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Abstract. The boundednees of multilinear commutators of Calderón-Zygmund singular
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1. Introduction

For b ∈ BMO(
� n ) (for its definition, see Section 2) and T a singular integral

operator, the commutator [b, T ] is defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x).

For these commutators, the classical result, which was obtained by Coifman,
Rochberg and Weiss in [1], is when T is a standard convolution integral opera-

tor of Calderón-Zygmund [b, T ] is bounded on Lp(
� n ) (1 < p < ∞), and conversely,

if [b, Ri] is bounded on Lp(
� n ) for every Riesz transform Ri, then b ∈ BMO(

� n ).
Then Janson [6] pointed that for any singular integral T the boundedness of [b, T ]
on Lp(

� n ) implies b ∈ BMO(
� n ). In 2002, Perez and Trujillo-Gonzalez [15] intro-

duced a generalized commutator, namely multilinear commutator. Let T be a linear

The project was supported by the NNSF (No. 60474070 and No. 10671062) of China, Hu-
nan Provincial Natural Science Foundation of China (06JJ5012) and Scientific Research
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operator which is initially assumed to be bounded on L2(
� n ), and suppose

Tf(x) =
∫
�

n

K(x, y)f(y) dy

whenever f are L∞(µ) functions with compact support and x /∈ supp f , where
K(x, y) is a standard Calderon-Zygmund kernel, namely, there exist positive and
finite constants γ and C such that, for all distinct x, y ∈ � n and all z with 2|x−z| <
|x− y, it verifies (i) |K(x, y)| 6 C|x− y|−n,

(ii) |K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| 6 C|x − z|γ/|x− y|n+γ .

Let ~b = (b1, b2, . . . , bm), bj ∈ BMO(
� n ) for j = 1, 2 . . . , m, the multilinear com-

mutators T~b defined by

(1.1) T~bf(x) = [b1, [b2, . . . [bn, T ] . . .]]f(x).

In [15] Perez and Trujillo-Gonzalez proved the T~b is also bounded on Lp(ω) for any
ω ∈ Ap, 1 < p < ∞, where Ap denotes Muckenhoupt’s weight class (see [11]). In

fact they obtained more and stronger results than that we stated here. For details
one can see [15].

Recently, Karlovich and Lerner considered the boundednees of the following com-
mutator

[b, K]f(x) = p.v.

∫
�

n

(b(x) − b(y))K(x− y)f(y) dy

on Lebesgue spaces Lp(·) with variable exponent p in [7]. In fact, Karlovich and

Lerner obtained analogous results as in [1]. Motivated by [7], we will consider the
boundedness of multilinear commutators T~b in (1.1) on variable exponent Lebesgue
spaces Lp(·). First, let us recall some definitions and notations.

All functions in the present paper are assumed to be real valued. Let p :
� n →

[1,∞) be a measurable function. Set the convex modular

m(f, p) :=
∫
�

n

|f(x)|p(x) dx.

Denote by Lp(·)(
� n ) the set of all Lebesgue measurable functions f on

� n such that
m(λf, p) < ∞ for some λ = λ(f) > 0. Lp(·)(

� n ) is a Banach space with respect to
the Luxemburg-Nakano norm

‖f‖Lp(·) = inf{λ > 0: m(f/λ, p) 6 1}.

It is clear that if p(·) = p is constant, then the space Lp(·)(
� n ) is isometrically

isomorphic to the Lebesgue space Lp(
� n ). For the properties of the space Lp(·)(

� n ),
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one can see [12]. Recently the spaces Lp(·)(
� n ) have attracted a great attention

owing to their connection to fluid dynamics discovered by Michael Růžička. For this
one can see [2], [3], [4], [8], [13], [17] and the references therein.
If a measurable function p :

� n → [1,∞) satisfies

(1.2) 1 < p− = ess inf
x∈ � n

p(x), ess sup
x∈ � n

p(x) = p+ < ∞,

then the function

p′(x) = p(x)/(p(x) − 1).

is well defined and satisfies (1.2) itself.

Denote by M(
� n ) the set of all measurable functions p :

� n → [1,∞) such that
(1.2) holds and there exists a constant C > 0 such that

(1.3) |p(x)− p(y)| 6 C

− log |x− y|

for every x, y ∈ � n , |x− y| 6 1
2 and

|p(x) − p(y)| 6 C

log(e + |x|)

for every x, y ∈ � n , |y| > |x|.
If p ∈ M(

� n ), Cruz-Uribe, Fiorenza and Neugebauer proved that the Hardy-
Littlewood maximal operatorM is bounded from Lp(·)(

� n ) to itself [2, Theorem 1.5].
Pick and Růžička showed that if (1.3) does not hold then the Hardy-Littlewood

maximal operator is not bounded. For more details, one can see [2], [3], [13], [16].
Let ~b = (b1, b2, . . . , bm), bi ∈ BMO(

� n ) for i = 1, . . . , m, we define

M~bf(x) = sup
x∈Q

1
|Q|

∫

Q

m∏

j=1

|bj(x)− bj(y)||f(y)| dy,

where in what follows Q are balls.
Let ϕ(x) > 0 be a smooth and rapidly decreasing function and satisfying the

condition:

|ϕ(x− y)− ϕ(x)| 6 C
|y|

|x|n+1
, if |x| > 2|y|.

Denote ϕε(x) = ε−nϕ(x/ε). Define the operators

Φ(f)(x) = sup
ε>0

∫
�

n

ϕε(x− y)|f(y)| dy,

Φ~b(f)(x) = sup
ε>0

∫
�

n

m∏

j=1

|bj(x)− bj(y)|ϕε(x− y)|f(y)| dy.
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If bj = b, j = 1, . . . , m, these operatorsM~b, Φ~b were considered on standard Lebesgue

spaces in [5].

Now we are ready to state our results.

Theorem 1.1. Suppose p belongs to M(
� n ) and bi ∈ BMO(

� n ), i = 1, . . . , m.

Then T~b as in (1.1) can be extended a bounded operator from Lp(·)(
� n ) to itself.

Theorem 1.2. Suppose p belongs to M(
� n ) and bi ∈ BMO(

� n ), i = 1, . . . , m,

then Φ~b is bounded from Lp(·)(
� n ) to itself.

Theorem 1.3. Suppose p belongs to M(
� n ) and bi ∈ BMO(

� n ), i = 1, . . . , m,

then M~b is bounded from Lp(·)(
� n ) to itself.

The remainder of the paper is organized as follows. The proof of Theorem 1.1
will be given in Section 2, and the proof of Theorems 1.2 and 1.3 will be given in

Section 3. In this paper, C denotes a positive constant, which may differ in different
place.

2. Proof of theorem 1.1

To prove Theorem 1.1, we need some preliminary results. They are the duality and

density in spaces Lp(·)(
� n ), and the pointwise estimates for sharp maximal functions.

The details will follow.

For p satisfying (1.2) the function p′ is well defined and the spaces Lp(·)(
� n ) can

be equipped with the Orlicz type norm

‖f‖′Lp(·)(
�

n) = sup
{ ∫
�

n

|f(x)g(x)| dx : g ∈ Lp′(·)(
� n ), ‖g‖Lp′(·)(

�
n) 6 1

}
.

This norm is equivalent to the Luxemburg-Nakano norm (see [9, Theorem 2.3]).
This means that

‖f‖Lp(·)(
�

n) 6 ‖f‖′Lp(·)(
�

n) 6 rp‖f‖Lp(·)(
�

n), f ∈ Lp(·)(
� n ),

where rp = 1 + 1/p− − 1/p+.

Firstly, the duality in spaces Lp(·)(
� n ) can been stated in the following lemma.
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Lemma 2.1 (see [9, Theorem 2.1]). Let p :
� n → [1,∞) be a measurable func-

tion satisfying (1.2). If f ∈ Lp(·)(
� n ) and g ∈ Lp′(·)(

� n ), then fg is integrable on� n and ∫
�

n

|f(x)g(x)| dx 6 rp‖f‖Lp(·)(
�

n)‖g‖Lp′(·)(
�

n).

Secondly, the density in spaces Lp(·)(
� n ) can been stated in the following

Lemma 2.2.

Lemma 2.2 (see [7, Lemma 2.2]). Let p :
� n → [1,∞) be a measurable function

satisfying (1.2). Then L∞
loc(
� n ) is dense in Lp(·)(

� n ) and in Lp′(·)(
� n ).

Thirdly, there are some pointwise estimates for sharp maximal functions. Given

f ∈ L1
loc(
� n ), the Hardy-Littlewood maximal function is defined by

M(f)(x) = sup
x∈Q

1
|Q|

∫

Q

|f(y)| dy.

Denote Mr(f)(x) = M(|f |r)(x)1/r , for r > 0.

For δ > 0 and f ∈ Lδ
loc(
� n ), set also

f#
δ (x) = sup

x∈Q
inf
c∈ �

(
1
Q

∫

Q

|f(y)− c|δ dy

)1/δ

.

If δ = 1, we denote f#
δ by f#. A function f is called belong to BMO(

� n ) if
f ∈ L1

loc(
� n ) and f#(x) ∈ L∞(

� n ). If f ∈ BMO(
� n ), the BMO semi-norm of f is

given by

‖f‖BMO = sup
x∈ � n

f#(x).

For a fixed λ ∈ (0, 1) and a given measurable function f on
� n , the local sharp

maximal function M#
λ (f) is defined by

M#
λ (f)(x) = sup

x∈Q
inf
c∈ � ((f − c)χQ)∗(λ|Q|),

where ((f − c)χQ)∗ denotes the non-increasing rearrangement of the function (f −
c)χQ.
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Lemma 2.3 (see [7, Proposition 2.3]). If δ > 0, λ ∈ (0, 1), and f ∈ Lδ
loc(
� n ),

then

M#
λ (f)(x) 6 (1/λ)1/δf#

δ (x), x ∈ � n .

To state further results, we need the definition of Orlicz maximal function. Let Φ
be a Young function, namely, Φ is a continuous, nonnegative, strictly increasing and
convex function on [0,∞) with

lim
t→0+

Φ(t)
t

= lim
t→0+

t

Φ(t)
= 0.

We define the Φ-averages of a function f over a cube Q by

‖f‖Φ,Q = ‖f‖Φ(L),Q = inf
{

λ > 0:
1
|Q|

∫

Q

( |f(x)|
λ

)
dx 6 1

}
,

where as usual |Q| denotes measure of Q.

Associated to this average, we define the maximal operator MΦ by

MΦf(x) = MΦ(L)f(x) = sup
Q3x

‖f‖Φ,Q,

where the supremum is taken over all the balls containing x.

If Φ(x) = x logr(e + x), we denote MΦ as ML(log L)r . It is well known that Mf 6
CML(log L)rf for any r > 0, and if m ∈ � , then

ML(log L)m ∼ Mm+1

the m + 1 iterations of the Hardy-Littlewood maximal operator.
Given any positive integer m, for all 1 6 j 6 m, we denote by Cm

j the family of
all finite subsets σ = {σ(1), . . . , σ(j)} of j different elements of {1, 2, . . . , m}. To any
σ ∈ Cm

j , we associate the complementary sequence σ′ given by σ′ = {1, 2, . . . , m}\σ.

For any σ ∈ Cm
j , we denote

T~bσ
f(x) =

∫
�

n

(bσ(1)(x) − bσ(1)(y)) . . . (bσ(j)(x) − bσ(j)(y)))K(x, y)f(y) dy,

and ‖bσ‖ =
∏
j∈σ

‖bj‖BMO. In the case of σ = {1, 2, . . . , m}, we denote T~bσ
by T~b and

‖bσ‖ by ‖~b‖.
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Lemma 2.4 (see [15, Lemma 3.1]). Let T~b be as in (1.1) and let 0 < δ < τ < 1.

Then there exists a constant C > 0, depending only on δ and the kernel K, such

that

(T~bf)#δ (x) 6 C

[
‖~b‖ML(log L)mf(x) +

m∑

j=1

∑

σ∈Cm
j

‖bσ‖Mτ (T~bσ′
f)(x)

]

for any f ∈ L∞
C .

As the argument in proving [15, Lemma 3.1], we have the following result.

Lemma 2.5. Let T =
∫ �

n K(x, y)f(y) dy be a Calderón-Zygmund operator and

let 0 < δ < 1. Then there exists a constant C > 0, depending only on δ, such that

(T (f))#δ (x) 6 CM(f)(x)

for any f ∈ L∞
c .

Lemma 2.6 (see [10, Theorem 1]). Suppose g ∈ L1
loc(
� n ) and let ϕ be a mea-

surable function satisfying

|{x : |ϕ(x)| > α}| < ∞ for all α > 0,

then ∫
�

n

|ϕ(x)g(x)| dx 6 Cn

∫
�

n

M#
λn

ϕ(x)gMg(x) dx.

Before giving the proof of Theorem 1.1, we first prove the following result which
has its independent role.

Theorem 2.1. If p ∈ M(
� n ), then there exists a constant Cp such that for any

f ∈ Lp(·)(
� n ),

‖Tf‖Lp(·) 6 Cp‖f‖Lp(·) .

�������
	
. Let f ∈ L∞

C . For any g ∈ Lp′(·)(
� n ) ⊂ L1

loc(
� n ), since T is of weak type

(1.1), according to Lemmas 2.6, 2.3 and 2.5, we have
∫
�

n

|(Tf)(x)g(x)| dx 6 C

∫
�

n

Mf(x)Mg(x) dx.

By Lemma 2.1 and p, p′ ∈M(
� n ), we obtain that

∫
�

n

|(Tf)(x)g(x)| dx 6 Cnrp‖Mf‖Lp(·)‖Mg‖Lp′(·) 6 C‖f‖Lp(·)‖g‖Lp′(·) .

This yields

‖Tf‖Lp(·) 6 ‖Tf‖′Lp(·) 6 C‖f‖Lp(·) .

By Lemma 2.2, this completes the proof. �
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1.1. Let f ∈ L∞

C and g ∈ Lp′(·)(
� n ) ⊂ L1

loc(
� n ). We

show Theorem 1.1 by induction on m. For m = 1, by Theorem 1.5 in [15], Tbf

satisfies the conditions of Lemma 2.6. Thus according to Lemmas 2.6, 2.3 and 2.4,
we have

∫
�

n

|(Tbf)(x)g(x)| dx 6 C

∫
�

n

M#
λn

(Tbf)(x)Mg(x) dx

6 C

∫
�

n

(Tbf)#δ (x)Mg(x) dx

6 C

∫
�

n

[
‖b‖BMOML(log L)f(x) + ‖b‖BMOMτ (Tf)(x)

]
Mg(x) dx.

By Lemma 2.1, Theorem 2.1 and p, p′ ∈M(
� n ), we obtain that

∫
�

n

|(Tf)(x)g(x)| dx 6 Cnrp‖b‖BMO‖Mf‖Lp(·)‖Mg‖Lp′(·)

6 C‖b‖BMO‖f‖Lp(·)‖g‖Lp′(·) .

This yields
‖Tbf‖Lp(·) 6 ‖Tbf‖′Lp(·) 6 C‖f‖Lp(·) .

Suppose now that for m − 1 Theorem 1.1 holds, and let us to prove it for m. As
above with Theorem 1.5 in [15] again, by Lemmas 2.6, 2.3 and Lemma 2.5, we have

∫
�

n

|(T~bf)(x)g(x)| dx 6 C

∫
�

n

M#
λn

(T~bf)(x)Mg(x) dx

6 C

∫
�

n

(T~bf)#δ (x)Mg(x) dx

6 C

∫
�

n

[
‖~b‖ML(log L)mf(x) +

m∑

j=1

∑

σ∈Cm
j

‖bσ‖Mτ (T~bσ′
f)(x)

]
Mg(x) dx

6 C

∫
�

n

[
‖~b‖ML(log L)mf(x) +

m∑

j=1

∑

σ∈Cm
j

‖bσ‖ML(log L)m−jf(x)
]
Mg(x) dx

6 C

m∏

j=1

‖bj‖BMO

∫
�

n

m∑

j=1

ML(log L)m−j f(x)Mg(x) dx

6 C
m∏

j=1

‖bj‖BMO‖f‖Lp(·)‖g‖Lp′(·) .

This yields
‖T~bf‖Lp(·) 6 ‖T~bf‖′Lp(·) 6 C‖f‖Lp(·) .

By Lemma 2.2, this completes the proof. �

20



3. Proofs of theorem 1.2 and 1.3

Let

ΦNf(x) = sup
0<ε<N

∫
�

n

ϕε(x− y)|f(y)| dy,

and

ΦN
~b

f(x) = sup
0<ε<N

∫
�

n

m∏

j=1

|(bj(x) − bj(y))|ϕε(x− y)|f(y)| dy.

To prove Theorem 1.2, we need the following lemma.

Lemma 3.1. Let ΦN
~b
be as above and 0 < δ < τ < 1. Then there exists a constant

C > 0, depending only on δ and τ , such that

(ΦN
~b

f)#δ (x) 6 C

[
‖~b‖ML(log L)mf(x) +

m∑

j=1

∑

σ∈Cm
j

‖bσ‖Mτ (ΦN
~bσ′

f)(x)
]

for any f ∈ L∞
c .

�������
	���	����������
3.1. By homogeneity, we can assume that ‖bi‖BMO = 1,

i = 1, 2, . . . , m.We first consider the lemma for the case m = 1. In this case, we have

ΦN
b f(x) = sup

0<ε<N

∫
�

n

|(b(x)− b(y))|ϕε(x − y)|f(y)| dy.

Now, for fixed x ∈ � n , let Q denote the ball center at x with radius R. For any

λ ∈ � , we choose

CQ = sup
0<ε<N

1
|Q|

∫

Q

∫
�

n

|b(y)− λ|ϕε(z − y)|f(y)|χ � n\4Q(y) dy dz.

We first estimate |ΦN
b f(y)− CQ|, where y ∈ Q.

|ΦN
b f(y)− CQ| 6 sup

0<ε<N

∫
�

n

|b(y)− λ|ϕε(y − w)|f(w)| dw

+ sup
ε>0

∣∣∣∣
∫
�

n

|b(w)− λ|ϕε(y − w)|f(w)| dw

− 1
|Q|

∫

Q

∫
�

n

|b(w) − λ|ϕε(z − w)|f(w)|χ � n\4Q(w) dw dz

∣∣∣∣

6 sup
0<ε<N

∫
�

n

|b(y)− λ|ϕε(y − w)|f(w)| dw

+ sup
ε>0

∫
�

n

|b(w) − λ|ϕε(y − w)|f(w)|χ4Q(w) dw

+ sup
ε>0

1
|Q|

∫

Q

∫
�

n

|b(w) − λ||ϕε(y − w) − ϕε(z − w)||f(w)|χ � n\4Q(w) dw dz

= A1(y) + A2(y) + A3(y).

21



So we have

(
1
|Q|

∫

Q

|ΦN
b f(y)| − cQ|δ | dy

)1/δ

6 C

[(
1
|Q|

∫

Q

A1(y)δ dy

)1/δ

+
(

1
|Q|

∫

Q

A2(y)δ dy

)1/δ

+
(

1
|Q|

∫

Q

A3(y)δ dy

)1/δ]

= I1 + I2 + I3.

Set λ = (b)Q, the average of b over the ball Q. For any 1 < q < τ/δ, by Hölder’s

inequality and Jensen’s inequality, we have

I1 6 C

(
1
|Q|

∫

Q

|b(y)− λ|δq′ dy

)1/δq′

·
(

1
|Q|

∫

Q

|ΦN (f)(y)|δq dy

)1/δq

6 C‖b‖BMOMδq(ΦNf)(x)

6 CMτ (ΦN (f))(x).

For the term I2, since (b − λ)fχ4Q is integrable and Φ is of weak type (1.1) (see
[18, page 71]), by Kolmogorov’s inequality and Lemma 2.3 in [15], we have

I2 6 C

|4Q|

∫

4Q

|b(y)− λ||f(y)| dy 6 C‖b‖BMO ·ML(log L)f(x) = CML(log L)f(x).

For the last term I3, since x, y, z ∈ Q, w /∈ 4Q, we have

sup
ε>0

|ϕε(y − w) − ϕε(z − w)| 6 |y − w|
|x− w|n+1

6 CR

|x− w|n+1
.

where C is independent of ε.

Thus by the argument as in [15, page 683], we obtain

|A3(y)− CQ| 6
∞∑

k=2

2−k 1
|2kQ|

∫

2kQ

|b(w) − λ||f(w)| dw

6 C

∞∑

k=2

2−kk‖b‖BMOML(log L)f(x)

6 CML(log L)f(x).

This yields that
I3 6 CML(log L)f(x).

Thus, Combining the estimates of I1 to I3, and taking the supremum over all balls
centered at x, we have proved Lemma 3.1 for the case m = 1.
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Now we turn to the case m > 2. For fixed x ∈ � n , Q denotes a ball center at x

with radius R again, choose

CQ = sup
0<ε<N

1
|Q|

∫

Q

∫
�

n

m∏

j=1

|bj(y)− λj |ϕε(z − y)|f(y)|χ � n\4Q(y) dy dz.

We first estimate |ΦN
~b

f(y)− CQ|, where y ∈ Q.

|ΦN
~b

f(y)− CQ| 6 sup
0<ε<N

∣∣∣∣
∫
�

n

∣∣∣∣
m∏

j=1

(bj(y)− λj) + (−1)m
m∏

j=1

(bj(w)− λj)

+
m−1∑

j=1

∑

σ∈Cm
j

Cm,j(b(y)− λ̄)σ(b(w) − λ̄)σ′ |ϕε(y − w)|f(w)| dw

− 1
|Q|

∫

Q

∫
�

n

m∏

j=1

|(bj(w) − λj)|ϕε(z − w)|f(w)|χ � n\4Q(w) dw dz|

6 sup
ε>0

∫
�

n

m∏

j=1

|bj(y)− λj |ϕε(y − w)|f(w)| dw

+ sup
0<ε<N

m−1∑

j=1

∑

σ∈Cm
j

|Cm,j ||(b(x) − λ̄)σ |
∫
�

n

|(b(y)− b(w))σ′ |ϕε(y − w)|f(w)| dw

+ sup
ε>0

∫
�

n

m∏

j=1

|bj(w)− λj |ϕε(y − w)|f(w)|χ4Q(w) dw

+ sup
ε>0

1
|Q|

∫

Q

∫
�

n

m∏

j=1

|bj(w) − λj | |ϕε(y − w)− ϕε(z − w)||f(w)|χ � n\4Q(w) dw dz

= A1(y) + A2(y) + A3(y) + A4(y).

We first estimate A4(y). Since x, y, z ∈ Q, w /∈ 4Q, we have

sup
ε>0

|ϕε(y − w)− ϕε(z − w)| 6 C
|y − z|

|x− w|n+1
6 CR

|x− w|n+1
,

where C is independent of ε. Thus

A4(y) 6 C

∞∑

k=0

2−k 1
|2kQ|

∫

2kQ

∣∣∣∣
m∏

j=1

(bj(w) − λj)
∣∣∣∣|f(w)| dw.
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Since 0 < δ < 1, we have

(
1
|Q|

∫

Q

|ΦN
~b

f(y)− CQ|δ dy

)1/δ

6 C

[(
1
|Q|

∫

Q

A1(y)δ dy

)1/δ

+
(

1
|Q|

∫

Q

A2(y)δ dy

)1/δ

+
(

1
|Q|

∫

Q

A3(y)δ dy

)1/δ

+
(

1
|Q|

∫

Q

A4(y)δ dy

)1/δ]

= I1 + I2 + I3 + I4.

Set λi = (bi)Q, i = 1, 2, . . . , m. Then

I4 =
(

1
|Q|

∫

Q

A4(y)δ dy

)1/δ

6 C
∞∑

k=1

2−k 1
|2kQ|

∫

2kQ

m∏

j=1

|bj(w) − λj ||f(w)| dw

6 C

∞∑

k=1

2−kk‖b‖BMOML(log L)f(x)

6 CML(log L)f(x).

For I3, by the same argument as above and making use of Kolmogorov’s inequality,

the weak type (1,1) of Φ and Lemma 2.3 in [15] (in fact [15, (2.5), page 679]),

I3 6 C

|4Q|

∫

4Q

m∏

j=1

|bj − λj ||f(y)| dy 6 C

m∏

j=1

‖bj‖BMO ·ML(log L)f(x)

= CML(log L)f(x).

For I1, we estimate A1(x). Because

A1(x) 6 C

m∏

j=1

|bj(x) − λj |Φ(f)(x),

again with λi = (bi)Q, i = 1, . . . , m, using Hölder’s inequality for finitely many

functions with 1 < q < τ/δ, we have

I1 6 CMτ (Φf)(x).

Similarly, we have

I2 6 C
m−1∑

j=1

∑

σ∈Cm
j

Mτ (ΦN
~bσ′

f)(x).

Combining the estimates of I1 to I4, and taking the supremum over all balls
centered at x, we obtain the lemma. This finishes the proof of Lemma 3.1. �
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1.2. Let f ∈ L∞

C . First we prove that ΦN
~b

(f) belongs to
Lp(·)(

� n ). To do so we use induction on m. For m = 1, by the same arguments as in
the proof of Theorem 1.5 in [15], ΦN

~b
(f) satisfies the conditions of Lemma 2.6. Thus

by Lemma 2.6, 2.3 and 3.1, for any g ∈ Lp′(·)(
� n ) ⊂ L1

loc(
� n ), we have

∫
�

n

|(ΦN
~b

f)(x)g(x)| dx 6 C

∫
�

n

M#
λn

(ΦN
b f)(x)Mg(x) dx

6 C

∫
�

n

(ΦN
b f)#δ (x)Mg(x) dx

6 C

∫
�

n

[
‖b‖BMOML(log L)f(x) + ‖b‖BMOMτ (ΦNf)(x)

]
Mg(x) dx

6 C

∫
�

n

[
‖b‖BMOM2f(x) + ‖b‖BMOMτ (Φf)(x)

]
Mg(x) dx

6 C

∫
�

n

[
‖b‖BMOM2f(x) + ‖b‖BMOMτ (Mf)(x)

]
Mg(x) dx

6 C‖b‖BMO‖f‖Lp(·)‖g‖Lp′(·) ,

where we have used Lemma 2.1, since p, p′ ∈M(
� n ). This yields

‖ΦN
b f‖Lp(·) 6 ‖ΦN

b f‖′Lp(·) 6 C‖f‖Lp(·) .

Suppose now that for m− 1, ΦN
~b

(f) belongs to Lp(·)(
� n ), and let us to prove it for

m. As the above by Lemmas 2.6, 2.3 and Lemma 3.1 again, we have
∫
�

n

|(ΦN
~b

f)(x)g(x)| dx 6 C

∫
�

n

M#
λn

(ΦN
~b

f)(x)Mg(x) dx

6 C

∫
�

n

(ΦN
~b

f)#δ (x)Mg(x) dx

6 C

∫
�

n

[
‖~b‖ML(log L)mf(x) +

m∑

j=1

∑

σ∈Cm
j

‖bσ‖Mε(ΦN
~bσ′

f)(x)
]
Mg(x) dx

6 C

∫
�

n

[
‖~b‖ML(log L)mf(x) +

m∑

j=1

∑

σ∈Cm
j

‖bσ‖ML(log L)1/σ′f(x)
]
Mg(x) dx

6 C

m∏

j=1

‖bj‖BMO

∫
�

n

ML(log L)1/σ′f(x)Mg(x) dx

6 C

m∏

j=1

‖bj‖BMO‖f‖Lp(·)‖g‖Lp′(·) ,

because p, p′ ∈M(
� n ), and we used Lemma 2.1 again. This yields

‖ΦN
~b

f‖Lp(·) 6 ‖ΦN
~b

f‖′Lp(·) 6 C‖f‖Lp(·) .
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Since ΦN
~b

(f)(x) tends to Φ~b(f)(x) pointwise as N tends to ∞, by Fatou’s Lemma
we have ∫

�
n

|(ΦN
~b

f)(x)g(x)| dx 6 C

m∏

j=1

‖bj‖BMO‖f‖Lp(·)‖g‖Lp′(·) .

Thus,

‖Φ~bf‖Lp(·) 6 ‖Φ~bf‖′Lp(·) 6 C‖f‖Lp(·) .

By Lemma 2.2, this completes the proof. �
�������
	��
	��������
�����

1.3. In Theorem 1.2, we choose ϕ such that χ{x : |x|62} 6
ϕ, then we have

M~bf(x) 6 CΦ~bf(x).

By Theorem 1.2, we obtain Theorem 1.3. �
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