K) ⊆ C([0, T ]; � N ) is compact. We have

conv i(K) = i(conv K) ⊆ i(conv K) ⊆ i(convK) = conv i(K),

so

i(conv K) = conv i(K) = K1 ⊆ W 1,p
0 ([0, T ]; � N ) ⊆ C([0, T ]; � N )

and K1 is weakly compact in W 1,p
0 ([0, T ]; � N ) and compact in C([0, T ]; � N ).

Next, let F̂1 : K1 −→ Pwkc(Lp′([0, T ]; � N )) be the multifunction defined by

F̂1(x) df= Sp′

F1(·,x(·)) ∀x ∈ K1.

Using Theorem II.8.31, p. 260 of Hu-Papageorgiou [19], we obtain a continuous map

ũ : K1 −→ L1
w([0, T ]; � N ),

such that

ũ(x) ∈ ext F̂1(x) = ext Sp′

F1(·,x(·)) ∀x ∈ K1.

We denote by L1
w([0, T ]; � N ), the space L1([0, T ]; � N ) with the weak norm, defined

for all f ∈ L1([0, T ]; � N ) by

‖f‖w
df= sup

{∥∥∥∥
∫ t

s

f(τ) dτ

∥∥∥∥ �
N

: 0 6 s 6 t 6 T

}
.

In particular ũ is continuous from K1 into L1([0, T ]; � N ) furnished with the weak
topology (see Hu-Papageorgiou [19, p. 194–195]) and because of the definition
of F1 and hypothesis H(F)1 (iii), we see that ũ is in fact continuous from K1 into
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Lp′([0, T ]; � N )w. Applying Dugundji’s extention theorem (see Hu-Papageorgiou [19,

Theorem I.2.88, p. 70]), we obtain a continuous map

û : C([0, T ]; � N ) −→ Lp′([0, T ]; � N )w,

such that û|K1 = ũ. Exploiting the compactness of the embeddingW 1,p
0 ([0, T ]; � N ) ⊆

C([0, T ]; � N ), we see that the function

u = û|W 1,p
0 ([0,T ];

�
N) : W 1,p

0 ([0, T ]; � N )w −→ Lp′([0, T ]; � N )w

is continuous.

Consider the Dirichlet problem

(3.2)

{
(‖x′(t)‖p−2�

N x′(t))′ ∈ A(x(t)) + u(x)(t) a.e. on [0, T ],

x(0) = x(T ) = 0.

Since u : W 1,p
0 ([0, T ]; � N ) −→ W−1,p′([0, T ]; � N ) is completely continuous (from the

compactness of the embedding Lp′([0, T ]; � N ) ⊆ W−1,p′([0, T ]; � N )), we see that the
function

W 1,p
0 ([0, T ]; � N ) 3 x 7−→ U(x) + Â(x) + u(x) ∈ 2W−1,p′ ([0,T ];

� N)

is pseudomonotone and of course coercive (from Dugundji’s theorem and the defini-

tions of F1 and u, we have for all x ∈ W 1,p
0 ([0, T ]; � N ), ‖u(x)‖p′ 6 ‖aM‖p′). Then,

we can find x ∈ W 1,p
0 ([0, T ]; � N ), such that

0 ∈ U(x) + Â(x) + u(x).

Evidently x ∈ K1 and so u(x) = ũ(x) and from Theorem II.4.6, p. 192 of Hu-
Papageorgiou [19], we conclude that

ũ(x) ∈ ext Sp′

F1(·,x(·)) = Sp′

ext F1(·,x(·)).

Claim 2. For all t ∈ [0, T ], we have ‖x(t)‖ � N 6 M .
� �"!#!%$

. Suppose that the claim is not true. Then, we can find t1, t2 ∈ [0, T ],
with t1 < t2, such that

‖x(t1)‖ � N = M,

‖x(t2)‖ � N = max
t∈[0,T ]

‖x(t)‖ � N > M, and

‖x(t)‖ � N > M ∀ t ∈ (t1, t2].
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Since 0 ∈ U(x) + Â(x) + ũ(x), we obtain that

(‖x′(t)‖p−2�
N x′(t))′ = y(t) + f(t) + ϕ(x(t))− ϕ(pM (x(t)))

almost everywhere on [0, T ] with f ∈ Sp′

F (·,pM (x(·))) and y ∈ Â(x). Then, for almost
all t ∈ (t1, t2], we have

d
dt

(‖x′(t)‖p−2�
N x′(t), x(t)) � N

= ((‖x′(t)‖p−2�
N x′(t))′, x(t)) � N + (‖x′(t)‖p−2�

N x′(t), x′(t)) � N

= (y(t) + f(t) + ϕ(x(t))− ϕ(pM (x(t))), x(t)) � N + ‖x′(t)‖p�
N

> ‖x(t)‖ � N

M
(f(t), pM (x(t))) � N + ‖x(t)‖p�

N −Mp−1‖x(t)‖ � N .

By virtue of hypothesis H(F)1 (iv), we have

‖x(t)‖ � N

M
(f(t), pM (x(t))) � N > 0 a.e. on (t1, t2],

and so we obtain that

(3.3)
d
dt

(‖x′(t)‖p−2�
N x′(t), x(t)) � N > ‖x(t)‖ � N (‖x(t)‖p−1�

N −Mp−1) > 0

almost everywhere on (t1, t2].
Of course 0 < t2 < T . Then for r(t) df= ‖x(t)‖2�

N , we have r′(t2) = 0 and so
(x′(t2), x(t2)) � N = 0. From (3.3), we see that the function

(t1, t2] 3 t 7−→ (‖x′(t)‖p−2�
N x′(t), x(t)) � N ∈ �

is strictly increasing. This means that

‖x′(t)‖p−2�
N (x′(t), x(t)) � N < ‖x′(t2)‖p−2�

N (x′(t2), x(t2)) � N ∀ t ∈ [t1, t2),

so

(x′(t), x(t)) � N =
1
2
r′(t) < 0 ∀ t ∈ [t1, t2).

Thus

M2 < ‖x(t2)‖2�
N < ‖x(t1)‖2�

N ,

which is a contradition to the fact that ‖x(t2)‖ � N = max
t∈[0,T ]

‖x(t)‖ � N > ‖x(t1)‖ � N .

So Claim 2 is proved. �
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Because of Claim 2, we have pM (x(t)) = x(t) for all t ∈ [0, T ] and therefore
{

(‖x′(t)‖p−2�
N x′(t))′ ∈ A(x(t)) + extF (t, x(t)) a.e. on [0, T ],

x(0) = x(T ) = 0,

and so x ∈ C1([0, T ]; � N ) is an extremal solution. �

4. Strong relaxation

For the strong relaxation theorem, we shall need the following stronger conditions
on the multifunction F (t, ζ):

H(F)2 F : [0, T ]× � N −→ Pk( � N ) is a multifunction such that
(i) the function [0, T ] 3 t 7−→ F (t, ζ) ∈ 2

� N

is measurable, for all ζ ∈ � N ;

(ii) for almost all t ∈ [0, T ] and all ζ, ζ ′ ∈ � N , we have h(conv F (t, ζ),
conv F (t, ζ ′)) 6 k(t)‖ζ − ζ ′‖ � N with k ∈ L1([0, T ])+ such that ‖k‖1 < 1;

(iii) for all k > 0, there exists ak ∈ L1([0, T ])+ such that for almost all t ∈ [0, T ],
all ζ ∈ � N with ‖ζ‖ � N 6 k, and all u ∈ F (t, ζ), we have ‖u‖ � N 6 ak(t);

(iv) there exists M > 0 such that for almost all t ∈ [0, T ], all ζ ∈ � N with
‖ζ‖ � N = M , and all u ∈ F (t, ζ), we have (u, ζ) � N > 0.

Remark 4.1. It is well known even for first order multivalued Cauchy problems
that simple h-continuity of F (t, ·) does not suffice to have a relaxation result (see
Hu-Papageorgiou [20, p. 217]). This is the reason why we use the stronger hypothe-
sis H(F)2 (ii).

Recall that by Sec ⊆ C1([0, T ]; � N ) we denote the solution set of problem (1.2),
and by Sc ⊆ C1([0, T ]; � N ), the solution set of problem (1.3).

Theorem 4.2. If hypotheses H(A) and H(F)2 hold, then S
C1([0,T ];

� N)

ec = Sc.
� �"!#!%$

. Let ϕ and pM be as in the proof of Theorem 3.1. Let K1 ⊆
W 1,2

0 ([0, T ]; � N ) ⊆ C([0, T ]; � N ) be as in the proof of Theorem 3.1. We know
that K1 is compact in C([0, T ]; � N ) and weakly compact in W 1,2

0 ([0, T ]; � N ). Let
x ∈ Sc. Then, by definition, we have

(4.1)

{
x′′(t) ∈ A(x(t)) + f(t) a.e. on [0, T ],

x(0) = x(T ) = 0,

with f ∈ S2
conv F (·,x(·)). Also, for a given y ∈ K1 and ε > 0, let

Γy,ε : [0, T ] −→ 2
� N \ {∅}
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be defined by

Γy,ε(t)
df=

{
ζ ∈ conv F1(t, y(t)) :

‖f(t)− ζ‖ � N <
ε

2M1T
+ d(f(t), conv F1(t, y(t)))

}
,

with

F1(t, ζ) df= F (t, pM (ζ)) − ϕ(ζ) + ϕ(pM (ζ))

and M1
df= sup{‖z‖C([0,T ];

�
N) ; z ∈ K1}. Clearly Gr Γy,ε ∈ L([0, T ]) × B( � N ) (with

L([0, T ]) being the Lebesgue σ-field of [0, T ]) and we can use the Yankov-von
Neumann-Aumann selection theorem (see Hu-Papageorgiou [19, Theorem II.2.14,

p. 158]) and obtain z ∈ S2
conv F1(·,y(·)) such that z(t) ∈ Γε(t) almost everywhere on

[0, T ]. So, we can define the multifunction Lε : K1 −→ 2L2([0,T ];
� N) as follows

Lε(y) df=
{

z ∈ S2
conv F1(·,y(·)) :

‖f(t)− z(t)‖ � N <
ε

2M1T
+ d(f(t), conv F1(t, y(t))) a.e. on [0, T ]

}
.

We have just seen that Lε has nonempty values, which are clearly decomposable.

Moreover, the function y 7−→ Lε(y) is lower semicontinuous (see Hu-Papageorgiou
[19, p. 239]) and then so is y 7−→ Lε(y). Therefore we can find a continuous map

uε : K1 7−→ L2([0, T ]; � N ),

such that

uε(y) ∈ Lε(y) ∀ y ∈ K1

(see Hu-Papageorgiou [19, Theorem II.8.7, p. 245]). From Hu-Papageorgiou [19,

Theorem II.8.31, p. 260], we can find a continuous map

vε : K1 −→ L1
w([0, T ]; � N ),

such that

vε(y) ∈ ext S2
conv F1(·,y(·)) = S2

ext conv F1(·,y(·)) ∀ y ∈ K1

and

‖vε(y)− uε(y)‖w < ε ∀ y ∈ K1

(recall that ‖ · ‖w is the weak norm on L1([0, T ]; � N ) introduced in the proof of
Theorem 3.1).
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Now, let εn ↘ 0 and set un = uεn , vn = vεn . Consider the following boundary

value problem:

(4.2)

{
x′′n(t) ∈ A(xn(t)) + vn(xn)(t) a.e. on [0, T ],

xn(0) = xn(T ) = 0.

As before, we show that problem (4.2) has a solution xn ∈ C1([0, T ]; � N ), such that

‖xn‖C([0,T ];
�

N) 6 M, ∀n > 1

(see problem (3.2) in the proof of Theorem 3.1). We have {xn}n>1 ⊆ K1 and so,

passing to a subsequence if necessary, we may assume that

xn −→ y in C([0, T ]; � N ),

xn −→ y weakly in W 1,2
0 ([0, T ]; � N ).

From (4.1) and (4.2), exploiting the monotonicity of A, we obtain

〈x′′n − x′′, x− xn〉 6 〈vn(xn)− f, x− xn〉,

and so, by Green’s identity, we have

‖x′n − x′‖2
2 6

∫ T

0

(vn(xn)(t)− un(xn)(t), x(t) − xn(t)) � N dt

+
∫ T

0

(un(xn)(t)− f(t), x(t)− xn(t)) � N dt.

Because, by construction, we have ‖vn(xn)− un(xn)‖w −→ 0, so also

∣∣∣∣
∫ T

0

(vn(xn)(t)− un(xn)(t), x(t) − xn(t)) � N dt

∣∣∣∣ 6 ε′n

for some ε′n ↘ 0.
Recall that un(xn)(t) ∈ conv F1(t, xn(t)) almost everywhere on [0, T ] and since

‖xn‖C([0,T ];
�

N) 6 M , we have F1(t, xn(t)) = F (t, xn(t)). Hence

∫ T

0

(un(xn)(t)− f(t), x(t) − xn(t)) � N dt

6
∫ T

0

‖un(xn)(t)− f(t)‖ � N‖x(t)− xn(t)‖ � N dt
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6
∫ T

0

[ εn

2M1T
+ h(conv F (t, xn(t)), conv F (t, x(t)))

]
‖x(t)− xn(t)‖ � N dt

6 εn +
∫ T

0

k(t)‖x(t)− xn(t)‖2�
N dt

6 εn +
∫ T

0

k(t)
∫ T

0

‖x′(s)− x′s(s)‖2�
N ds dt.

Therefore, finally, we can write

‖x′n − x′‖2
2 6 ε′′n + ‖k‖1‖x′n − x′‖2

2,

with ε′′n = εn + ε′n, and so

lim sup
n→+∞

‖x′n − x′‖2
2 6 ‖k‖1 lim sup

n→+∞
‖x′n − x′‖2

2.

Because by hypothesis H(F)2 (ii) we have ‖k‖1 < 1, it follows that

lim sup
n→+∞

‖x′n − x′‖2 = 0,

so ‖y′ − x′‖2 = 0 and x′n −→ x′ in L2([0, T ]; � N ) and thus y′ = x′.
From this and the Dirichlet boundary conditions, we infer that x = y. Therefore

xn −→ x in W 1,2
0 ([0, T ]; � N ).

From (4.2), we see that {x′′n}n>1 ⊆ L2([0, T ]; � N ) is bounded and so, passing to a
subsequence if necessary, we may assume that

x′′n −→ z weakly in L2([0, T ]; � N ),

and since {xn}n>1 ⊆ C1([0, T ]; � N ) and x ∈ C1([0, T ]; � N ), we can easily see that
z = x′′. Also from the above construction, we have

vn(xn) −→ f weakly in L2([0, T ]; � N ).

Since x′′n − vn(xn) ∈ Â(xn) and Â is maximal monotone, we have

x′′ − f ∈ Â(x).

Therefore

xn −→ x weakly in W 2,2([0, T ]; � N ),

and from the compactness of the embedding W 2,2([0, T ]; � N ) ⊆ C1([0, T ]; � N ), we
conclude that

xn −→ x in C1([0, T ]; � N ).

Finally, note that xn ∈ Sec and that Sc ⊆ C1([0, T ]; � N ) is closed. �

841



5. Examples

In this section, we present two examples of interest which fit into our general

framework and illustrate the general character of our work here.

Example 1. Let ϕ : � N −→ � be a continuous convex function and F : [0, T ]×
� N −→ Pfc( � N ) a multifunction satisfying hypotheses H(F)2. Consider the follow-
ing “gradient” system with in general nonsmooth potential ϕ:

(5.1)

{
(‖x′(t)‖p−2�

N x′(t))′ ∈ ∂ϕ(x(t)) + F (t, x(t)) a.e. on [0, T ],

x(0) = x(T ) = 0.

If A = ∂ϕ, then A is maximal monotone with dom A = � N . So the results of this

paper apply to the system and its solutions can be obtained as the uniform limit of
extremal solutions (i.e. solutions corresponding to the orientor field extF (t, ζ)). The
results of this paper apply to problem (5.1).

Example 2. Suppose that p = 2, A : � N −→ 2
� N

satisfies hypothesis H(A) and

let f : [0, T ]× � N −→ � N be a function such that
(i) the function t 7−→ f(t, ζ) is measurable;
(ii) ‖f(t, ζ) − f(t, ζ ′)‖ � N 6 k1(t)‖ζ − ζ ′‖ � N almost everywhere on [0, T ], for some

k1 ∈ L1([0, T ]);
(iii) f(·, 0) ∈ L1([0, T ]; � N );
(iv) for almost all t ∈ [0, T ] and all ζ ∈ � N with ‖ζ‖ � N = M , we have

(f(t, ζ), ζ) � N > 0.

Also let U : [0, T ]× � N −→ � N be a multifunction such that

(i) the function t 7−→ U(t, ζ) is measurable for all ζ ∈ � N ;
(ii) h(U(t, ζ), U(t, ζ ′)) 6 k2(t)‖ζ − ζ ′‖ � N almost everywhere on [0, T ], for some

k2 ∈ L1([0, T ]);
(iii) for all r > 0, almost all t ∈ [0, T ], all ζ ∈ � N with ‖ζ‖ � N 6 r and all u ∈ U(t, ζ),

we have ‖u‖ � N 6 ar(t), where ar ∈ L1([0, T ])+.
Finally let B ∈ L∞([0, T ]; � N×N ) be such that
(i) for almost all t ∈ T , all ζ ∈ � N with ‖ζ‖ � N = M and all u ∈ U(t, ζ), we have

(B(t)u, ζ) � N > 0.
Suppose that ‖k1‖1 + ‖B‖∞‖k2‖1 6 1 and that F (t, ζ) = f(t, ζ) + B(t)U(t, ζ). We
can easily verify that the last multifunction satisfies hypotheses H(F)2. So if we
consider the feedback control problem:

{
x′′(t) ∈ A(x(t)) + f(t, x(t)) + B(t)u(t) a.e. on [0, T ],

x(0) = x(T ), u(t) ∈ U(t, x(t)) a.e. on [0, T ],
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then every state of it can be approximated with respect to the L∞-norm (i.e. uni-

formly in t ∈ [0, T ]) by a state generated by a bang-bang control, i.e. a control u(t)
such that u(t) ∈ ext U(t, x(t)) for almost all t ∈ [0, T ]. In practice such a controls
are easier to realize. Moreover, if we have some continuous objective functional J(x)
to minimize, then we can always find an ε-optimal state procedure by a bang-bang
control.

There are three open problems left by the work initiated in this paper. The first
is to extend the results of this paper to the periodic and Neumann problems. In this

respect the corresponding papers on first order inclusions by De Blasi-Górniewicz-
Pianigiani [3], Hu-Kandilakis-Papageorgiou [17] and Hu-Papageorgiou [18] may be

helpful. The second is to prove a stronger relaxation theorem for problems driven
by the p-Laplacian. The third is to allow domA 6= � N (cf. hypothesis H(A)). In this

way we could fit in our framework variational inequalities.
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