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Abstract. We give two variations of the Holland representation theorem for `-groups
and of its generalization of Glass for directed interpolation po-groups as groups of auto-
morphisms of a linearly ordered set or of an antilattice, respectively. We show that every
pseudo-effect algebra with some kind of the Riesz decomposition property as well as any
pseudo MV -algebra can be represented as a pseudo-effect algebra or as a pseudo MV -
algebra of automorphisms of some antilattice or of some linearly ordered set.
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1. Introduction

A fundamental result of Holland [9] says that every `-group G is an `-subgroup of
the `-groupA(Ω), the set of all automorphisms of a linearly ordered set Ω. This result
was extended to directed interpolation po-groups1 by Glass [7, Thm. 54] showing that
G is isomorphic to a po-subgroup of the po-group A(Ω), the set of all automorphisms
of an antilattice Ω.
Recently, partial algebraic structures, called pseudo-effect algebras and pseudo

MV -algebras (as total algebraic structures), were introduced in [4], [5] and in [6],
respectively. They can serve as models of quantum structures as well as of non-

commutative logic, [8]. Under some natural conditions, it was proved, [4], [5] and [1],
that they are precisely the intervals in unital po-groups or in unital `-groups. Using

these properties, we give an analogue of the Holland theorem showing that such a

This paper has been supported by the grant 2/7193/20 SAV, Bratislava, Slovakia.
1A po-group G is an interpolation group if, for g1, g2 6 h1, h2, there exists an element
s ∈ G such that g1, g2 6 s 6 h1, h2, g1, g2, h1, h2 ∈ G+.
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pseudo-effect algebra is isomorphic to a pseudo-effect algebra of automorphisms of a

∧-antilattice Ω. As a corollary, we show that every pseudoMV -algebra is isomorphic
to a pseudo MV -algebra of automorphisms of a linearly ordered set Ω.
Such a representation is useful since it gives a visualization of some pseudo-effect

algebras as a set of automorphisms.
The paper is organized as follows. Pseudo-effect algebras and pseudoMV -algebras

are presented in Section 2. Ideals P and mainly prime ideals of a pseudo-effect
algebra E, and their characterizations via ∧-antilattice properties of cosets E/P are
studied in Section 3. A connection among prime ideals and prime subgroups of unital
po-groups is shown in Section 4. Finally, the main results, the Holland theorems for

pseudo-effect algebras and pseudo MV -algebras, are presented in Section 5.

2. Pseudo-effect algebras

A partial algebra (E; +, 0, 1), where + is a partial binary operation and 0 and
1 are constants, is called a pseudo-effect algebra, [4], [5], if, for all a, b, c ∈ E, the
following holds

(i) a+ b and (a+ b) + c exist if and only if b+ c and a+ (b+ c) exist, and in this
case (a+ b) + c = a+ (b+ c);

(ii) there is exactly one d ∈ E and exactly one e ∈ E such that a+ d = e+ a = 1;
(iii) if a+ b exists, there are elements d, e ∈ E such that a+ b = d+ a = b+ e;
(iv) if 1 + a or a+ 1 exists, then a = 0.
If we define a 6 b if and only if there exists an element c ∈ E such that a+ c = b,

then 6 is a partial ordering on E such that 0 6 a 6 1 for any a ∈ E. It is possible to
show that a 6 b if and only if b = a+ c = d+ a for some c, d ∈ E. We write c = a / b

and d = b \ a. Then

(b \ a) + a = a+ (a / b) = b,

and we write a− = 1 \ a and a∼ = a / 1 for any a ∈ E.
For basic properties of pseudo-effect algebras see [4], [5]. We recall that if + is

commutative, E is said to be an effect algebra, for properties of effect algebras see [3].
For example, if (G, u) is a unital (not necessary Abelian) po-group with a strong

unit u (in fact it is sufficient to take a positive element u in G),2 and

Γ(G, u) := {g ∈ G : 0 6 g 6 u},

then (Γ(G, u); +, 0, u) is a pseudo-effect algebra if we restrict the group addition +
to Γ(G, u).

2We say that a positive element u of a po-group G is a strong unit if, for any g ∈ G, there
is an integer n > 1 such that g 6 nu.
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According to [4], we introduce for pseudo-effect algebras the following forms of the

Riesz decomposition properties:

(a) For a, b ∈ E, we write a com b to mean that for all a1 6 a and b1 6 b, a1 and
b1 commute.

(b) We say that E fulfils the Riesz interpolation property, (RIP) for short, if for
any a1, a2, b1, b2 ∈ E such that a1, a2 6 b1, b2 there is a c ∈ E such that

a1, a2 6 c 6 b1, b2.

(c) We say that E fulfils the weak Riesz decomposition property, (RDP0) for short,

if for any a, b1, b2 ∈ E such that a 6 b1 + b2 there are d1, d2 ∈ E such that
d1 6 b1, d2 6 b2 and a = d1 + d2.

(d) We say that E fulfils the Riesz decomposition property, (RDP) for short, if for
any a1, a2, b1, b2 ∈ E such that a1 +a2 = b1 +b2 there are d1, d2, d3, d4 ∈ E such
that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2.

(e) We say that E fulfils the commutational Riesz decomposition property, (RDP1)
for short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2 there are

d1, d2, d3, d4 ∈ E such that
(i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2, and

(ii) d2 com d3.

(f) We say that E fulfils the strong Riesz decomposition property, (RDP2) for short,

if for any a1, a2, b1, b2 ∈ E such that a1 +a2 = b1+b2 there are d1, d2, d3, d4 ∈ E
such that

(i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2, and

(ii) d2 ∧ d3 = 0.

We introduce analogous notions for po-groups. Let G be a po-group and for

a, b ∈ G+, we write a com b iff, for all a1, b1 ∈ G+ such that a1 6 a and b1 6 b, we
have a1 + b1 = b1 + a1.

Let (G; +, 0,6) be a directed po-group. According to [4], [5], we say that G ful-
fills (RIP), (RDP0), (RDP), (RDP1), and (RDP2), respectively, if analogous prop-

erties as those for pseudo-effect algebras hold also for the positive cone G+ of G.

A mapping h : E → F , where E and F are pseudo-effect algebras, is said to be
a homomorphism if (i) h(0) = 0 and h(1) = 1, and (ii) h(a + b) = h(a) + h(b)
whenever a+ b is defined in E. If h is injective and surjective such that also h−1 is a
homomorphism, then h is said to be an isomorphism, and E and F are isomorphic.

It is clear that a one-to-one homomorphism f from E onto F is an isomorphism iff
f(a) 6 f(b) implies a 6 b.

According to [6], a pseudo MV -algebra is an algebra (M ;⊕,− ,∼ , 0, 1) of type
(2, 1, 1, 0, 0) such that the following axioms hold for all x, y, z ∈M with an additional
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binary operation � defined via

y � x = (x− ⊕ y−)∼

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;

(A4) 1∼ = 0; 1− = 0;

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(A6) x⊕ x∼ � y = y ⊕ y∼ � x = x� y− ⊕ y = y � x− ⊕ x;3

(A7) x� (x− ⊕ y) = (x⊕ y∼)� y;

(A8) (x−)∼ = x.

If we define x 6 y iff x− ⊕ y = 1, then 6 is a partial order such that M is a

distributive lattice with x ∨ y = x ⊕ x∼ � y and x ∧ y = x � (x− ⊕ y). For basic
properties of pseudo MV -algebras see [6].

If we define a partial binary operation + on M via: x + y is defined iff x 6 y−,
and in this case x + y := x ⊕ y, then (M ; +, 0, 1) is a pseudo-effect algebra, and a
pseudo-effect algebra E can be converted into a pseudoMV -algebra such that the +
derived from ⊕ and the original + coincide iff E satisfies (RDP2) [5].

For example, if u is a strong unit of a (not necessarily Abelian) `-group G,

Γ(G, u) := [0, u]

and

x⊕ y := (x+ y) ∧ u,

x− := u− x,

x∼ := − x+ u,

x� y := (x− u+ y) ∨ 0,

then (Γ(G, u);⊕,− ,∼ , 0, u) is a pseudo MV -algebra [6].

The basic representation theorem for pseudo effect-algebras is the following re-
sult [4], [5], and for pseudo MV -algebras see also [1].

3� has a higher priority than ⊕.
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Theorem 2.1. For a pseudo-effect algebra E fulfilling (RDP1), there is a unique

(up to isomorphism of unital po-groups) unital po-group (G, u) fulfilling (RDP1)
such that E ∼= Γ(G, u).
If M is a pseudo MV -algebra, there is a unique (up to isomorphism of unital

`-groups) unital `-group (G, u) such that M ∼= Γ(G, u).

3. Ideals of pseudo-effect algebras

A non-empty subset I of a pseudo-effect algebra E is said to be an ideal of E if

(i) x+y ∈ I whenever x, y ∈ I and if x+y is defined in E, and (ii) if x 6 y for x ∈ E
and y ∈ I , then x ∈ I . Then E as well as {0} are ideals of E. We denote by I (E)
the set of all ideals of E.
Let a ∈ E, then by I0(a) we denote the ideal of E generated by a. If E satis-

fies (RDP0), then by [2, Prop. 3.1],

I0(a) = {x ∈ E : x = a1 + . . .+ an, ai 6 a, i = 1, . . . , n, n > 1}.

An ideal I of E is (i) normal if a+ I = I + a,4 (ii) maximal if I is a proper subset
of E and it is not included in any proper ideal of E as a proper subset, and (iii) prime
if I0(a) ∩ I0(b) ⊆ I implies a ∈ I or b ∈ I . We denote by N (E), M (E), and P(E)
the set of all normal ideals, maximal ideals, and prime ideals, respectively, of E.
Using the Zorn lemma, we see thatM (E) is non-void. Under some conditions on E,
[2], we can prove that M (E) ⊆ P(E).
We recall that {0}, E ∈ N (E) and if f is a homomorphism from a pseudo-effect

algebra E into another one F , then

Ker(f) := {x ∈ E : f(x) = 0}

is a normal ideal of E.
The following result was proved in [2, Prop. 3.5].

Proposition 3.1.
(1) An ideal P of a pseudo-effect algebraE is prime if and only if, for all I, J ∈ I (E)
with I ∩ J ⊆ P , we have I ⊆ P or J ⊆ P .

(2) If P is prime, then I ∩ J = P implies I = P or J = P . If E satisfies (RDP),
then an ideal P is prime if and only if, for all I, J ∈ I (E) with I ∩ J = P , we

have I = P or J = P .

4 If A is a non-empty subset of E, then a+A := {a+x : x ∈ A and a+x is defined in E}.
In a similar way we define A+ a.
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Let P be an ideal of a pseudo-effect algebra E. For a, b ∈ E, we write

a∼P b

iff there are two elements e, f ∈ P such that a\e = b\f . We note that in Remark 3.6,

we define another relation, symmetric to ∼P , which coincides with ∼P in the case
of a normal ideal P .

Proposition 3.2. Let E be a pseudo-effect algebra with (RDP). If P is an ideal
of E, then ∼P is an equivalence on E, and on E/P = {a/P : a ∈ P}, where a/P :=
{b ∈ E : b∼P a}, we can define a partial ordering a/P 6 b/P if and only if there is an

element e ∈ P such that a\e 6 b. If a∧b is defined in E, then (a∧b)/P = a/P ∧b/P .
In addition, if P is a normal ideal, then E/P can be organized into a pseudo-effect

algebra (E/P ; +, 0/P, 1/P ), where the partial addition + is defined by a/P + b/P =
c/P if and only if there are a1 ∈ a/P , b1 ∈ b/P and c1 ∈ c/P such that a1 + b1 = c1.

Moreover, if P is a normal ideal of an E satisfying (RDP), or (RDP1), or (RDP2),

then so satisfies E/P .
���������

. (i) ∼P is an equivalence. It is clear that a ∼P a, and a ∼P b implies

b∼P a. Assume now a∼P b and b∼P c. There are four elements e, f, u, v ∈ P such that
a \e = b \f and b \u = c \v. Therefore, b = (a \e)+f = (c \v)+u. Due to (RDP), we

can find c11, c12, c21, c22 in E such that a\e = c11+c12, c\v = c11 +c21, f = c21+c22,
and u = c12 + c22. It is clear that c12, c21, c22 ∈ P . Hence, a = c11 + c12 + e and

c = (b \ u) + v = (c11 + c12 + c21 + c22) \ (c12 + c22) + v = c11 + c21 + v. Putting
s = c12 + e ∈ P and t = c21 + v ∈ P , we have a \ s = c11 = c \ t, i.e., a∼P c.

(ii) We show that 6 is a well-defined relation. Assume a/P = a1/P and b/P =
b1/P and let a \ e 6 b for some e ∈ P . There are u, v, s, t ∈ P such that a \u = a1 \ v

and b \ s = b1 \ t. Then a = (a1 \ v) + u and b = (b1 \ t) + s, and there is an element
x ∈ E such that (a \ e) + x = b. Then s = s1 + s2 + s3, where s1 6 a1 \ v, s2 6 u,

and s3 6 x Hence

(a \ v) + u+ x = (b1 \ t) + s,

((a \ v) \ s1)) + s1 + (u \ s2) + s2 + (x \ s3) + s3 = (b1 \ t) + s1 + s2 + s3,

(a \ (s1 + v)) + x1 + x2 + s1 + s2 + s3 = (b1 \ t) + s1 + s2 + s3,

where x1, x2 ∈ E, which gives (a \ (s1 + v)) 6 b1 \ t 6 b1.

(iii) We now show that 6 is a partial order on E/P . It is clear that a/P 6 a/P .
Assume a/P 6 b/P and b/P 6 a/P . There are two elements a1, b1 ∈ P such that

a \ a1 6 b and b \ b1 6 a. Hence, there exists x ∈ E such that (a \ a1) + x =
b = (b \ b1) + b1. Then b1 = b′ + b′′, where b′ 6 a \ a1 and b′′ 6 x, which gives
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((a \ a1) \ b′) + b′ + (x \ b′′) + b′′ = (b \ b1) + b′ + b′′, i.e., ((a \ a1) \ b′) + x1 + b′ + b′′ =
(b \ b1) + b′ + b′′, where x1 ∈ E. Hence, a \ (b′ + a1) + x1 = b \ b1, and there exists an
element y ∈ E such that

(∗) (a \ (b′ + a1)) + x1 + y = (b \ b1) + y = a = (a \ (b′ + a1)) + (b′ + a1),

which yields x1 + y = b′ + a1 ∈ P , and, consequently, x1, y ∈ P . Using (∗), we have
a \ (b′ + a1) = b \ (x1 + b1) which proves a/P = b/P .

Finally, assume a/P 6 b/P and b/P 6 c/P . There are a1, b1 ∈ P such that
a \ a1 6 b and b \ b1 6 c. Hence, (a \ a1) + x = b = (b \ b1) + b1 for some x ∈ E. Then
b1 = b′+b′′, where b′ 6 a \a1 and b′′ 6 x. Therefore, ((a \a1) \b′)+b′+(x \b′′)+b′′ =
(b \ b1) + b′ + b′′, i.e., (a \ (b′ + a1)) + x1 6 b \ b1 6 c for some x1 ∈ E, which implies
a \ (b′ + a1) 6 c and, consequently a/P 6 c/P .

(iv) It is clear that (a ∧ b)/P 6 a/P, b/P . Assume x/P 6 a/P and x/P 6 b/P .
There are x1, x2 ∈ x/P such that x1 6 a and x2 6 b. Since x1∼P x2, there are e, f ∈
P with x1 \e = x2 \f . Hence, for x0 = x1 \e, we have x0 ∈ x/P, and x0 6 x1, x0 6 x2.
Consequently, x0 6 a, b which yields x0 6 a ∧ b, i.e., x/P = x0/P 6 (a ∧ b)/P .
If P is a normal ideal, the assertion was proved in [2, Prop. 4.1]. �

We recall that a poset (E; 6) is (i) an antilattice if only comparable elements of E
have an infimum or a supremum, (ii) a ∧-antilattice if only comparable elements of E
have an infimum. It is clear that any linearly ordered poset is an antilattice. Let

E be a pseudo-effect algebra. Then E is an antilattice iff a ∧ b = 0 implies a = 0 or
b = 0, while (a \ (a ∧ b)) ∧ (b \ (a ∧ b)) = 0, see [2].

Proposition 3.3. Let P be an ideal of a pseudo-effect algebra E with (RDP)
and let a 6 b, a, b ∈ E. Then a/P = b/P if and only if a = b \ s for some s ∈ P .
���������

. One direction is clear. Assume a/P = b/P . There are e, f ∈ P such
that a \ e = b \ f . Then a = (b \ f) + e 6 b = (b \ f) + f which entails e 6 f . Hence

a = (b \ f) + e = (b \ (e+ (e / f))) + e = (b \ (e / f)) \ e+ e = b \ (e / f) = b \ s, where
s = e / f ∈ P . �

Proposition 3.4. Let P be an ideal of a pseudo-effect algebra E with (RDP).
Then E/P is a ∧-antilattice if and only if x/P ∧ y/P = 0/P implies x/P = 0/P or
y/P = 0/P .
���������

. One direction is evident. Assume x/P ∧y/P = 0/P implies x/P = 0/P
or y/P = 0/P . Suppose a/P ∧ b/P = c/P . We claim there exists an element
c0 ∈ c/P such that c0 6 a, c0 6 b and (c0 / a)/P ∧ (c0 / b)/P = 0/P . Indeed, there
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are c1, c2 ∈ c/P such that c1 6 a and c2 6 b. Since c1 \ e = c2 \ f , for c0 := c1 \ e, we

have c0/P = a/P ∧ b/P .
Assume now x/P 6 (c0 / a)/P and x/P 6 (c0 / b)/P . There are two elements

x1, x2 ∈ x/P such that x1 6 c0 / a and x2 6 c0 / a. Since x1 ∼P x2, there are
e1, f1 ∈ P such that x0 := x1 \ e1 = x2 \ f1 6 c0 / a, c0 / b. Then c0 6 c0 + x0 6 a, b,

which proves c0/P 6 (c0 + x0)/P 6 c/P = c0/P , i.e., c0/P = (c0 + x0)/P . By
Proposition 3.3, there is an element s ∈ P such that c0 = (c0 + x0) \ s which yields

c0 + s = c0 + x0, i.e., x0 = s ∈ P , and consequently, (c0 / a)/P ∧ (c0 / b)/P = 0/P .
By the assumptions, c0 / a ∈ P or c0 / b ∈ P . In the first case, there is t ∈ P such

that c0 / a = t, i.e., a = c0 + t which by Proposition 3.3 gives a/P = c0/P = c/P ,

i.e., E/P is an ∧-antilattice. �

Theorem 3.5. An ideal P of a pseudo-effect algebra E with (RDP) is prime if
and only if E/P is a ∧-antilattice.
���������

. Assume that P is prime and let a/P ∧ b/P = 0/P . We assert that
I0(a)∩I0(b) ⊆ P . Take x ∈ I0(a)∩I0(b). Then x = a1+. . .+am = b1+. . .+bn, where
ai 6 a and bj 6 b for all i and all j. (RDP) implies that there is a system {cij}
of elements of E such that ai =

∑
j

cij and bj =
∑
i

cij . Since cij 6 a, b, we have

cij/P = 0/P , i.e., cij ∈ P , which yields ai ∈ P and x ∈ P . Since P is prime, then
a ∈ P or b ∈ P , i.e., a/P = 0/P or b/P = 0/P , which proves by Proposition 3.4 that
E/P is a ∧-antilattice.
Conversely, let E/P be a ∧-antilattice and assume I0(a) ∩ I0(b) ⊆ P . We assert

a/P ∧ b/P = 0/P . Assume x/P 6 a/P and x/P 6 b/P . As before, there exists an

element x0 ∈ x/P such that x0 6 a, b. Hence, x0 ∈ I0(a) ∧ I0(b) ⊆ P which proves
x0 ∈ P , and therefore, x/P = x0/P = 0/P , which implies a/P = 0/P or b/P = 0/P ,
i.e., a ∈ P or b ∈ P . �

Remark 3.6. Let P be an ideal of a pseudo-effect algebra E with (RDP). We
define a new relation P∼ on E defined via a P∼ b iff there are two elements e, f ∈ P
such that e / a = f / b. In fact, ∼P and P∼ induce two orderings. Then all previous
results can be rewritten also for this relation. In addition, if P is normal, then both

orderings induced by ∼P and P∼ coincide.
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4. Prime aubgroups of po-groups

Let G be a directed po-group written additively, and let C (G) denote the set of
all convex directed subgroups of G.

In analogy with pseudo-effect algebras, we say that a directed convex subgroup P
of a po-group G is a prime subgroup of G if, for all directed convex subgroups I and

J of G, I ∩ J ⊆ P implies I ⊆ P or J ⊆ P . We denote byP(G) the set of all prime
subgroups of a unital po-group G. An equivalent definition is (see [2, Prop. 6.2]):

C ∈ C (G) is prime iff, for a, b ∈ G, G0(a) ∩G0(b) ⊆ C implies a ∈ P or b ∈ P .
Let C ∈ C (G) and define x/C := {y ∈ G : x−y ∈ C}, and G/C := {x/C : x ∈ G}.

We order the set G/C with the usual order of left cosets of G/C via x/C 6 y/C iff

x 6 y + c for some c ∈ C.
The following result has been proved in [7, Lemma 22].

Theorem 4.1. A convex directed subgroup C of a directed po-groupG with (RIP)
is prime if and only if G/C is a ∧-antilattice.

If a pseudo-effect algebra E = Γ(G, u) satisfies (RDP1), then there exists a one-to-

one correspondence between the sets I (E) of all ideals or P(E) of all prime ideals
of E and the sets C (G) and P(G), respectively, established in [2].

Theorem 4.2. Let E = Γ(G, u), where (G, u) is a unital po-group satisfy-
ing (RDP1). Let I be an ideal of E. Set

ϕ(I) = {x ∈ G : ∃xi, yj ∈ I, x = x1 + . . .+ xn − y1 − . . .− ym}.

Then ϕ(I) is an o-ideal of (G, u) if and only if I is a normal ideal of E. In that case

(E/I, u/I) = Γ(G/ϕ(I), u/ϕ(I)).

In addition, if K is an o-ideal of (G, u), then its restriction to E, denoted by ψ(K),
gives a normal ideal of E, i.e.,

ψ(K) := K ∩ E ∈ I (E), K ∈ I (G, u).

Moreover, both mappings, ϕ and ψ, are mutually bijective and preserve the set-

theoretical inclusion.
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Theorem 4.3. Let E = Γ(G, u), where (G, u) is a unital po-group satisfy-
ing (RDP1). Let I be an ideal of E. Set

δ(I) = {x ∈ G : x = x1 − y1 + . . .+ xn − yn, xi, yi ∈ I},
δc(I) = {h ∈ G : h = x+ p1 = y − p2, x, y ∈ δ(I), p1, p2 ∈ G+},
δ0(I) = {h1 − h2 : h1, h2 ∈ δc(I) ∩G+}.

Then δ(I) and δc(I) is the subgroup and the convex subgroup, respectively, of G gen-
erated by I , and δ0(I) is the largest directed convex subgroup of G that is contained
in δc(I).
Let I and J be two ideals of E. Then I ⊆ J if and only if δ(I) ⊆ δ(J) if and only

if δc(I) ⊆ δc(J) if and only if δ0(I) ⊆ δ0(J).
Let K be a convex subgroup of (G, u). Then

γ(K) := K ∩ E

is an ideal of E, and δc(γ(K)) ⊆ K. If K is directed, then δ0(γ(K)) = K, and

γ(δ0(I)) = I for any ideal I of E. In addition, if K1 and K2 are two directed convex

subgroups of (G, u), then γ(K1) ⊆ γ(K2) if and only if K1 ⊆ K2.

If K is a prime subgroup of (G, u), then γ(K) := K ∩E is a prime ideal of E, and
if P is a prime ideal of E, then δ0(P ) is a prime subgroup of (G, u). In addition, both
mappings, γ and δ0, are mutually bijective and preserve the set-theoretical inclusion.

Moreover, the mappings γ and δ0 restricted to normal prime ideals and prime

o-ideals are mutually bijective.

We recall that if a, b ∈ E and if I is an ideal of E, then a/I 6 b/I iff a/δ0(I) 6
b/δ0(I).

5. Holland theorem and pseudo-effect algebras

Let (Ω,6) be a nonvoid ∧-antilattice, and let A(Ω) be the set of all automorphisms
α : Ω → Ω which preserve the partial order 6. Then A(Ω) can be converted into
a po-group such that the group-addition is the composition of automorphisms, the
order on A(Ω) is defined via α 6 β iff (ω)α 6 (ω)β for all ω ∈ Ω, and the neutral
element is the identity function on Ω. If α is a positive element from A(Ω), then
Γ(G,α) is a pseudo-effect algebra of automorphisms of an ∧-antilattice set Ω.
Holland [9] proved the basic result that every `-group can be injectively embedded

into the `-group A(Ω) for some linearly ordered set Ω, and Glass [7, Thm. 54] gen-
eralized this result to directed po-groups satisfying (RIP) showing that every such a
po-group can be embedded into the po-group A(Ω) for some antilattice Ω.
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We show that a similar result can be proved also for pseudo-effect algebras by

proving that every pseudo-effect algebra E satisfying (RDP1) can be embedded into
some Γ(A(Ω), α).

Theorem 5.1. Every pseudo-effect algebra E with (RDP1) can be represented
as a pseudo-effect algebra of automorphisms from A(Ω) for some ∧-antilattice set Ω
such that all finite infima and suprema existing in E are preserved.

���������
. Without loss of generality, by Theorem 2.1, we can assume that E =

Γ(G, u), where (G, u) is a unital po-group satisfying (RDP1). The proof will follow
the following steps.

Step 1. Let P be a prime ideal of E. According to Theorem 4.3, δ0(P ) is a prime
subgroup of G, and consider the mapping ϕP : E → A(ΩP ), where ΩP = G/δ0(P ),
defined by (x/δ0(P ))ϕP (a) := (x + a)/δ0(P ), a ∈ E (x ∈ G). Then, for a, b ∈ E,
(i) a 6 b, implies ϕP (a) 6 ϕP (b), (ii) ϕP (a + b) = ϕP (a) ◦ ϕP (b), (iii) ϕP (a ∧ b) =
ϕP (a) ∧ ϕP (b) if a ∧ b is defined in E, (iv) ϕP (a ∨ b) = ϕP (a) ∨ ϕP (b) if a ∨ b is
defined in E, and (v) {a ∈ E : ϕP (a) = 0} =

⋂{−x+ δ0(P ) + x : x ∈ G} ∩ E = P .
Moreover, we have E(P ) := ϕP (E) ⊆ Γ(A(ΩP ), ϕP (u)).
Step 2. Let g ∈ G and let g � 0 and set U(g) := {h ∈ G : h > g}, where

E = Γ(G, u). We denote by A(g) an ideal of E which is maximal with respect to the
property U(g) ∩ A(g) = ∅. Since 0 /∈ U(g), A(g) exists due to the Zorn lemma. We
assert A(g) is a prime ideal of E. Let I ∩ J = A(g), where I and J are ideals of E.
Assume (ad absurdum hypothesis) A(g) that is a proper subset of I as well as of J .
Take a ∈ I ∩U(g) and b ∈ J ∩U(g). We have 0, g 6 a, b. By (RIP) holding in (G, u),
there is an element c ∈ G such that 0, g 6 c 6 a, b. Since 0 6 c 6 a, we have c ∈ E,
and g 6 c ∈ I ∩ J = A(g) which gives c ∈ U(g) ∩ A(g), a contradiction.
Step 3. We define the Cartesian product E0 =

∏{A(Ωg) : g ∈ G, g � 0} of the
system of ∧-antilattices {A(Ωg)}g, where Ωg = G/δ0(A(g)), and we order E0 by
coordinates. Define a mapping f : E → E0 by f(a) = {ϕg(a)}g (a ∈ E), where
ϕg := ϕA(g), and let us set Cg = δ0(A(g)).
We claim that f is injective. Assume f(a) = f(b). Then (x+ a)/Cg = (x+ b)/Cg

for all x ∈ G and g � 0. In particular, for x = 0 this gives a/Cg = b/Cg. Hence,
a − b = cg for some cg ∈ A(g) (a − b is taken in the group G), consequently,

a − b ∈ ⋂
g 	 0

Cg = {0}. This proves that f is an injective homomorphism of E onto

f(E) ⊆ E0.

Assume f(a) 6 f(b). If g = −b + a � 0, then (x + a)/Cg 6 (x + b)/Cg for all

x ∈ G and g � 0. Consequently, this holds also for x = 0, i.e., a/Cg 6 b/Cg which
means a 6 b+ c′g for some c

′
g ∈ A(g). Therefore, −b+ a 6 c′g, and c

′
g ∈ A(g)∩U(g),
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a contradiction according to Step 2. The set f(E) can be converted into a pseudo-
effect algebra, i.e., (f(E); ◦, f(0), f(1)) is a pseudo-effect algebra isomorphic to E,
where ◦ is the composition of automorphisms defined by coordinates.
According to Step 1, f preserves all finite infima and suprema existing in E.

Step 4. Totally order the nonnegative elements of G, say {gt : t ∈ T}, where T is a
linearly ordered set. Set Ωt := G/Cgt , and without loss of generality we can assume
Ωs ∩ Ωt = ∅ for all s, t ∈ T such that s 6= t. Let Ω =

⋃
t∈T

Ωt, and define a partial

order 4 on Ω by ω1 4 ω2 iff ω1 ∈ Ωs and ω2 ∈ Ωt and s < t or s = t and ω1 6 ω2

in Ωs. Then Ω is a ∧-antilattice with respect to 4.
Define a mapping f0 : E → A(Ω) via: let ω ∈ Ω, and ω ∈ Ωt for a unique t ∈ T .

Let (ω)f0(a) = (ω)(ϕgt )(a) ∈ Ωt, where ϕgt is defined in Step 1 and Step 3. Hence,
if a ∈ E, then f0(a) | Ωt maps Ωt onto Ωt for all t ∈ T . Similarly as in Step 3, f0 is

injective from E onto f0(E), and f0(E) is a pseudo-effect algebra of automorphisms
of Ω (indeed, f0 practically coincides with the function f defined in Step 3), which
finishes the proof. �

As a direct consequence of Theorem 5.1, we show that every pseudo MV -algebra
is isomorphic to a pseudoMV -algebra of automorphisms of a linearly ordered set Ω.

Corollary 5.2. Every pseudo MV -algebra M can be represented as a pseudo

MV -algebra of automorphisms from A(Ω) for some linearly ordered set Ω.
���������

. Since a pseudoMV -algebra is a distributive lattice, an ideal of a pseudo

MV -algebraM (considered as a pseudo-effect algebra) is prime iff M/P is a linearly
ordered set. Consequently, M = Γ(G, u) for some unital `-group (G, u), M satis-

fies (RDP2), hence also (RDP1). Hence, the set Ω from the proof of Theorem 5.1 is
linearly ordered, which by Theorem 5.1 gives the assertion in question. �
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