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Abstract. Let F = {F v : � 1 → � 1, v ∈ V } be a disjoint iteration group on the unit
circle � 1, that is a family of homeomorphisms such that F v1 ◦F v2 = F v1+v2 for v1, v2 ∈ V
and each F v either is the identity mapping or has no fixed point ((V, +) is a 2-divisible
nontrivial Abelian group). Denote by LF the set of all cluster points of {F v(z), v ∈ V } for
z ∈ � 1. In this paper we give a general construction of disjoint iteration groups for which
∅ 6= LF 6= � 1.
Keywords: (disjoint, non-singular, singular, non-dense) iteration group, (strictly) increas-

ing mapping

MSC 2000 : 37E10, 20F38, 39B12

1. Introduction

LetX be a topological space and (V, +) be a 2-divisible nontrivial (i.e., cardV > 1)
Abelian group.

Recall that a family {F v : X → X, v ∈ V } of homeomorphisms with F v1 ◦ F v2 =
F v1+v2 for v1, v2 ∈ V is called an iteration group or a flow (on X). An iteration
group {F v : X → X, v ∈ V } is said to be disjoint if each of its elements either is the
identity mapping or has no fixed point. The structure of such iteration groups on
open real intervals in the case where V = � has been studied in [8]. Some special
cases of disjoint iteration groups on the unit circle � 1 under the assumption that
V = � have been investigated in [1] and [2].
By the limit set of a disjoint iteration group F = {F v : � 1 → � 1, v ∈ V } we mean

the set LF := {F v(z), v ∈ V }d, where z is an arbitrary element of � 1 and Ad stands

for the set of all cluster points of A. An iteration group F = {F v : � 1 → � 1, v ∈ V }
is said to be non-singular if at least one its element has no periodic point, otherwise
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F is called a singular iteration group. By the limit set of a non-singular iteration

groupF we mean the set LF := LF v , where F v ∈ F is an arbitrary homeomorphism
with irrational rotation number α(F v) and LF v is the limit set of F v . A non-singular
or disjoint iteration group F = {F v : � 1 → � 1, v ∈ V } is called: dense, if LF = � 1;

non-dense, if ∅ 6= LF 6= � 1; discrete, if LF = ∅. It is worth pointing out that every
discrete iteration group is both disjoint and singular, and every dense iteration group

is disjoint (see [5]).

The aim of this paper is to present a general construction of non-dense disjoint

iteration groupsF = {F v : � 1 → � 1, v ∈ V }. This together with [5] gives a complete
description of disjoint iteration groups on the circle.

2. Preliminaries

We begin by recalling the basic definitions and introducing some notation.

For any v, w, z ∈ � 1 there exist unique t1, t2 ∈ [0, 1) such that we2 � it1 = z and
we2 � it2 = v, so we can put

v ≺ w ≺ z if and only if 0 < t1 < t2,

v � w � z if and only if t1 6 t2 or t2 = 0

(see [2]). Some properties of these relations can be found in [3] and [4]. It is easily

seen that we also have

Lemma 1 (see also [6]). For any v, u, w, z ∈ � 1:

(i) v ≺ w ≺ z implies u · v ≺ u · w ≺ u · z,
(ii) u ≺ v ≺ w and u ≺ w ≺ z imply v ≺ w ≺ z.

For any v, w, z ∈ � 1 set

v � w ≺ z if and only if v ≺ w ≺ z or v = w,

v ≺ w � z if and only if v ≺ w ≺ z or w = z.

A set A ⊂ � 1 is said to be an open arc if there are distinct v, z ∈ � 1 with

A =
−−−→
(v, z) := {w ∈ � 1 : v ≺ w ≺ z} = {e2 � it, t ∈ (tv, tz)},

where tv , tz ∈ � are such that e2 � itv = v, e2 � itz = z and 0 < tz − tv < 1. A mapping
F : A → � 1 is said to be linear if there are a, b ∈ � , a > 0 with F (e2 � ix) = e2 � i(ax+b)

for x ∈ (tv , tz).
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Given a subset A of � 1 with cardA > 3 and a function F mapping A into � 1 we

say that F is increasing (respectively, strictly increasing) if for any v, w, z ∈ A such
that v ≺ w ≺ z we have F (v) � F (w) � F (z) (respectively, F (v) ≺ F (w) ≺ F (z)).
Some properties of such functions one can find in [3] and [4]. It is a simple matter

to check that we also have

Lemma 2. If A, B ⊂ � 1, cardA > 3 and F is a strictly increasing function

mapping A onto B, then F is invertible and F−1 : B → A is strictly increasing.

Lemma 3. Every increasing mapping F : � 1 → � 1 such that cl F [ � 1] = � 1 is

continuous.

We now repeat the relevant, slightly modified, material from [5] and [7].

Lemma 4 (see [5]). A disjoint iteration group F = {F v : � 1 → � 1, v ∈ V } is
discrete if and only if card{F v(z), v ∈ V } < ℵ0 for z ∈ � 1.

Proposition 1 (see [5]). If P = {P v : � 1 → � 1, v ∈ V } is a dense or non-dense
iteration group, then there exists a unique pair (ϕ, c) such that ϕ : � 1 → � 1 is a

continuous mapping of degree 1 with ϕ(1) = 1 and c : V → � 1 for which

(1) ϕ(P v(z)) = c(v)ϕ(z), z ∈ � 1, v ∈ V.

The function c is given by c(v) = e2 � iα(P v) for v ∈ V and it is a homomorphic

mapping. The mapping ϕ is increasing and ϕ[LP ] = � 1. Moreover, ϕ is a homeo-

morphism if and only if the iteration group P is dense.

Given a dense or non-dense iteration group P = {P v : � 1 → � 1, v ∈ V } we write
ϕP and cP for the functions described by Proposition 1.

Lemma 5 (see [5] and [7]). IfP = {P v : � 1 → � 1, v ∈ V } is a dense or non-dense
iteration group, then a pair (ϕ, c) such that ϕ : � 1 → � 1 is a continuous mapping

with ϕ(1) = 1 and c : V → � 1 satisfies (1) if and only if c = (cP)n and ϕ = (ϕP)n

for an integer n.

If F = {F v : � 1 → � 1, v ∈ V } is a non-dense iteration group, then its limit set is
a non-empty perfect and nowhere dense subset of � 1, and therefore

(2) � 1 \ LF =
⋃

q∈ �
Iq ,

where Iq for q ∈ � are open pairwise disjoint arcs.
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Lemma 6 (see [5]). If F = {F v : � 1 → � 1, v ∈ V } is a non-dense iteration group,
then:

(i) for every q ∈ � the mapping ϕF is constant on Iq ,

(ii) if A ⊂ � 1 is an open arc and ϕF is constant on A, then A ⊂ Iq for a q ∈ � ,
(iii) for any distinct p, q ∈ � , ϕF [Ip] ∩ ϕF [Iq ] = ∅,
(iv) the sets Im cF and KF := ϕF [ � 1 \ LF ] are countable and dense in � 1,

(v) KF · Im cF = KF .

According to Lemma 6 we can correctly define the bijection ΦF : � → KF and

the mapping TF : � × V → � putting

{ΦF (q)} := ϕF [Iq ], TF (q, v) := Φ−1
F

(ΦF (q)cF (v)), q ∈ � , v ∈ V.

Proposition 2 (see [5]). If F = {F v : � 1 → � 1, v ∈ V } is a non-dense disjoint
iteration group, then there exists a unique disjoint, non-dense iteration group P =
{P v : � 1 → � 1, v ∈ V } such that for any q ∈ � , v ∈ V , P v is linear on Iq and

P v[Iq ] = ITF (q,v). Moreover, there is a homeomorphism Γ: � 1 → � 1 satisfying

(3) F v = Γ−1 ◦ P v ◦ Γ, v ∈ V

such that Γ(z) = z for z ∈ LF .

3. Main result

We are now in a position to give a general construction of non-dense disjoint
iteration groups. Let us first observe that from Proposition 1 and Lemma 6 it follows

that if F = {F v : � 1 → � 1, v ∈ V } is such a group, then

(H) there is a homomorphic mapping c : V → � 1 with card Im c = ℵ0.

Therefore we assume that (H) holds true. It is obvious that if V is a finite group, then
(H) is not satisfied, whereas if V = � , then c := exp | � is the desired homomorphic
mapping. From Lemma 15 in [3] it follows that (H) holds for V = � .
Let L be a perfect nowhere dense subset of � 1 and Iq for q ∈ � be open pairwise

disjoint arcs such that

(4) � 1 \ L =
⋃

q∈ �
Iq .
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Take an M ⊂ ⋃
q∈ � Iq with card(M ∩ Iq) = 1 for q ∈ � . For any α ∈ M denote by

Iα the arc Iq such that α ∈ Iq . Clearly, cardM = ℵ0, � 1 \ L =
⋃

α∈M

Iα and

(5) α ≺ β ≺ γ if and only if Iα ≺ Iβ ≺ Iγ , α, β, γ ∈ M.

Fix a zM ∈ � 1 \ ⋃
α∈M

cl Iα and define

(6) α �M β if and only if zM � α � β, α, β ∈ M.

Since α, β ∈ � 1 \ L, zM ∈ L, Lemma 3 in [3] shows that α �M β if and only if
zM ≺ α � β. Moreover, (M,�M ) is easily checked to be of ordered type η.

Let c : V → � 1 be a homomorphic mapping with card Im c = ℵ0. Then, we also

have cl Im c = � 1.

Take a non-empty subset A of � 1 such that cardA 6 ℵ0 and put

K := Im c · A.

Obviously, cardK = ℵ0 and cl K = � 1. Furthermore,

(7) K · Im c = K.

Choose a zK ∈ � 1 \K and set

(8) z1 �K z2 if and only if zK � z1 � z2, z1, z2 ∈ K.

We see at once that (K,�K) is of ordered type η and

(9) z1 �K z2 if and only if zK ≺ z1 � z2, z1, z2 ∈ K.

Let Φ: M → K be an order preserving bijection. We shall show that it is strictly

increasing. To do this fix α, β, γ ∈ M such that α ≺ β ≺ γ and note that according to

Lemma 2 in [3] it suffices to prove that Φ(α) ≺ Φ(β) ≺ Φ(γ) only in case zM ∈ −−−→
(γ, α).

If zM ∈ −−−→
(γ, α) then, by (6) and the fact that Φ preserves order, we get Φ(α) �K Φ(β)

and Φ(β) �K Φ(γ). Since we also have Φ(α) 6= Φ(β) and Φ(β) 6= Φ(γ), (9) together
with Lemma 1(ii) now yields Φ(α) ≺ Φ(β) ≺ Φ(γ).
(7) makes it possible to define the mapping T : M × V → M putting

(10) T (α, v) := Φ−1(Φ(α)c(v)), α ∈ M, v ∈ V.
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We shall now construct a piecewise linear iteration group. Let x0 ∈ [0, 1) be
such that e2 � ix0 = zM ∈ L and set ν(x) := e2 � i(x+x0) for x ∈ [0, 1). Putting L′ :=
ν−1[L]∩ (0, 1) we have (0, 1) \L′ =

⋃
α∈M

I ′α, where I ′α := ν−1[Iα] for α ∈ M are open

pairwise disjoint intervals. Let lα,v for α ∈ M , v ∈ V be strictly increasing linear
functions with lα,v[I ′α] = I ′T (α,v). Defining

Bv(z) := (ν ◦ lα,v ◦ ν−1 |Iα)(z), z ∈ Iα, α ∈ M, v ∈ V

we obtain

(11) Bv[Iα] = IT (α,v), α ∈ M, v ∈ V.

Fix a v ∈ V . We claim that Bv : � 1 \ L → � 1 \ L is strictly increasing. Indeed, take

x, w, z ∈ � 1 \L with x ≺ w ≺ z and assume that card({x, w, z} ∩ Iα) 6 1 for α ∈ M

(the other cases can be handled in the same way as in the proof of Lemma 13 in [3]).

If α, β, γ ∈ M , α 6= β, α 6= γ, β 6= γ are such that x ∈ Iα, w ∈ Iβ , z ∈ Iγ , then
Iα ≺ Iβ ≺ Iγ and, by (5), α ≺ β ≺ γ. Since Φ is strictly increasing, from Lemmas 1(i)
and 2 and (7) it follows that Φ−1(Φ(α)c(v)) ≺ Φ−1(Φ(β)c(v)) ≺ Φ−1(Φ(γ)c(v)). This
together with (10), (5) and (11) gives Bv[Iα] ≺ Bv[Iβ ] ≺ Bv[Iγ ], which is the desired
conclusion.
Applying Lemma 12 in [4] we see that every function Bv can be extended to a

strictly increasing mapping P v : � 1 → � 1. Analysis similar to that in the proof of

Lemma 13 in [3] shows that P := {P v : � 1 → � 1, v ∈ V } is a piecewise linear
iteration group on � 1.

Put

ϕ(z) :=

{
Φ(α), z ∈ Iα, α ∈ M,

zK , z = zM ,

Mz := {α ∈ M : zM ≺ α ≺ z}, z ∈ L \ {zM}.(12)

For any z ∈ L \ {zM}, ⋃
α∈Mz

−−−−−−−→
(zK , Φ(α)) is an open arc of the form

−−−−→
(zK , a), so

we define ϕ(z) := a. We will show that ϕ : � 1 → � 1 is increasing. To do this, fix

z1, z2, z3 ∈ � 1 with z1 ≺ z2 ≺ z3 and consider the following cases:
1) {z1, z2, z3} ⊂ L.

a) zM ∈ {z1, z2, z3}. By Lemma 2 and Remark 3 in [3] we can assume that
z1 = zM . Then, from (12), we get Mz2 ⊂ Mz3 , which gives zK = ϕ(zM ) = ϕ(z1) ≺
ϕ(z2) � ϕ(z3).

b) {z1, z2, z3} ⊂ L \ {zM}. If z1, z2 ∈ −−−−−→
(zM , z3), which we may assume, then

Mz1 ⊂ Mz2 ⊂ Mz3 and

(13) ϕ(z1) � ϕ(z2) � ϕ(z3).
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2) {z1, z2, z3} ⊂ � 1 \ L.

a) card({z1, z2, z3} ∩ Iα) > 2 for an α ∈ M . Clear.

b) card({z1, z2, z3} ∩ Iα) 6 1 for α ∈ M . Let α, β, γ ∈ M , α 6= β 6= γ 6= α be
such that z1 ∈ Iα, z2 ∈ Iβ , z3 ∈ Iγ . Then α ≺ β ≺ γ, ϕ(z1) = Φ(α), ϕ(z2) = Φ(β)
and ϕ(z3) = Φ(γ), which together with the fact that Φ is strictly increasing yields
ϕ(z1) ≺ ϕ(z2) ≺ ϕ(z3).
3) card({z1, z2, z3} ∩ ( � 1 \ L)) = 2.
Assume that z1, z2 ∈ � 1 \ L, which in view of Lemma 2 and Remark 3 in [3] we

may do, and consider the following cases:

a) z1, z2 ∈ Iα for an α ∈ M . Obvious.

b) z1 ∈ Iα, z2 ∈ Iβ for some α, β ∈ M , α 6= β.

b1) z3 = zM . As z3 ≺ z1 ≺ z2, we have zM = z3 ≺ α ≺ β. Therefore (6)
and the fact that Φ preserves order imply Φ(α) �K Φ(β). This, by (9), gives
zK ≺ Φ(α) � Φ(β), and Φ(α) 6= Φ(β) now shows that ϕ(z3) = zK ≺ ϕ(z1) ≺ ϕ(z2).
b2) z3 ∈ L \ {zM}.
b21) z1, z2 ∈

−−−−−→
(zM , z3). Since zM ≺ z1 ≺ z2, 3b1 yields ϕ(zM ) = zK ≺ ϕ(z1) ≺

ϕ(z2). On the other hand, from (12) it follows that β ∈ Mz3 and, according to the

definition of ϕ, we obtain
−−−−−−−→
(zK , ϕ(z2)) ⊂

−−−−−−−→
(zK , ϕ(z3)). Consequently, zK ≺ ϕ(z2) �

ϕ(z3), and Lemma 1(ii) now shows that ϕ(z1) ≺ ϕ(z2) � ϕ(z3).

b22) z1, z3 ∈ −−−−−→
(zM , z2). Fixing a γ ∈ Mz3 we have γ ∈ Iγ and α 6= γ 6= β.

Since zM ≺ γ ≺ z1 and zM ≺ z1 ≺ z2, 3b1 gives zK = ϕ(zM ) ≺ ϕ(γ) ≺ ϕ(z1)
and zK ≺ ϕ(z1) ≺ ϕ(z2). Therefore from Lemma 1(ii) it follows that Φ(γ) =
ϕ(γ) ≺ ϕ(z1) ≺ ϕ(z2), which together with γ ∈ Mz3 and the definition of ϕ implies

ϕ(z3) ∈
−−−−−−−−−→
(ϕ(z2), ϕ(z1)) ∪ {ϕ(z1)}. Thus ϕ(z3) � ϕ(z1) ≺ ϕ(z2), and (13) follows.

b23) z2, z3 ∈
−−−−−→
(zM , z1). As zM ≺ z2 ≺ z3 and z2, β ∈ Iβ , we have zM ≺ β ≺ z3, and

(12) leads to β ∈ Mz3 . The definition of ϕ and the equality Φ(β) = ϕ(z2) now give
zK ≺ ϕ(z2) � ϕ(z3). Fix a γ ∈ Mz3 . Then, by (12), we obtain z3 ≺ zM ≺ γ. Since

we also have z3 ≺ z1 ≺ zM , Lemma 1(ii) yields zM ≺ γ ≺ z1. Moreover, γ ∈ Iγ for
γ 6= α. 3b1 now shows that zK ≺ ϕ(γ) ≺ ϕ(z1) and therefore zK ≺ ϕ(z3) � ϕ(z1).
From this, zK ≺ ϕ(z2) � ϕ(z3) and Lemma 1(ii) we conclude that ϕ(z2) � ϕ(z3) �
ϕ(z1).
4) card({z1, z2, z3} ∩ ( � 1 \ L)) = 1. Assume that z1 ∈ Iα for an α ∈ M , which in

view of Lemma 2 and Remark 3 in [3] we may do, and consider the following cases:

a) zM ∈ {z2, z3}.
a1) z3 = zM . As z1, α ∈ Iα, we have z3 = zM ≺ α ≺ z2 and, by (12), α ∈ Mz2 .

Using the definition of ϕ we thus get ϕ(z3) ≺ ϕ(α) = ϕ(z1) � ϕ(z2), and (13) follows.
a2) z2 = zM . Since (M,�M ) has no first element, there exists a γ ∈ Mz3 for which

ϕ(γ) 6= ϕ(z3). Clearly, γ 6= α. On account of 3b1, we have ϕ(γ) ≺ ϕ(z1) ≺ ϕ(z2).
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The fact that ϕ(z3) 6= ϕ(γ) 6= ϕ(z1) and 3b23 now give ϕ(γ) ≺ ϕ(z3) � ϕ(z1), which
together with ϕ(γ) ≺ ϕ(z1) ≺ ϕ(z2) and Lemma 1(ii) shows that ϕ(z2) ≺ ϕ(z3) �
ϕ(z1).
b) {z2, z3} ⊂ L \ {zM}.
b1) z1, z2 ∈

−−−−−→
(zM , z3). By (12) we obtain α ∈ Mz2 ⊂ Mz3 , and consequently (13)

holds true.

b2) z2, z3 ∈
−−−−−→
(zM , z1). Since from 1a and 4a2 we see that zK ≺ ϕ(z2) � ϕ(z3) and

ϕ(zM ) = zK ≺ ϕ(z3) � ϕ(z1), Lemma 1(ii) implies (13).

b3) z3, z1 ∈ −−−−−→
(zM , z2). Using 4a1 and 4a2 we obtain zK ≺ ϕ(z1) � ϕ(z2) and

zK ≺ ϕ(z3) � ϕ(z1), and Lemma 1(ii) now leads to (13).
We have thus proved that ϕ : � 1 → � 1 is increasing. As we also have K ⊂ Im ϕ

and K is dense in � 1, Lemma 3 shows that ϕ is continuous.

Fix v ∈ V , α ∈ M , z ∈ Iα. Then, by (11), P v(z) ∈ P v[Iα] = IT (α,v) and the
definition of ϕ and (10) give

ϕ(P v(z)) = Φ(T (α, v)) = Φ(α)c(v) = ϕ(z)c(v).

Therefore from the continuity of ϕ and P v and the density of � 1 \L in � 1 it follows

that (1) holds true. Analysis similar to that in the proof of Lemma 13 in [3] now
shows that the iteration groupP is disjoint. Moreover, since c satisfies (1) with b ·ϕ
for b ∈ � 1, we may assume that ϕ(1) = 1.
For any v ∈ V denote by a(v) the number from [0, 1) with c(v) = e2 � ia(v). Let us

first assume that

(14) there exists a v0 ∈ V for which a(v0) /∈ � .

If it were true that (P v0)n0(z0) = z0 for a positive integer n0 and a z0 ∈ � 1, from (1)

we would have c(n0v0) = 1, and consequently 1 = c(v0)n0 = e2 � in0a(v0), contrary to
(14). Therefore the iteration group P is non-singular.

Next, assume that

(15) a(v) ∈ � , v ∈ V.

If there existed a v0 ∈ V with α(P v0) /∈ � , from Lemma 5 and the fact that
card Im c = ℵ0 we would have c = (cP)n for an n ∈ � \ {0} and, consequently,
a(v0) = n · α(P v0)(mod1), which contradicts (15). Thus, the iteration group P is
singular. Moreover, it is not discrete. Indeed, if it were true that LP = ∅, from
Lemma 4 and (1) it would follow that

card Im c = card{ϕ(z)c(v), v ∈ V } = card{ϕ(P v(z)), v ∈ V } < ℵ0

for z ∈ � 1, which is impossible.
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Thus the iteration group P is dense or non-dense, and therefore, by Lemma 5,

c = (cP)n and ϕ = (ϕP)n for an n ∈ � \ {0}. Since ϕ is constant on each arc Iα,
the mapping ϕP is not invertible and Proposition 1 now leads to LP 6= � 1. Let Jα

for α ∈ M be open pairwise disjoint arcs with � 1 \ LP =
⋃

α∈M

Jα. From Lemma 6

it follows that they are the maximal open arcs of constancy of ϕP . We show that

they also have this property for ϕ. To do this, let us note that ϕ is constant on each
Jα and suppose, contrary to our claim, that there exists an α ∈ M and an open arc

J such that Jα � J and ϕ is constant on J . Then there are an infinite number of
β ∈ M with Jβ ⊂ J . On these Jβ the mapping ϕP assumes only a finite number of

values, which contradicts Lemma 6. Since from the definition of ϕ it follows that Iα

for α ∈ M are also the maximal open arcs of constancy of ϕ, we obtain LP = L.

The above constructed piecewise linear, disjoint and non-dense iteration groupP

has been determined uniquely by the sequence (L, M, zM , c, A, zK , Φ), and therefore
will be denoted by P (L, M, zM , c, A, zK , Φ).

Theorem 1. Assume that Γ: � 1 → � 1 is a homeomorphism with Γ(z) = z for

z ∈ L and let {P v : � 1 → � 1, v ∈ V } = P (L, M, zM , c, A, zK , Φ). Then formula
(3) defines a disjoint non-dense iteration group F := {F v : � 1 → � 1, v ∈ V } with
LF = L, which is non-singular if and only if (14) holds true. Moreover, every disjoint
non-dense iteration group can be obtained in this way.

� �"!#!%$
. We see at once that F is an iteration group, which, according to

Remarks 2, 3 and Lemma 2 in [6], has the desired properties.

Now, assume that F = {F v : � 1 → � 1, v ∈ V } is a disjoint non-dense iteration
group and let Iq for q ∈ � be open pairwise disjoint arcs for which (2) holds true.
Put L := LF .

Of course, L is a perfect nowhere dense subset of � 1 and we have (4).

Take a Φ0 : � → ⋃
q∈ � Iq with Φ0(q) ∈ Iq for q ∈ � and set M := Φ0[ � ]. It is

evident that Φ0 : � → M is a bijection and M ⊂ ⋃
q∈ � Iq satisfies card(M ∩ Iq) = 1

for q ∈ � . For any α ∈ M denote by Iα the arc Iq such that α ∈ Iq and observe that

Iα = IΦ−1
0 (α) for α ∈ M . Since from Proposition 1 it follows that ϕF [LF ] = � 1, we

check at once that cardϕF [ � 1 \ ⋃
α∈M

cl Iα] > ℵ0. This together with Lemma 6(iv)

shows that ϕF [ � 1 \ ⋃
α∈M

cl Iα] is not contained in KF .

Choose a zM ∈ � 1 \ ⋃
α∈M

cl Iα for which ϕF (zM ) ∈ � 1 \ KF and let an order

relation “�M” be given by (6).

Put c := cF .
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From Proposition 1 and Lemma 6(iv) we conclude that c : V → � 1 is a homomor-

phic mapping with card Im c = ℵ0.
Define A := KF .
Clearly, cardA = ℵ0. Putting K := Im c · A we deduce from Lemma 6(v) that

K = Im cF ·KF = KF .
Set zK := ϕF (zM ) ∈ � 1 \K and let an order relation “�K” be given by (8).

Define Φ := ΦF ◦ Φ−1
0 .

Obviously, Φ: M → K is a bijection. We show that it also preserves order. To do

this, fix α, β ∈ M with α �M β and note that (6) and the fact that ϕF is increasing
give ϕF (zM ) � ϕF (α) � ϕF (β). Since α ∈ Iα = IΦ−1

0 (α) for α ∈ M , Lemma 6(i)

together with the definitions of ΦF and Φ shows that

{ϕF (α)} = ϕF [IΦ−1
0 (α)] = {ΦF [Φ−1

0 (α)]} = {Φ(α)}, α ∈ M.

Therefore ϕF (zM ) � ϕF (α) � ϕF (β) and (8) imply Φ(α) �K Φ(β).
Consider the iteration group P (L, M, zM , c, A, zK , Φ) = {P v : � 1 → � 1, v ∈ V }

and let us first note that P v [Iα] = IT (α,v) for α ∈ M , v ∈ V , where T : M ×V → M

is given by (10). Fix q ∈ � , v ∈ V . Using the definitions of T , Φ, c and TF we
have T (Φ0(q), v) = Φ0(TF (q, v)), which together with the equalities Iq = IΦ0(q) and

P v[IΦ0(q)] = IT (Φ0(q),v) gives P v [Iq ] = ITF (q,v). Proposition 2 now completes the
proof. �
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