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1. Uniform spaces

A uniform structure on a set X is a filter U of subsets, called entourages, of X×X

such that for each U ∈ U ,

U1 U−1 ∈ U ,
U2 U contains the diagonal ∆ of X ×X , and
U3 there exists V ∈ U such that V ◦ V ⊂ U.

For more details see, for example, [7], Chapter 2.

The foregoing axiomatic properties of a uniform structure correspond to properties
of a pseudometric %. For example, closure under finite intersection corresponds to

the statement
Br(x) ∩ Bs(x) = Binf(r,s)(x),

where Br(x) is the closed ball with center x and radius r. Likewise, property U1
corresponds to the symmetry of the pseudometric: % (x, y) = % (y, x); U2 to the
property %(x, x) = 0; and U3 to the triangle inequality, %(x, z) 6 %(x, y) + %(y, z).
Each uniform space X has a natural equality defined by

x = y ⇔ ∀U ∈ U ((x, y) ∈ U) .
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Note that for the constructive theory of uniform spaces we require that U satisfy

the following, classically trivial, axiom:

S For each U ∈ U there exists V ∈ U such that X ×X = U ∪ (X ×X) \ V.

In that case, V ⊂ U. Metric spaces, locally convex linear spaces, and spaces whose

topology is defined by a family of pseudometrics (see [3]) are uniform spaces with
the property S.1

Each uniform space X also has a natural inequality defined by

x 6= y ⇔ ∃U ∈ U ((x, y) /∈ U) .

For each subset R of X there is a natural apartness complement

−R = {x ∈ X : ∃U ∈ U ∀y ∈ R ((x, y) /∈ U)} .

For each S ⊂ X we usually write S −R instead of S ∩ (−R) .

In [9], it is assumed from the outset that every uniform space is equipped with
an imposed inequality; the purely constructive axioms for a uniform space are then

phrased in terms of that inequality, with the help of the complement of U ,

∼U = {t ∈ X ×X : ∀u ∈ U (t 6= u)}.

Those axioms are

• For each U ∈ U there exists V ∈ U such that V ◦V ⊂ U and X×X = U∪ ∼V.

• If x 6= y in X , then there exists U in U such that (x, y) ∈∼U.

It turns out that the imposed inequality is an apartness that is necessarily the same

as the natural inequality; moreover, the single axiom S above results in exactly the
same notion of uniform space.

1Grayson [8] calls a uniform space weakly separated if it is equipped with the natural
equality; such a space is the uniform counterpart of a metric, as opposed to a pseudo-
metric, space. He calls a uniform space strongly separated if it is weakly separated and
satisfies property S.
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2. Almost located subsets

A subset S of a metric space (X, %) is said to be located (in X) if the distance

%(x, S) = inf {%(x, y) : y ∈ S}

exists for each x ∈ X. Locatedness plays a vital role in the constructive theory of

metric and normed spaces: for example, for a nonzero bounded linear functional u
on a normed space X , the norm

‖u‖ = sup {|u(x)| : x ∈ X, ‖x‖ 6 1}

exists if and only if the kernel

ker(u) = {x ∈ X : u(x) = 0}

is located; and the Hahn-Banach extension theorem requires that the kernel of the

functional be located ([2], Chapter 7, Theorem 4.6).
It is reasonable to ask if we can lift locatedness to the context of a uniform space

and then prove significant analogues of metric-space theorems. The absence of a
distance function makes this question nontrivial within constructive mathematics—

mathematics with intuitionistic logic [1], [2], [4], [11]. In this paper we introduce and
examine a weak analogue of locatedness for subsets of a uniform space.

For x ∈ X and U ∈ U , let U [x] = {y ∈ X : (x, y) ∈ U}. We say that a subset S

of a uniform space (X, U ) is almost located if for each U ∈ U there exists V ∈ U

such that

(1) ∀x ∈ X (S ∩ V [x] = ∅ ∨ S ∩ U [x] 6= ∅) .

We may take V to be a subset of U here because U ∩ V is also an entourage.

Proposition 1. A located set in a metric space is almost located.
���������

. Let S be located in the metric space (X, %), and let U be an entourage

in the standard metric uniform structure on X. Choose a positive number β such
that

{(x, y) ∈ X ×X : %(x, y) < β} ⊂ U.

For any positive number α < β, let

V = {(s, t) ∈ X ×X : %(s, t) < α} ∈ U .

For each x ∈ X , either %(x, S) > α or %(x, S) < β. In the first case, S ∩ V [x] = ∅. In
the second case, S ∩ U [x] 6= ∅. �

3



Returning now to a general uniform space (X, U ), given U ∈ U , we define a

subset Y of X to be U -small if Y × Y ⊂ U. We say that a subset S of X is totally
bounded if for each U ∈ U there is a finite covering of S by U -small sets, each of
which has nonempty intersection with S.

Lemma 2. Let S be a subset of a uniform space (X, U ) . In order that S be

totally bounded, it is necessary and sufficient that for each U ∈ U there exist a

finitely enumerable subset {s1, . . . , sn} of S such that S ⊂
n⋃

i=1

U [si].

���������
. The proof is left as an exercise. �

An n-chain of entourages of a uniform space X is an n-tuple (U1, . . . , Un) of
entourages such that

Uk ◦ Uk ⊂ Uk−1 and X ×X = Uk−1 ∪ (X ×X) \ Uk

for k = 2, . . . , n. The axioms for a uniform space ensure that for each U ∈ U

and each positive integer n there exists an n-chain (U1, . . . , Un) of entourages with
U1 = U.

Lemma 3. Let V be an entourage of a uniform space X , and S an almost located

subset of X . Then there exists an entourage W of X such that (V, W ) is a 2-chain
and

∀x ∈ X (S ∩W [x] = ∅ ∨ S ∩ V [x] 6= ∅) .

���������
. Choose an entourage E such that E ◦ E ⊂ V and X ×X = V ∪ (X ×

X) \E. Since S is almost located, there exists an entourage W ⊂ E such that

∀x ∈ X (S ∩W [x] = ∅ ∨ S ∩ E[x] 6= ∅) .

Since E ⊂ V , the desired conclusion follows. �

Proposition 4. An almost located subset of a totally bounded uniform space is
totally bounded.

���������
. Let S be an almost located subset of a totally bounded uniform space

(X, U ), and let U ∈ U . Choose V ∈ U so that (U, V ) is a 2-chain. By Lemma 3,
there exists W ∈ U such that (U, V, W ) is a 3-chain and

∀x ∈ X (S ∩W [x] = ∅ ∨ S ∩ V [x] 6= ∅) .
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Let {x1, . . . , xn} be a finitely enumerable set such that X =
n⋃

i=1

W [xi]. Write

{1, . . . , n} as a union of sets P, Q such that S ∩ V [xi] 6= ∅ whenever i ∈ P, and

S ∩W [xi] = ∅ whenever i ∈ Q. For each i ∈ P construct yi in S ∩ V [xi]. Consider
any y ∈ S. There exists i such that y ∈ W [xi]; so i /∈ Q and therefore i ∈ P. We

have (y, xi) ∈ W and (xi, yi) ∈ V ; whence (y, yi) ∈ W ◦ V ⊂ V ◦ V ⊂ U. Thus
S ⊂ ⋃

i∈P

U [yi]. It follows from Lemma 2 that S is totally bounded. �

Corollary 5. In a totally bounded metric space, locatedness and almost located-
ness coincide.
���������

. This follows from Propositions 1 and 4, with reference to [2] (Chapter 2,
Proposition (4.4)). �

Here is a converse of Proposition 4.

Proposition 6. A totally bounded subset of a uniform space is almost located.
���������

. Let S be a totally bounded subset of the uniform space (X, U ). Let U ∈
U and chooseW ⊂ V ⊂ U in U such thatW ◦W ⊂ V and X×X = U∪(X×X)\V .
As S is totally bounded, there are s1, . . . , sn ∈ S such that S ⊂

n⋃
i=1

W [si]. Given x in

X , either x ∈ U [si] for some i, or x /∈ V [si] for all i. In the former case, U [x]∩S 6= ∅;
in the latter case, W [x] ∩ S = ∅. �

Sometimes we can get along with the following weaker version of almost located:

a subset S of a uniform space X is said to be pointwise almost located if for each
x ∈ X and U ∈ U , either x ∈ −S or U [x] ∩ S 6= ∅. Every almost located subset,
and every singleton subset, is pointwise almost located. In [9], [5] a subset S of a
uniform space X is defined to be weakly located if

∀x ∈ X ∀R ⊂ X (x ∈ −R ⇒ (x ∈ −S ∨ S −R 6= ∅)) .

Weak locatedness was introduced by Troelstra [10] in the context of a general topo-

logical space. On pages 359–360 of [11] it is shown that the proposition ‘every weakly
located subset of a metric space is located’ is essentially nonconstructive.

Proposition 7. A subset S of a uniform space (X, U ) is pointwise almost located
if and only if it is weakly located.
���������

. Let S be a pointwise almost located subset of a uniform space (X, U ).
Let x ∈ X , and let R be a subset of X such that x ∈ −R. There exists a 3-chain
(U, V, W ) such that ({x} × R) ∩ U = ∅. Since S is pointwise almost located, there
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exists E ∈ U such that either S ∩ E[x] = ∅ or S ∩ V [x] 6= ∅. In the first case we
get ({x} × S) ∩ E = ∅; that is, x ∈ −S. In the second case let y ∈ S ∩ V [x] and
r ∈ R. Then either (y, r) /∈ W or (y, r) ∈ V . In the latter event, since (x, y) ∈ V , it
follows that (x, r) ∈ V ◦ V ⊂ U , a contradiction. Hence ({y} × R) ∩W = ∅, and so
y ∈ S −R.

Conversely, suppose that S is weakly located and that x ∈ X and U ∈ U . Choose

V ∈ U so that

X ×X = U ∪ (X ×X) \ V,

and let R = X \ V [x]. Note that

X = U [x] ∪ (X \ V [x]) = U [x] ∪ R.

Clearly x ∈ −R, so either x ∈ −S, and we are done, or else S − R 6= ∅. Thus we
may assume that S − R 6= ∅. But −R ⊂ U [x], because X \R ⊂ U [x], and therefore
S ∩ U [x] 6= ∅. �

We now show, by means of a mixed recursive and Brouwerian example, that not
every pointwise almost located subset is almost located. Assuming Church’s Thesis,

we will construct a subset of [0, 1] that is pointwise almost located but not located;
whence, by Corollary 5, it is not almost located. Let (sn) be a Specker sequence—
that is, an increasing sequence of rational numbers in [0, 1] such that sn is eventually
bounded away from each (recursive) real number; Church’s Thesis ensures that such

sequences exist (see [4], Chapter 3). Let (an) be a binary sequence with at most one
term equal to 1, and let S = {sn : an = 1}. To see that S is a pointwise almost

located subset of [0, 1], consider any x ∈ [0, 1] and choose N and δ > 0 such that
|x− sn| > δ for all n > N. If an = 0 for all n < N , then d (x, S) > δ; if there

exists n < N with an = 1, then S is a singleton and hence pointwise almost located.
Now assume that S is located, and compute d = d (1, S) . Either d > 1 and therefore
an = 0 for all n, or else d < 2, in which case S is nonempty and therefore there exists
n with an = 1.

A subset S of a uniform space X is locally totally bounded if there exists an

entourage V0 such that for each x in X , the set V0[x] ∩ S is contained in a totally
bounded subset of S.

A uniform space (X, U ) is first countable if it has a countable basis of entourages
U1, U2, . . .. We may assume that Un+1 ◦ Un+1 ⊂ Un for each n. In that case, X is a
first countable topological space in the usual sense.

The rest of this section is devoted to the proof of the uniform analogue of a theorem
about metric spaces in [4] (Chapter 2, Theorem 4.11).
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Theorem 8. The following hold for a nonempty subset Y of a uniform space X.

(i) If Y is locally totally bounded, it is almost located.

(ii) If X is first countable and locally totally bounded, and Y is almost located,

then Y is locally totally bounded.

This depends on a proposition, a corollary, and a lemma, each of which holds some

intrinsic interest.

Proposition 9. Let X be a first countable, totally bounded uniform space with

a countable basis of entourages U1, U2, . . ., and let ξ be a point of X . Then for each

positive integer n there exists a closed, totally bounded subset K of X such that

Un+4[ξ] ⊂ K ⊂ Un[ξ].
���������

. We may assume that Uk+1 ◦Uk+1 ⊂ Uk for each k. Fixing the positive

integer n, and taking F1 = {ξ}, we construct an increasing sequence (Fk)∞k=1 of
finitely enumerable subsets of X such that for each k,

(2) ∀x ∈ Fk+1 ∃y ∈ Fk((x, y) ∈ Un+k+1)

and

(3) ∀x ∈ Un+4[ξ] ∃y ∈ Fk((x, y) ∈ Un+k+3).

To this end, assume that F1, . . . , Fk have been constructed with properties (2) and

(3). Let {x1, . . . , xN} be a Un+k+4-approximation to X , and write {1, . . . , N} as a
union of subsets A, B such that

i ∈ A ⇒ ∃y ∈ Fk((xi, y) ∈ Un+k+1),

i ∈ B ⇒ ∀y ∈ Fk((xi, y) 6∈ Un+k+2).

Setting

Fk+1 = {xi : i ∈ A} ∪ Fk,

we see immediately that Fk+1 satisfies (2). Let x ∈ Un+4[ξ]. By our induction
hypothesis, there exists y ∈ Fk with (x, y) ∈ Un+k+3. Choosing i such that (x, xi) ∈
Un+k+4, we have

(xi, y) ∈ Un+k+4 ◦ Un+k+3 ⊂ Un+k+2.

Thus i cannot belong to B, and so xi ∈ Fk+1. As (x, xi) ∈ Un+k+4, the set Fk+1

satisfies (3). This completes the inductive construction of the sequence (Fk)∞k=1 .
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Now let K be the closure of
∞⋃

k=1

Fk in X. We see from (3) that Un+4 [ξ] ⊂ K. On

the other hand, if m > k and y ∈ Fm, then by (3), we can find points ym = y, ym−1 ∈
Fm−1, . . . , yk ∈ Fk such that (yi+1, yi) ∈ Un+i+1 for k 6 i 6 m− 1. Thus

(4) (y, yk) ∈ Un+m ◦ . . . ◦ Un+k+1 ⊂ Un+k.

It follows that Fk is a Uk-approximation to K. Finally, taking k = 1 in (4), we see
that (y, ξ) ∈ Un for each y ∈ K. Thus K ⊂ Un[ξ]. �

Corollary 10. If X is a first countable, totally bounded uniform space, then for
each entourage U of X there exist totally bounded U -small sets K1, . . . , Kn such

that X =
n⋃

i=1

Ki.

���������
. Let U1, U2, . . . be a countable basis of entourages. Without loss of

generality, assume that Uk+1 ◦Uk+1 ⊂ Uk for each k. Pick ν such that Uν ◦Uν ⊂ U ,

and then points x1, . . . , xn of X such that

X =
n⋃

i=1

Uν+4 [xi] .

For each i (1 6 i 6 n), choose a totally bounded subsetKi ofX such that Uν+4 [xi] ⊂
Ki ⊂ Uν [xi] . Then Ki × Ki ⊂ Uν ◦ Uν ⊂ U , so Ki is U -small. Also, clearly,

X =
n⋃

i=1

Ki. �

Lemma 11. Let L be an almost located subset of a first countable uniform space

X , and let T be a totally bounded subset of X. Then there exists a totally bounded

set S such that T ∩ L ⊂ S ⊂ L.

���������
. Let U1, U2, . . . be a countable basis of entourages of X . We may assume

that for each n,
Un+1 ◦ Un+1 ⊂ Un

and
∀x ∈ X(L ∩ Un+1[x] = ∅ ∨ L ∩ Un[x] 6= ∅).

For each positive integer n let Tn be a finite Un+3-approximation to T . Write Tn as
a union of finite sets An and Bn such that

t ∈ An ⇒ Un+1[t] ∩ L 6= ∅,
t ∈ Bn ⇒ Un+2[t] ∩ L = ∅.
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For each t in An choose sn
t in L such that (t, sn

t ) ∈ Un+1. Let

Sn = {sn
t : t ∈ An} ,

and let S be the closure of
∞⋃

n=1
Sn in L. To prove S totally bounded, fix m, and

consider a positive integer n > m + 2 and any element s of Sn. There exist t′ ∈ An

and t ∈ Tm such that (s, t′) ∈ Un+1 and (t′, t) ∈ Um+3; whence

(s, t) ∈ Un+1 ◦Um+3 ⊂ Um+2.

Thus t ∈ Am and

(s, sm
t ) ∈ Um+2 ◦ Um+1 ⊂ Um.

It follows that
m+2⋃
k=1

Sk is a finitely enumerable Um-approximation to
∞⋃

n=1
Sn. So S is

totally bounded.
If x ∈ T ∩ L and n > 1, then there exists t in Tn such that (x, t) ∈ Un+3. So

t ∈ An and therefore
(x, sn

t ) ∈ Un+3 ◦ Un+1 ⊂ Un,

where sn
t ∈ S. As x and n are arbitrary and S is closed, T ∩ L ⊂ S. �

We now give the proof of Theorem 8.
���������

. Assume first that Y is locally totally bounded, and let U be any

entourage of X . Choose an entourage W such that (U, W ) is a 2-chain. Let V0 be
an entourage such that for each x in X , V0[x] ∩ Y is contained in a totally bounded

subset of Y. Choose an entourage V such that V ⊂ V0 and V 2 ⊂ W . For each x in
X there exist x1, . . . , xn ∈ Y such that

V0[x] ∩ Y ⊂
n⋃

i=1

V [xi].

Either (x, xi) ∈ U for some i or else (x, xi) /∈ W for all i. In the first case we have

U [x] ∩ Y 6= ∅. In the second case, if y ∈ V [x] ∩ Y , then

y ∈ V [x] ∩ Y ⊂ V0[x] ∩ Y ⊂
n⋃

i=1

V [xi];

choosing i such that (y, xi) ∈ V , as (x, y) ∈ V we see that (x, xi) ∈ V 2 ⊂ W , a

contradiction. Thus V [x]∩Y = ∅. This proves (i) of Theorem 8; part (ii) is a simple
consequence of Lemma 11. �
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Even for Hilbert spaces, almost locatedness is not as strong as locatedness, as

the following example shows. Let P be an arbitrary proposition, and consider the
subspace X = X1 ∪X2 of the Hilbert space � 2 , where

X1 = � × {0} , X2 = {(x, y) ∈ � 2 : P}.

Let

V = {(x, x) ∈ � 2 : x 6= 0 ⇒ P},

and note that (0, 0) ∈ V. Let (x, y) ∈ X and 0 < ε < 1. If (x, y) ∈ X2, then P holds,

so V is the diagonal of � 2 and is therefore located; whence

(5) ∀v ∈ V
(
‖(x, y)− v‖ > ε2/64

)
∨ ∃v ∈ V (‖(x, y)− v‖ < ε) .

If (x, y) ∈ X1, then y = 0 and either |x| < ε or |x| > 3ε/4. In the first case,

‖(x, y)− (0, 0)‖ = |x| < ε.

In the second case, for each (z, z) ∈ V , we have either |x− z| > ε/8, when

‖(x, y)− (z, z)‖2 > |x− z|2 > ε2/64

and therefore ‖(x, y)− (z, z)‖ > ε/8; or else |x− z| < ε/4. In that case, |z| > ε/2,
so P holds, V is located, and therefore

‖(x, y)− (z, z)‖ > |z| > ε/2.

Thus in all cases, (5) holds. It follows that V is almost located. However, if the
distance from (1, 0) to V is less than 1, then P holds; while if the distance from (1, 0)
to V is greater than 1

/√
2 , then P does not hold. Thus if, in a Hilbert space, almost

locatedness implies locatedness, then we can prove the law of excluded middle.

In fact, almost locatedness cannot be equivalent to locatedness, because the former
is a uniform invariant but the latter is not, even for subspaces of normed spaces. To

see this, consider � 2 with the `1-norm

‖(x, y)‖ = |x|+ |y|

(the taxicab norm) and also with the norm

‖(x, y)‖′ = |x|+ 1
2
|y| .
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Let % and %′ be the respective metrics. Note that

‖(x, y)‖′ 6 ‖(x, y)‖ 6 2 ‖(x, y)‖′ ,

so the two norms are uniformly equivalent. Given an arbitrary proposition P, let

V =
{
(x, y) ∈ � 2 : y = 0 ∨ P

}

and consider the subspace

S = {(0, 0)} ∪ {(r, r) : r ∈ � ∧ P} .

Then % ((x, y), S) = |x− y| for each (x, y) ∈ V , so S is located with respect to %. On

the other hand, suppose that %′ ((1, 0) , S) exists. If %′ ((1, 0), S) < 1, then P ; while
if %′ ((1, 0), S) > 1/2, then ¬P.

In spite of the last two examples, almost locatedness looks like a promising prop-
erty of subsets of a uniform space. Even in metric spaces, a hypothesis of locatedness

can often be relaxed to one of (pointwise) almost locatedness: see, for example, the
proof of Bishop’s lemma in [5] (Proposition 12). There remains the problem of gener-

alising almost locatedness to the context of apartness spaces, which, constructively,
form a bigger class of spaces than uniform ones [6].
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