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CLIFFORD-HERMITE-MONOGENIC OPERATORS
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Abstract. In this paper we consider operators acting on a subspaceM of the space L2(
� m ;�

m ) of square integrable functions and, in particular, Clifford differential operators with
polynomial coefficients. The subspace M is defined as the orthogonal sum of spaces Ms,k

of specific Clifford basis functions of L2(
� m ;

�
m ).

Every Clifford endomorphism of M can be decomposed into the so-called Clifford-
Hermite-monogenic operators. These Clifford-Hermite-monogenic operators are character-
ized in terms of commutation relations and they transform a space Ms,k into a similar
space Ms′,k′ . Hence, once the Clifford-Hermite-monogenic decomposition of an operator is
obtained, its action on the space M is known. Furthermore, the monogenic decomposition
of some important Clifford differential operators with polynomial coefficients is studied in
detail.

Keywords: differential operators, Clifford analysis

MSC 2000 : 47B99, 30G35

1. Introduction

Let � m be the complex Clifford algebra generated by the orthonormal basis
(e1, . . . , em) of � m and determined by the relations ejek + ekej = −2δj,k (1 6 j, k 6
m). Then in � m we consider the vector variable x =

m∑
j=1

ejxj and the so-called Dirac

operator ∂x =
m∑

j=1

ej∂xj . Left nullsolutions of ∂x are called left monogenic functions;

they are at the heart of Clifford analysis.

In this paper we study the so-called Clifford-Hermite-monogenic operators. For

introducing this subject we first explain the already existing notion of the monogenic
operator in the polynomial framework.

LetPs be the space of scalar-valued polynomials in � m . Then a Clifford algebra-
valued polynomial, Clifford polynomial for short, is an element of P = Ps ⊗ � m .
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The inner product on the space P is defined as

〈P (x), Q(x)〉 = {P (∂x)Q(x)}x=0

with P (∂x) the differential operator obtained by replacing each xi by ∂xi in P (x)
and the bar denoting the so-called conjugation in the Clifford algebra.

The subspaces Pk of homogeneous Clifford polynomials of degree k, k ∈ � , are
the polynomial eigenspaces of the Euler operator

E =
〈
x, ∂x

〉
=

m∑

j=1

xj∂xj ,

i.e.

ERk = kRk, Rk ∈ Pk.

Obviously, every Clifford polynomial can be decomposed into homogeneous ones.

Let End(Ps) be the algebra consisting of endomorphisms ofPs, then the elements

of End(Ps) ⊗ � m are called Clifford polynomial operators. A Clifford polynomial
operator A transforms a Clifford polynomial P ∈ P into another Clifford polynomial

AP ∈ P .

Like a Clifford polynomial, every Clifford polynomial operator can be decomposed

into homogeneous parts:

(1) A =
∑

l∈ �
Al

with Al a homogeneous polynomial operator of degree l, i.e. AlPk ⊂ Pk+l, k ∈ � .
Moreover, the homogeneous operators Al are determined by the commutation rela-

tion [E, Al] = EAl −AlE = lAl.

A left monogenic homogeneous Clifford polynomial Pk of degree k is called a left
inner spherical monogenic of order k. The set of all left inner spherical monogenics

of order k is denoted by M+
l (k).

The left inner spherical monogenics are polynomial eigenfunctions of the so-called

spherical Dirac operator

Γ = −
m∑

i=1

m∑

j=i+1

eiej(xi∂xj − xj∂xi),

i.e.

ΓPk = −kPk, Pk ∈ M+
l (k).
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Every homogeneous Clifford polynomial Rk of degree k admits a canonical decom-

position of the form

Rk(x) =
k∑

s=0

xsPk−s(x), Pk−s ∈ M+
l (k − s).

This so-called monogenic decomposition also yields a monogenic decomposition of

the space P of Clifford polynomials:

P =
∞∑

s=0

∞∑

k=0

⊕⊥Ms,k,

where

Ms,k = {xsPk(x) ; Pk ∈ M+
l (k)}.

Similarly to the polynomial setting, the decomposition (1) of a Clifford polynomial

operator into homogeneous ones can be further refined to a decomposition into the
so-called monogenic operators A±

λ,κ:

(2) A =
∑

λ,κ

(A+
λ,κ + A−λ,κ).

These monogenic operatorsA±
λ,κ transform each spaceMs,k into a similar spaceMs′,k′.

Hence, once the monogenic decomposition (2) of a Clifford polynomial operator
is obtained, its action on the space P of Clifford polynomials is known. As the

spaces Ms,k are the simultaneous eigenspaces of the operators E and Γ, the mono-
genic operators are characterized in terms of commutation relations involving E

and Γ. In [5] the monogenic decomposition of differential operators acting on Clif-
ford polynomials was studied in detail.

In this paper we consider operators acting on the space

M =
∞∑

s=0

∞∑

k=0

⊕⊥Ms,k.

Each function f ∈ M can be decomposed into a finite orthogonal sum

f =
∑′

s

∑′

k

fs,k

where fs,k ∈ Ms,k = span{ϕs,k,j(x) ; j = 1, 2, . . . , dim(M+
l (k))} with

ϕs,k,j(x) = exp(− 1
2 |x|2)Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

)
,
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s, k ∈ � , j = 1, 2, . . . , dim(M+
l (k)). The functions ϕs,k,j(x) are orthogonal with

respect to the standard inner product on the space L2( � m ; � m ) of square integrable
functions. Furthermore, the set

{P (j)
k (x) ; j = 1, 2, . . . , dim(M+

l (k))}

constitutes an orthonormal basis of the space M+
l (k) and the Hs,m,k(x) are the

so-called generalized Clifford-Hermite polynomials, which are a generalization to

Clifford analysis of the classical Hermite polynomials on the real line.

As the set

{ϕs,k,j(x) ; s, k ∈ � , j = 1, 2, . . . , dim(M+
l (k))}

is an orthogonal basis for the space L2( � m ; � m ), this space is precisely the closure
of M : M = L2( � m ; � m ).
Like in the polynomial framework, every Clifford endomorphism of M can

be decomposed into the so-called Clifford-Hermite-monogenic (abbreviated CH-

monogenic) operators. These CH-monogenic operators transform a space Ms,k into
another such space Ms′,k′ . As the spaces Ms,k are simultaneous eigenspaces of the

operators

O1 =
1
2
(∂x − x)(∂x + x) and O2 =

1
2
(∂x + x)(∂x − x),

our CH-monogenic operators are characterized in terms of commutation relations

involving O1 and O2.

The outline of the paper is as follows. For the reader who is not familiar with
Clifford analysis, we recall some of its basics in Section 2. Also in this section

we clarify the notion of Clifford differential operator with polynomial coefficients.
Next, we introduce the space M and show that the spaces Ms,k are simultaneous

eigenspaces of the commuting operators O1 and O2 (Section 3). In Section 4 we de-
fine our CH-monogenic and CH-anti-monogenic operators of degree (λ, κ) by means
of commutation relations involving O1 and O2. We prove that such operators indeed
transform Ms,k into an Ms′,k′ where s′ and k′ are determined in terms of s, k, the

dimension m and the degrees of monogenicity λ and κ of the CH-monogenic operator
under consideration. In the final section we establish the CH-monogenic decomposi-

tion of some important Clifford differential operators with polynomial coefficients.
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2. Clifford analysis

Clifford analysis (see e.g. [1] and [3]) offers a function theory which is a higher

dimensional analogue of the theory of holomorphic functions of one complex variable.

Consider functions defined in � m (m > 1) and taking values in the Clifford alge-
bra � m or its complexification � m . If (e1, . . . , em) is an orthonormal basis of � m ,
then a basis for � m is given by (eA : A ⊂ {1, . . . , m}) where e∅ = 1 is the identity
element. The non-commutative multiplication in the Clifford algebra � m is governed
by the rules

ejek + ekej = −2δj,k, j, k = 1, . . . , m.

Conjugation is defined as the anti-involution for which

ej = −ej , j = 1, . . . , m

with the additional rule ī = −i in the case of � m .

The Euclidean space � m is embedded in the Clifford algebras � m and � m by
identifying (x1, . . . , xm) with the vector variable x given by

x =
m∑

j=1

ejxj .

The product of two vectors splits up into a scalar part and a so-called bivector part:

xy = x · y + x ∧ y,

where

x · y = −
〈
x, y

〉
= −

m∑

j=1

xjyj

and

x ∧ y =
m∑

j=1

m∑

k=j+1

ejek(xjyk − xkyj).

In particular, we have

x2 = −〈x, x〉 = −|x|2.

An � m - or � m -valued function F (x1, . . . , xm) is called left monogenic in an open
region of � m , if in that region

∂xF = 0.
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Here ∂x is the Dirac operator in � m :

∂x =
m∑

j=1

ej∂xj ,

an elliptic vector operator of the first order, splitting the Laplace operator in � m :

∆m = −∂2
x.

The notion of right monogenicity is defined in a similar way by letting the Dirac

operator act from the right.
In the sequel the monogenic homogeneous polynomials will play an important rôle.

A left or right, monogenic homogeneous polynomial Pk of degree k (k > 0) is
called a left, respectively right, inner spherical monogenic of order k. The set of all

left, respectively right, inner spherical monogenics of order k is denoted by M+
l (k),

respectively M+
r (k). The dimension of M+

l (k) is given by

dim(M+
l (k)) =

(m + k − 2)!
(m− 2)! k!

.

In this paper we consider the so-called Clifford differential operators with polyno-
mial coefficients. These operators have the form

P (x, ∂x) =
∑

α

pα(x)∂α
x ,

where we use the notation

∂α
x = ∂α1

x1
. . . ∂αm

xm

and where pα(x) ∈ P is a Clifford polynomial.
Let D( � m ) denote the algebra of Clifford differential operators with polynomial

coefficients. Then clearlyD( � m ) ⊂ End(Ps)⊗ � m . This algebraD( � m ) is generated
by the basic operators {ej , xj , ∂xj ; j = 1, 2, . . . , m}.
Important examples of such Clifford differential operators are:

• the Dirac operator ∂x =
m∑

j=1

ej∂xj ,

• the vector multiplication operator f → xf , with x =
m∑

j=1

xjej ,

• the Euler operator E =
〈
x, ∂x

〉
=

m∑
j=1

xj∂xj = r∂r ; r = |x|,

• the spherical Dirac operator Γ = −x ∧ ∂x = −
m∑

i=1

m∑
j=i+1

eiej(xi∂xj − xj∂xi).
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3. The space M and the operators O1 and O2

The set {
ϕs,k,j(x) = exp(− 1

2 |x|2)Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

)}

with s, k ∈ � , j = 1, 2, . . . , dim(M+
l (k)), constitutes an orthogonal basis for L2( � m ;

� m ) (see [2]). Here

{P (j)
k (x) ; j = 1, 2, . . . , dim(M+

l (k))}

is an orthonormal basis ofM+
l (k) and Hs,m,k(x) are the generalized Clifford-Hermite

polynomials introduced by Sommen in [4]. The first generalized Clifford-Hermite
polynomials are given by:

H0,m,k(x) = 1,

H1,m,k(x) = x,

H2,m,k(x) = x2 + 2k + m = −r2 + 2k + m,

H3,m,k(x) = x3 + (2k + m + 2)x = x(−r2 + 2k + m + 2),

H4,m,k(x) = x4 + 2(2k + m + 2)x2 + (2k + m)(2k + m + 2)

= r4 − 2(2k + m + 2)r2 + (2k + m)(2k + m + 2),

H5,m,k(x) = x5 + 2(2k + m + 4)x3 + (2k + m + 4)(2k + m + 2)x

= x(r4 − 2(2k + m + 4)r2 + (2k + m + 4)(2k + m + 2)).

Note that Hs,m,k(x) is a polynomial of degree s in the variable x with real coefficients
depending on k. Furthermore, H2s,m,k(x) only contains even powers of x, while

H2s+1,m,k(x) only contains odd ones.
The basis functions ϕs,k,j(x) satisfy the orthogonality relation

∫
�

m

ϕ̄s,k1,j1(x)ϕt,k2,j2(x) dV (x) =
γs,k1

2m/2
δs,tδk1,k2δj1,j2

with dV (x) the Lebesgue measure on � m and γs,k1 a real constant depending on the
parity of s. In other words, they are orthogonal with respect to the inner product

on L2( � m ; � m ) defined as

〈f, g〉 =
∫
�

m

f(x)g(x) dV (x), f, g ∈ L2( � m ; � m ).

Note that this inner product is Clifford algebra-valued.
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In what follows we study the action of operators on the space M ⊂ L2( � m ; � m )
given by the algebraic orthogonal sum

M =
∞∑

s=0

∞∑

k=0

⊕⊥Ms,k

with

Ms,k := span{ϕs,k,j(x) ; j = 1, 2, . . . , dim(M+
l (k))}.

Each function f ∈ M is to be written as a finite sum:

f =
∑′

s

∑′

k

fs,k, fs,k ∈ Ms,k

and naturally

M = L2( � m ; � m ).

As the set

{
Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

)
; s, k ∈ � , j = 1, 2, . . . , dim(M+

l (k))
}

constitutes a basis for the space of Clifford polynomials and as D( � m ) ⊂ End(Ps)⊗
� m , every Clifford differential operator with polynomial coefficients transforms an
element of M into another element of M .

Now let us consider the operators

O1 =
1
2
(∂x − x)(∂x + x) and O2 =

1
2
(∂x + x)(∂x − x),

and more precisely their action on the spacesMs,k.

We start with some preliminary calculus.
First, we have that

(∂x − x)
(
exp(− 1

2 |x|2)Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))
(3)

= exp(− 1
2 |x|2)(∂x − 2x)

(
Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))
.

The recurrence relation (see [4])

(x − ∂x)(Hs,m,k(x)P (j)
k (x)) = Hs+1,m,k(x)P (j)

k (x)

implies that

(2x− ∂x)
(
Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))
=
√

2 Hs+1,m,k

(√
2x

)
P

(j)
k

(√
2x

)
.
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Consequently, (3) becomes

(∂x − x)
(
exp(− 1

2 |x|2)Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))

= −
√

2 exp(− 1
2 |x|2)Hs+1,m,k

(√
2x

)
P

(j)
k

(√
2x

)
.

Hence we can qualify the operator ∂x − x as a creation operator, since it increases

the degree of the generalized Clifford-Hermite polynomial.
Next, we have that

(∂x + x)
(
exp(− 1

2 |x|2)Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))
(4)

= exp(− 1
2 |x|2)∂x

(
Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))
.

In [2] we proved that

∂x(Hs,m,k(x)P (j)
k (x)) = −Cs,m,kHs−1,m,k(x)P (j)

k (x)

with

Cs,m,k =

{
s for s even,

s− 1 + m + 2k for s odd,

from which we readily obtain that

∂x

(
Hs,m,k

(√
2x

)
P

(j)
k

(√
2x

))
= −

√
2Cs,m,kHs−1,m,k

(√
2x

)
P

(j)
k

(√
2x

)
.

Hence we have that

(∂x + x)
(
exp(− 1

2 |x|2)Hs,m,k

(√
2x

)
P

(j)
k

(√
2x)

)

= −
√

2 Cs,m,k exp(− 1
2 |x|2)Hs−1,m,k

(√
2x

)
P

(j)
k

(√
2x

)
.

Consequently, the operator ∂x + x is an annihilation operator, since it decreases the
degree of the generalized Clifford-Hermite polynomial.

From the above results it follows at once that the spaces Ms,k are simultaneous
eigenspaces of the operators O1 and O2.

Proposition 1. One has

O1(ϕs,k,j(x)) = Cs,m,kϕs,k,j(x)

and

O2(ϕs,k,j(x)) = Cs+1,m,kϕs,k,j(x),
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with

Cs,m,k =

{
s for s even,

s− 1 + m + 2k for s odd.

As the spherical Dirac operator Γ can be written as

Γ = −1
2
(x∂x − ∂xx−m),

the operators O1 and O2 also take the form

(5.) O1 =
1
2
(∂2

x − x2) +
(
Γ− m

2

)
and O2 =

1
2
(∂2

x − x2)−
(
Γ− m

2

)

Using these expressions, we now easily obtain that O1 and O2 commute.

Proposition 2. One has
[O1, O2] = 0.

�	��
�
�
. As the spherical Dirac operator Γ commutes with the Laplace opera-

tor ∆m and with the multiplication operator r, i.e.

[∆m, Γ] = 0 and [r, Γ] = 0,

we have [1
2
(∂2

x − x2), Γ
]

=
[1
2
(−∆m + r2), Γ

]
= 0

which, in view of (5), immediately implies that O1 and O2 commute. �

4. Clifford-Hermite-monogenic operators

As already mentioned in the introduction (Section 1), the Clifford-Hermite-

monogenic operators (CH-monogenic operators for short) which we introduce now
will transform elements of a space Ms,k into elements of a space Ms′,k′ for some s′

and k′. As the spaces Ms,k are simultaneous eigenspaces of the operators O1 and
O2, the CH-monogenicity property is expressed in terms of commutation relations

involving these operators.

Definition.
(i) A Clifford endomorphism A of M is called CH-monogenic of degree (λ, κ),
notation A ∈ χ+

λ,κ, if

[O1, A] = λA and [O2, A] = κA.
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(ii) A Clifford endomorphism B ofM is called CH-anti-monogenic of degree (λ, κ),
notation B ∈ χ−λ,κ, if

O1B = BO2 + λB and O2B = BO1 + κB.

Remarks.
1. As mentioned in Section 3, Clifford differential operators with polynomial coef-
ficients belong to the set of endomorphisms of M .

2. The operators O1 and O2 themselves are CH-monogenic of degree (0, 0).
3. A Clifford endomorphism A ofM is CH-monogenic of degree (λ, κ) if and only
if [1

2
(−∆m + r2), A

]
=

λ + κ

2
A and

[
Γ− m

2
, A

]
=

λ− κ

2
A.

4. A Clifford endomorphism B ofM is CH-anti-monogenic of degree (λ, κ) if and
only if

1
2
(−∆m + r2)B = B

1
2
(−∆m + r2) +

λ + κ

2
B

and (
Γ− m

2

)
B = −B

(
Γ− m

2

)
+

λ− κ

2
B.

CH-monogenic and CH-anti-monogenic operators are closed under composition as

shown in the next proposition.

Proposition 3.
(i) If A ∈ χ+

λ,κ and B ∈ χ+
λ′,κ′ then AB ∈ χ+

λ+λ′,κ+κ′ and BA ∈ χ+
λ+λ′,κ+κ′ .

(ii) If A ∈ χ−λ,κ and B ∈ χ−λ′,κ′ then AB ∈ χ+
λ+κ′,λ′+κ and BA ∈ χ+

λ′+κ,λ+κ′ .

(iii) If A ∈ χ+
λ,κ and B ∈ χ−λ′,κ′ then AB ∈ χ−λ+λ′,κ+κ′ and BA ∈ χ−λ′+κ,λ+κ′ .

�	��
�
�
. The proof of (ii) goes as follows:

O1AB = (AO2 + λA)B = A(BO1 + κ′B) + λAB = ABO1 + (λ + κ′)AB

and

O2AB = (AO1 + κA)B = A(BO2 + λ′B) + κAB = ABO2 + (λ′ + κ)AB.

Similarly we find for the operator BA:

O1BA = BAO1 + (λ′ + κ)BA

and

O2BA = BAO2 + (λ + κ′)BA.

The proofs of (i) and (iii) are similar. �
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We now prove that the CH-monogenic operators indeed transform Ms,k into

an Ms′,k′ :

Proposition 4. Let A ∈ χ+
λ,κ and f ∈ Ms,k. Then Af ∈ Ms′,k′ for some s′ and

k′ depending on s, k, λ, κ and m.
�	��
�
�

. We start by observing that Af is a simultaneous eigenfunction of O1

and O2:

O1(Af) = (AO1 + λA)f = (Cs,m,k + λ)Af

O2(Af) = (AO2 + κA)f = (Cs+1,m,k + κ)Af.

As Af belongs to the spaceM , it can be written as

Af =
∞∑′

j=0

∞∑′

t=0

dim(M+
l (t))∑

i=1

ϕj,t,i(x)aj,t,i; aj,t,i ∈ � m .

Hence we also have

O1(Af) =
∞∑′

j=0

∞∑′

t=0

dim(M+
l (t))∑

i=1

Cj,m,tϕj,t,i(x)aj,t,i.

Comparing the above expression with

O1(Af) =
∞∑′

j=0

∞∑′

t=0

dim(M+
l (t))∑

i=1

(Cs,m,k + λ)ϕj,t,i(x)aj,t,i,

we obtain that either aj,t,i = 0 or Cj,m,t = Cs,m,k + λ.

Similarly, comparing

O2(Af) =
∞∑′

j=0

∞∑′

t=0

dim(M+
l (t))∑

i=1

Cj+1,m,tϕj,t,i(x)aj,t,i

with

O2(Af) =
∞∑′

j=0

∞∑′

t=0

dim(M+
l (t))∑

i=1

(Cs+1,m,k + κ)ϕj,t,i(x)aj,t,i

yields that either aj,t,i = 0 or Cj+1,m,t = Cs+1,m,k +κ. Consequently, we must prove

that at most one pair of indices (j, t) satisfies the set of equations

(6)

{
Cj,m,t = Cs,m,k + λ,

Cj+1,m,t = Cs+1,m,k + κ.

Hereto we must distinguish several cases.
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Case A.

If s is even, the set of equations (6) becomes

(7)

{
Cj,m,t = s + λ,

Cj+1,m,t = s + m + 2k + κ.

Case A.1 : m odd, λ odd

From the first equation we obtain that j must be odd. For j odd, the set of

equations (7) becomes {
j − 1 + m + 2t = s + λ,

j + 1 = s + m + 2k + κ,

leading to

j = s + m + 2k + κ− 1 and 2t = λ + 2− 2m− 2k − κ.

In this case, the second equation implies that κ must be odd. As t must be positive,

we thus have

A : Ms,k →
{

0 for 2k > λ + 2− 2m− κ,

Ms+m+2k+κ−1, 1
2 (λ+2−2m−2k−κ) for 2k 6 λ + 2− 2m− κ.

Case A.2 : m odd, λ even

Now the first equation of (7) implies that j must be even. For j even, the set of

equations (7) becomes

{
j = s + λ,

j + m + 2t = s + m + 2k + κ,

which implies

j = s + λ and 2t = 2k + κ− λ.

Now κ must be even and we have

A : Ms,k →
{

0 for 2k < λ− κ,

Ms+λ,(2k+κ−λ)/2 for 2k > λ− κ.

Case A.3 : m even, λ odd

In this case s + λ is odd. As Cj,m,t is always even, we have

A : Ms,k → 0.
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Case A.4 : m even, λ even

As to the first equation of (7), both j even and j odd are possible. Hence we have

to make a distinction between κ even and κ odd.

In the case when κ is even, both j even and j odd are possible for the second

equation.

For j even, the set of equations (7) becomes

{
j = s + λ,

j + m + 2t = s + m + 2k + κ,

and hence

j = s + λ and 2t = 2k + κ− λ.

For j odd, we have {
j − 1 + m + 2t = s + λ,

j + 1 = s + m + 2k + κ,

thus

j = s + m + 2k + κ− 1 and 2t = λ− 2m + 2− 2k − κ.

As tmust be positive, we have that 2k > λ−κ for j even, while 2k 6 λ−κ−(2m−2) <

λ− κ for j odd.

This implies

A : Ms,k →





Ms+λ,(2k+κ−λ)/2 for 2k > λ− κ,

0 for λ−κ−(2m−2) < 2k < λ−κ,

Ms+m+2k+κ−1, 1
2 (λ−2m+2−2k−κ) for 2k 6 λ− κ− (2m− 2).

In the case when κ is odd, the second equation of (7) implies that neither j even,
nor j odd is possible. Hence, we have

A : Ms,k → 0.

Case B.

The case when s is odd is treated in a similar way. �

In a completely analogous manner we obtain the following result for the CH-anti-
monogenic operators:
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Proposition 5. Let B ∈ χ−λ,κ and f ∈ Ms,k. Then Bf ∈ Ms′,k′ for some s′ and

k′ depending on s, k, λ, κ and m.

Now we are able to prove that every Clifford endomorphism ofM admits a decom-

position into CH-(anti-) monogenic operators, which we call the Clifford-Hermite-
monogenic decomposition (CHM-decomposition for short).

Theorem. Every Clifford endomorphism of M admits a CHM-decompostion.
�	��
�
�

. It is clear that an arbitrary Clifford endomorphism A of M can be

written as follows:

A =
∞∑

s=0

∞∑

k=0

As,k,

where, by definition,

As,k|Ms,k
= A|Ms,k

and As,k|Ms′,k′ = 0 whenever (s, k) 6= (s′, k′).

As A is an endomorphism of M , we also have

As,k(Ms,k) = A(Ms,k) ∈ M

and hence

As,k(Ms,k) =
∞∑

s′=0

∞∑

k′=0

Ms′,k,′ .

This implies that every As,k in its turn can be decomposed as

As,k =
∞∑

s′=0

∞∑

k′=0

As′,k′

s,k ,

with

As′,k′

s,k : Ms,k → Ms′,k′ and As′,k′

s,k |Ms′′,k′′ = 0 whenever (s, k) 6= (s′′, k′′).

Consequently, for the endomorphism A we obtain

A =
∑

s,k

∑

s′,k′

As′,k′

s,k .

It is easily seen that every operator As′,k′

s,k is both CH-monogenic and CH-anti-

monogenic. For example, if s and s′ are even, we have

As′,k′

s,k ∈ χ+
s′−s,s′−s+2(k′−k) and As′,k′

s,k ∈ χ−s′−s−m−2k,s′−s+m+2k′ .
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Collecting the CH-monogenic and CH-anti-monogenic operators of the same degree

yields a decomposition of A of the form

A =
∑

λ,κ

(A+
λ,κ + A−λ,κ) with A±λ,κ ∈ χ±λ,κ.

�

5. CHM-decomposition of Clifford differential operators

with polynomial coefficients

In this section we study the CHM-decomposition of Clifford differential operators
with polynomial coefficients. It is sufficient to search for the CHM-decomposition
of the basic operators {ej , xj , ∂xj ; j = 1, 2, . . . , m}, since they are generating the
algebra D( � m ).

5.1. The operators f → ejf , j = 1, 2, . . . , m

For the special case when m = 2 we have that

[1
2
(∂2

x − x2), ej

]
= 0 and Γej = −ejΓ.

Consequently, we find

O1ej =
(1

2
(∂2

x − x2) + Γ− m

2

)
ej

= ej

(1
2
(∂2

x − x2)− Γ +
m

2

)
−mej

= ejO2 −mej

and similarly

O2ej = ejO1 + mej .

Hence, for m = 2, ej ∈ χ−−2,2 .

For the general case when m > 2, we first introduce the operators

τj = −(Γej + ej(Γ−m + 2)) and δj = [Γ, ej ] = Γej − ejΓ

for which we prove the following lemma.
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Lemma 1. One has τj ∈ χ+
0,0 and δj ∈ χ−−2,2 .

�	��
�
�
. Naturally we have that

[1
2
(∂2

x − x2), τj

]
= 0.

Furthermore, as the Laplace-Beltrami operator ∆∗
ω = Γ(m− 2− Γ) is a scalar oper-

ator, we find

[Γ, τj ] = −Γ2ej − Γej(Γ−m + 2) + ΓejΓ + ej(Γ−m + 2)Γ

= −Γ(Γ−m + 2)ej + ej(Γ−m + 2)Γ

= [∆∗
ω, ej ] = 0.

This implies
O1τj = τjO1 and O2τj = τjO2.

The operator δj satisfies [1
2
(∂2

x − x2), δj

]
= 0

and

Γδj = Γ2ej − ΓejΓ

= (m− 2)Γej −∆∗
ωej − ΓejΓ

= (m− 2)Γej − ejΓ(m− 2− Γ)− ΓejΓ

= (m− 2)(Γej − ejΓ)− (Γej − ejΓ)Γ

= (m− 2)δj − δjΓ.

Hence we obtain

O1δj =
(1

2
(∂2

x − x2) + Γ− m

2

)
δj

= δj

(1
2
(∂2

x − x2)− Γ +
m

2

)
− 2δj

= δjO2 − 2δj

and similarly

O2δj =
(1

2
(∂2

x − x2)− Γ +
m

2

)
δj

= δj

(1
2
(∂2

x − x2) + Γ− m

2

)
+ 2δj

= δjO1 + 2δj .

�
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Next, we have that τj +δj = ej(m−2−2Γ). The operator (m−2−2Γ) is invertible
in the set of endomorphisms of M , since it has eigenvalues 2k + m− 2 (for s even)
and −(m + 2k) (for s odd) which, for m > 2, are never zero. Consequently, we can
write

ej = (τj + δj)(m− 2− 2Γ)−1 = E0
j + E1

j ,

where

E0
j = τj(m− 2− 2Γ)−1 = −(Γej + ej(Γ−m + 2))(m− 2− 2Γ)−1

and

E1
j = δj(m− 2− 2Γ)−1 = (Γej − ejΓ)(m− 2− 2Γ)−1.

Naturally, the operator (m − 2 − 2Γ) is CH-monogenic of degree (0, 0) and hence
(m− 2− 2Γ)−1 ∈ χ+

0,0.

In view of Proposition 3 we obtain that E0
j ∈ χ+

0,0 and E1
j ∈ χ−−2,2.

Summarizing, the CHM-decomposition of ej takes the form

ej = E0
j + E1

j with E0
j ∈ χ+

0,0 and E1
j ∈ χ−−2,2.

Finally, what the action on the spaces Ms,k is concerned, we have by means of
Propositions 4 and 5 that

E0
j : Ms,k → Ms,k

and

E1
j : Ms,k →





Ms+1,k−1 for s even and k > 1,

0 for s even and k = 0,

Ms−1,k+1 for s odd.

5.2. The operators f → xf and f → ∂xf

The operators x and ∂x satisfy

Γx = x(m− 1− Γ) and Γ∂x = ∂x(m− 1− Γ).

This result will be combined with the following lemma.
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Lemma 2. One has

[1
2
(∂2

x − x2), x
]

= −∂x and
[1
2
(∂2

x − x2), ∂x

]
= −x.

�	��
�
�
. We obtain successively

[1
2
(∂2

x − x2), x
]

=
1
2
(∂2

xx− x∂2
x)

= −1
2

( m∑

k=1

∂2
xk

)( m∑

j=1

xjej

)
− 1

2
x∂2

x

= −1
2

∑

k,j

∂xk
(δk,jej + xjej∂xk

)− 1
2
x∂2

x

= −1
2

∑

k,j

(2δk,jej∂xk
+ xjej∂

2
xk

)− 1
2
x∂2

x

= −∂x +
1
2
x∂2

x −
1
2
x∂2

x

= −∂x

and

[1
2
(∂2

x − x2), ∂x

]
= −1

2
(x2∂x − ∂xx2)

= −1
2
x2∂x −

1
2

( m∑

j=1

ej∂xj

)( m∑

k=1

x2
k

)

= −1
2
x2∂x −

1
2

∑

j,k

ej(2xkδk,j + x2
k∂xj )

= −1
2
x2∂x − x +

1
2
x2∂x

= −x.

�

In view of the above, we now have

O1x =
(1

2
(∂2

x − x2) + Γ− m

2

)
x

= x
(1

2
(∂2

x − x2)− Γ +
m

2

)
− x− ∂x

= xO2 − x− ∂x
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and

O2x =
(1

2
(∂2

x − x2)− Γ +
m

2

)
x

= x
(1

2
(∂2

x − x2) + Γ− m

2

)
+ x− ∂x

= xO1 + x− ∂x,

while for the operator ∂x we obtain

O1∂x = ∂xO2 − ∂x − x and O2∂x = ∂xO1 + ∂x − x.

Hence x and ∂x are neither CH-monogenic nor CH-anti-monogenic. However, we do
have the following result.

Lemma 3. One has x + ∂x ∈ χ−−2,0 and x− ∂x ∈ χ−0,2.

�	��
�
�
. Straightforward. �

We now readily obtain the CHM-decomposition of x and ∂x:

x = X0 + X1

with

X0 =
1
2
(x− ∂x) ∈ χ−0,2, X1 =

1
2
(x + ∂x) ∈ χ−−2,0,

and

∂x = D0 + D1

with

D0 = −1
2
(x− ∂x) ∈ χ−0,2, D1 =

1
2
(x + ∂x) ∈ χ−−2,0.

5.3. The operators f → xjf , j = 1, 2, . . . , m

Once the CHM-decomposition of ej , j = 1, 2, . . . , m (Subsection 5.1) and x (Sub-
section 5.2) is obtained, the CHM-decomposition of xj easily follows from

xj = −1
2
(xej + ejx)

= −1
2
((X0 + X1)(E0

j + E1
j ) + (E0

j + E1
j )(X0 + X1))

= x0
j + x1

j + x2
j + x3

j + x4
j + x5

j
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with

x0
j = −1

2
X0E1

j ∈ χ+
2,0,

x1
j = −1

2
E1

j X0 ∈ χ+
0,2,

x2
j = −1

2
E1

j X1 ∈ χ+
−2,0,

x3
j = −1

2
X1E1

j ∈ χ+
0,−2,

x4
j = −1

2
(X0E0

j + E0
j X0) ∈ χ−0,2,

x5
j = −1

2
(X1E0

j + E0
j X1) ∈ χ−−2,0.

Here we have used the composition rules for CH-monogenic and CH-anti-monogenic
operators derived in Proposition 3.

Finally, for the action on the spacesMs,k we have

x0
j : Ms,k →





Ms+2,k−1 for s even and k > 1,

0 for s even and k = 0,

Ms,k+1 for s odd;

x1
j : Ms,k →





Ms,k+1 for s even,

Ms+2,k−1 for s odd and k > 1,

0 for s odd and k = 0;

x2
j : Ms,k →





Ms−2,k+1 for s even,

Ms,k−1 for s odd and k > 1,

0 for s odd and k = 0;

x3
j : Ms,k →





Ms,k−1 for s even and k > 1,

0 for s even and k = 0,

Ms−2,k+1 for s odd;

x4
j : Ms,k → Ms+1,k;

x5
j : Ms,k → Ms−1,k.

5.4. The operators f → ∂xj f , j = 1, 2, . . . , m

By means of

∂xj = −1
2
(∂xej + ej∂x),

the CHM-decomposition of ∂xj follows at once from the CHM-decomposition of ej

and ∂x. The results are completely similar to those for the operators considered in
the previous subsection.
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