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COMMUTATORS OF SINGULAR INTEGRALS ON SPACES

OF HOMOGENEOUS TYPE

Gladis Pradolini, Oscar Salinas, Santa Fe

(Received October 14, 2004)

Abstract. In this work we prove some sharp weighted inequalities on spaces of homoge-
neous type for the higher order commutators of singular integrals introduced by R. Coif-
man, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several
variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators
are bounded on Lp(w) when w belongs to the Muckenhoupt’s class Ap, p > 1. In addition,
as an important tool in order to get our main result, we prove a weighted Fefferman-Stein
type inequality on spaces of homogeneous type, which we have not found previously in the
literature.
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1. Introduction and main results

The higher order commutators of singular integrals were introduced by R. Coif-

man, R. Rochberg and G. Weiss in [7]. In a formal sense they can be defined in
� n

for appropriate functions b and f as follows

(1.1) Tmb f(x) =
∫
�

n

(b(x)− b(y))mK(x, y)f(y) dy

for m = 0, 1, 2, . . . , where K is a Calderón-Zygmund kernel. When m = 1, the oper-
ator T 1

b is usually denoted by [b, T ]f = bT (f)− T (bf), with T a Calderón-Zygmund
operator (by the way, T is the case m = 0 of (1.1)). The operators Tmb have proved
to be of interest in many contexts and, in particular, in the theory of P.D.E. (see [8],
[9], [10]). It is well known that, in this area, many problems can be naturally seen as

problems on spaces of homogeneous type ([12], [11]). So, results concerning the op-
erators Tmb in this general setting appears as a natural request (see, for instance, [4]
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and [22] where commutators appear in connection with problems about Lp-estimates

for parabolic and elliptic equations with VMO coefficients respectively).

The purpose of this work is to prove weighted inequalities between Lp spaces for
the commutator Tmb on spaces of homogeneous type. In order to state them, we first

recall some basic notions about these spaces and the weights we are going to use.

Let X be a set. A function d : X ×X → [0,∞) is called a quasi-distance on X if
the following conditions are satisfied:

i) for every x and y in X , d(x, y) > 0, and d(x, y) = 0 if and only if x = y,

ii) for every x and y in X , d(x, y) = d(y, x),
iii) there exists a constant K such that d(x, y) 6 K(d(x, z) + d(z, y)) for every x, y
and z in X .

Let µ be a positive measure on the σ-algebra of subsets of X generated by the

d-balls B(x, r) = {y : d(x, y) < r}, with x ∈ X and r > 0. We assume that µ satisfies
a doubling condition, that is, there exists a constant A such that

(1.2) 0 < µ(B(x, 2Kr)) 6 Aµ(B(x, r)) <∞

holds for every ball B ⊂ X . A structure (X, d, µ), with d and µ as above, is called a
space of homogeneous type and it was introduced for the first time in [6] (for more
details, see [14] and [15], for instance).

We say that (X, d, µ) is a space of homogeneous type regular in measure if µ is
regular, that is for every measurable set E, given ε > 0, there exists an open set G
such that E ⊂ G and µ(G − E) < ε. In what follows we always assume that the
space (X, d, µ) is regular in measure.
We denote by D the set containing the functions f ∈ L∞ with bounded support.
A nonnegative function w defined on X , will be called a weight if it is a locally

integrable function. If E is a measurable set we denote w(E) =
∫
E w dµ.

A weight w is in the Muckenhoupt’s class A∞ respect to µ (see [16]) if there are

positive constants C and ε such that the inequality

(1.3)
w(E)
w(B)

6 C

(
µ(E)
µ(B)

)ε

holds for every ball B and every measurable set E ⊂ B. The infimum of such C will
be denoted by [w]A∞ .
Finally, if w is a weight, by Lp(w) we mean the measurable functions f such that∫

X
|f |pw dµ is finite.
With these definitions, we can introduce our main results as follows.
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1.4. Theorem. Let 1 < p <∞, w be a weight in A∞ and b belonging to BMO.
Then, there exists a positive constant C, depending only on the constants of the

space (X, d, µ) and the A∞ constant of w, such that

∫

X

|Tmb f(x)|pw(x) dµ(x) 6 C‖b‖mpBMO

∫

X

(Mm+1f(x))pw(x) dµ(x)

holds for every function f ∈ D. Here Mm+1 denotes the Hardy-Littlewood maximal

operator iterated m+ 1 times.

1.5. Theorem. Let 1 < p <∞, b belonging to BMO and w a weight. Then there
exists a positive constant C, depending only on the constants of the space (X, d, µ),
such that

(1.6)
∫

X

|Tmb f(x)|pw(x) dµ(x) 6 C‖b‖mpBMO

∫

X

|f(x)|pM [(m+1)p]+1w(x) dµ(x)

holds for every function f ∈ D, where [(m + 1)p] denotes the biggest number in� ∪ {0} less than or equal to (m+ 1)p.

1.7. Remark. Theorem 1.4 has as an easy corollary (by applying a well known
result about boundedness of the Hardy-Littlewood maximal operator (see [16])) that
the operators T kb are bounded from Lp(w) in Lp(w) when w belongs to the Ap class
(i.e. w(B)(w−1/(p−1)(B))p−1 ∼= (µ(B))p for every ball B). In this case, it is important
to note that the operator Tmb can be continuously extended to L

p, 1 < p < ∞ by
using a well known density argument (see for instance [4]), and then, the theorem
holds for every f ∈ Lp.

1.8. Remark. The Euclidean case of theorems 1.4 and 1.5 (i.e. X =
� n with the

usual distance and the Lebesgue measure) were proved for the first time by C. Pérez

in [18] and in addition, this author showed there that the number of iterations of the
maximal operator needed in both theorems is optimal. On the other hand note that

the case m = 0 recovers well known results about Calderón-Zygmund operators ([5],
[25]).

1.9. Remark. As another consequence of our results we can obtain a generaliza-
tion of the un-weighted results proved by M. Bramanti and M.C. Cerutti ([3]) for
the case T 1

b (see [4], too).

1.10. Remark. In [18] the Euclidean versions of the above theorems are used
by C. Pérez to obtain weighted boundedness results about the following non linear

commutator
Nf = T (f log |f |)− T (f log |Tf |),
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where T is a Calderón-Zygmund operator and f belongs to an appropriate set of

functions. This commutator was introduced by R. Rochberg and G. Weiss in [23]
and it is related to some problems in nonlinear P.D.E. Following a similar reasoning
to that applied in [18], Theorems 1.4 and 1.5 allow to get extensions of the results

obtained there (and concerning Nf) to a general setting of spaces of homogeneous
type. For instance, given p ∈ (1,∞) and w ∈ Ap we have

∫

X

|Nf(x)|pw(x) dµ(x) 6 C

∫

X

|f(x)|pw(x) dµ(x).

The techniques we are going to use in the proofs of Theorems 1.4 and 1.5 are based
on those used in [18]. They require a weighted version of the well known Fefferman-

Stein inequality on spaces of homogeneous type which is proved in Section 3 and it is
interesting in itself. The structure of the paper is as follows: Section 2 contains basic

facts and some notation, Section 3 is devoted, as we said, to the Fefferman-Stein
type inequality; finally, Sections 4 and 5 contain the proofs of Theorems 1.4 and 1.5,

respectively.

2. Preliminaries

Let (X, d, µ) be a space of homogeneous type. It is always possible to find a
continuous quasi-distance d′ equivalent to d (see [14]) in the sense that there exist

positive constants C1 and C2 such that

C1d
′(x, y) 6 d(x, y) 6 C2d

′(x, y).

With this result in mind, we will assume that the quasi-metric d is continuous.

The spaces Lp and Lploc on (X, d, µ) are defined as usual. The weighted versions
of Lp(w) for a non negative function w in L1

loc are obtained by taking the mea-

sure w dµ.
Given f ∈ L1

loc and Ω a measurable set, we denote mΩ(f) = µ(Ω)−1 ∫
Ω
f dµ.

We say that T is a Calderón-Zygmund operator on (X, d, µ) if the following con-
ditions are satisfied (see [1] and [3], for instance):

i) T : Lp(X) → Lp(X) is linear and continuous for every p ∈ (1,∞);
ii) there exists a measurable function k : X ×X → �

such that for every f ∈ D,

Tf(x) =
∫

X

k(x, y)f(y) dµ(y),

for a.e. x 6∈ supp f ;
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iii) the kernels k and k∗ (defined by k∗(x, y) = k(y, x)) satisfy the following point-
wise Hörmander condition: There exist positive constants C, β andM > 1 such
that

|k(x0, y)− k(x, y)| 6 C
d(x0, x)β

µ(B(x0, 2d(x0, y)))d(x0, y)β

holds for every x0 ∈ X , r > 0, x ∈ B(x0, r), y ∈ X −B(x0,Mr);
iv) the kernel k also satisfies the inequality |k(x, y)| 6 C/µ(B(x, 2d(x, y))) for ev-
ery x, y ∈ X .

It is well known that if T is a Calderón-Zygmund operator on (X, d, µ), then T is
of weak type (1, 1) (see [15]), that is

(2.1) µ({x ∈ X : |Tf(x)| > λ}) 6 C

λ

∫

X

f(x) dµ(x)

for every f ∈ L1(X).
For f in L1

loc we consider the ε-maximal function and the sharp function of f
defined, respectively, by

(2.2) Mεf(x) = sup
r>0

(
1

µ(B(x, r))

∫

B(x,r)

|f(y)|ε dµ(y)
)1/ε

and

(2.3) M ]f(x) = sup
r>0

1
µ(B(x, r))

∫

B(x,r)

|f(y)− fB(x,r)| dµ(y).

The case ε = 1 ofMε is the classical Hardy-Littlewood maximal operator, andM1

will be denoted byM . Related toM ], we will say that f belongs to BMO if f ∈ L1
loc

and M ]f ∈ L∞. We shall denote by ‖f‖BMO the semi-norm given by ‖M ]f‖∞.
In addition to Mε and M ] we consider the operator (M ](|f |δ))1/δ , which will

be denoted by M ]
δ(f), and a maximal operator related to Orlicz norms. Before

introducing this operator we recall that a function ϕ : [0,∞) → [0,∞) is called a
Young function if it is continuous, convex, increasing and satisfies ϕ(0) = 0 and
ϕ(t) →∞ as t → ∞. We say that ϕ satisfies a doubling condition if ϕ(2t) 6 Cϕ(t)
for every t > 0, (i.e. ϕ satisfies the ∆2 condition).
We define the ϕ-average of a function f over a ball B by means of the Luxemburg

norm

‖f‖ϕ,B = inf
{
λ > 0:

1
µ(B)

∫

B

ϕ(|f(y)|/λ) 6 1
}
.

Also we have the following generalized Hölder inequality

(2.4)
1

µ(B)

∫

B

|f(y)g(y)| dµ(y) 6 ‖f‖ϕ,B‖g‖ϕ̃,B

79



where ϕ̃ is the complementary Young function associated to ϕ (for more details on

Orlicz spaces, see for instance [23]). There is a further generalization that will be
useful for our purposes (see [17]): Let ϕ1, ϕ2 and ψ be Young functions such that

ϕ−1
1 ϕ−1

2 6 ψ−1

then

‖fg‖ψ,B 6 C‖f‖ϕ1,B‖g‖ϕ2,B .

The maximal operator Mϕ associated to Young function ϕ is defined by

(2.5) Mϕf(x) = sup
B3x

‖f‖ϕ,B.

The main example of Young functions we shall consider is ϕ(t) = t(1 + log+ t)m,
m = 1, 2, 3, . . . with the corresponding maximal function denoted byML(logL)m . The

complementary Young function is given by ϕ̃(t) ∼= exp(t1/m) with the corresponding
maximal function denoted by M(expL)1/m .

Another important result we are going to apply is the fundamental estimate due
to John and Nirenberg (see [13] and [2]) for a function b in BMO

1
µ(B)

∫

B

exp
( |b(y)− bB |
C‖b‖BMO

)
dµ(y) 6 C

which is equivalent to

(2.6) ‖b− b2B‖expL,B 6 C‖b‖BMO.

In addition, concerning BMO, it was proved in [2] that there exist positive con-
stants C1 and C2 such that the following inequality

(2.7) C1‖b‖BMO 6
(

1
µ(B)

∫

B

|b(x)− bB |p dµ(x)
)1/p

6 C2‖b‖BMO

holds for b ∈ BMO and 1 < p < ∞. If p < 1, the second inequality in (2.7) still
holds, because of Hölder’s inequality.

Finally, we remark that C will denote a positive constant which may be different

even in a single chain of inequalities.

80



3. A Fefferman-Stein type inequality

The proof of our weighted version of Fefferman-Stein’s inequality on spaces of

homogeneous type is based on the ideas of Prof. H. Aimar for the un-weighted case.
We would like to thank him for sharing them with us. We need the following classical

covering lemmas on spaces of homogeneous type (both of them hold without the
condition that the measure is regular). The proof of the first of them is in [6].

3.1. Lemma. Let E be a bounded set in X , being (X, d, µ) a space of homo-
geneous type. Let {B(x, r(x)) : x ∈ E} be a covering of E by balls centered at
each point of E. Then there exists a sequence of points {xi} � ⊂ E such that

B(xi, r(xi)) ∩B(xj , r(xj )) = ∅ if i 6= j and E ⊂
∞⋃
i=1

B(xi, 4Kr(xi)).

In the next lemma (see [1]), the hypotheses of boundedness of E is replaced by

µ(E) <∞.

3.2. Lemma. Let (X, d, µ) be a space of homogeneous type. Let B = {Bα :
α ∈ Γ} be a family of balls in X such that E =

⋃
α∈Γ

Bα is measurable and µ(E) <∞.
Then there exists a disjoint sequence {B(xi, ri)} ⊂ B, possibly finite, such that
E ⊂ ⋃

i=1

B(xi, Cri) for some constant C (that only depends on K, the constant of

the quasi-metric). Moreover, every B ∈ B is contained in some B(xi, Cri).

Another result we need is the following extension to spaces of homogeneous type

of the well known Calderón-Zygmund decomposition. The proof can be found in [1].

3.3. Lemma (Calderón Zygmund decomposition). Let (X, d, µ) be a space of
homogeneous type. Let f > 0 be an integrable function on X . Then, for every
λ > mX(f) (mX(f) = 0 if µ(X) = +∞), there exists a sequence {Bi} of pairwise
disjoint balls such that, if B̃i is a dilation of Bi by the constant C of the covering

Lemma 3.2, we get

(a) mB̃i
(f) 6 λ 6 mBi(f);

(b) for every x ∈ X −⋃
i

B̃i and for every ball B centered at x, holds mB(f) 6 λ.

Now, we will prove a relation between weighted Lp-norms of the operatorsM and

M ] (see (2.2) and (2.3)), i.e. a Fefferman-Stein type inequality.
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3.4. Proposition. Let (X, d, µ) be a space of homogeneous type regular in
measure. Let f ∈ D be a positive function and w ∈ A∞. Then, for every p, 1 < p <

∞, there exists a positive constant C = C([w]A∞) such that if ‖Mf‖Lp(w) < +∞,
then

(3.5) ‖Mf‖pLp(w) 6
{
C‖M ]f‖pLp(w) if µ(X) = ∞,

C(w(X)(mX (f))p + ‖M ]f‖pLp(w)) if µ(X) <∞.

�����	��

. We consider f > 0, f ∈ D. Let t ∈ �

be such that

t

2
> mX(f) =

1
µ(X)

∫

X

f dµ.

We define

Ωt = {x ∈ X : ∃ r > 0 such that mB(x,r)(f) > t}

and
Ωt/2 = {x ∈ X : ∃ r > 0 such that mB(x,r)(f) > t/2}.

Then, it is obvious that Ωt ⊂ Ωt/2. For x ∈ Ωt let

Rt(x) = {r > 0: mB(x,r)(f) > t}

and
Rt/2(x) = {r > 0: mB(x,r)(f) > t/2}.

Then Rt(x) ⊂ Rt/2(x). On the other hand Rt(x) and Rt/2(x) are non empty sets
of real positive numbers bounded from above. This fact is obvious if µ(X) < ∞. If
µ(X) = +∞, since f ∈ D, we have

(3.6) 0 <
t

2
<

1
µ(B(x, r))

∫

B(x,r)∩suppf

f 6 C
µ(B(x, r) ∩ supp f)

µ(B(x, r))

which tends to zero when r tends to +∞.
Thus we can choose rt(x) ∈ Rt(x) such that Crt(x) 6∈ Rt(x) where C is the

constant of the Lemma 3.2. So

mB(x,rt(x))(f) > t > mB(x,Crt(x))(f).

Let rt/2(x) ∈ Rt/2(x) be such that

mB(x,rt/2(x))(f) >
t

2
> mB(x,Crt/2(x))(f)
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and

rt(x) < rt/2(x).

It is clear that for x ∈ Ωt/2 we have B(x, rt/2(x)) ⊂ {Mf > t/2}. Then

(3.7)
⋃

x∈Ωt

B(x, rt(x)) ⊂
⋃

x∈Ωt/2

B
(
x, rt/2(x)

)
⊂ {Mf > t/2}

and thus, since M is of weak type (1,1) (see [6]), we obtain

µ

( ⋃

x∈Ωt

B(x, rt(x))
)

6 µ({Mf > t/2}) 6 C

t

∫

X

|f | dµ < +∞.

Applying Lemma 3.2 to the families

Bt = {B(x, rt(x)) : x ∈ Ωt} and Bt/2 = {B(x, rt/2(x)) : x ∈ Ωt/2}

we get two collections of balls {Bsi : i ∈ � } with s = t, t/2, such that
i) Bsi ∩ Bsj = ∅, i 6= j;

ii) for every x ∈ Ωs there exists i ∈ �
such that B(x, rs(x)) ⊂ B(xi, Crs(xi)) = B̃si ;

iii) mBs
i
(f) > s > mB̃s

i
(f);

iv) Ωs ⊂ ⋃
i

B̃si , if x 6∈
⋃
i

B̃si then f(x) 6 s,

and, in addition,

v) for every i ∈ �
there exists j ∈ �

such that Bti ⊂ B̃
t/2
j ;

vi) for each j ∈ �
let Ij = {i ∈ �

: Bti ⊂ B̃
t/2
j , but Bti 6⊂ B̃

t/2
l , l = 1, . . . , j − 1}.

Then {Ij , j ∈
� } is a disjoint partition of � .

Concerning Bt and Bt/2, we can prove that there exists C such that the following
inequality

(3.8)
∑

i∈ �
w(Bti ) 6 Cw({M ]f > t/A}) +

C

Aδ

∑

j∈ �
w(Bt/2j )

holds for every A > 1. Indeed, let J1 = {j : B̃t/2j ⊂ {M ]f > t/A}} and J2 =

{j : B̃t/2j 6⊂ {M ]f > t/A}}. Then

∑

i∈ �
w(Bti ) =

∑

j∈ �

∑

i∈Ij

w(Bti )(3.9)

=
∑

j∈J1

∑

i∈Ij

w(Bti ) +
∑

j∈J2

∑

i∈Ij

w(Bti ) = I + II.
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It is easy to check that

(3.10) I 6 Cw({M ]f > t/A}).

On the other hand, if j ∈ J2 there exists x ∈ B̃
t/2
j such that M ]f(x) < t/A, and,

consequently,
1

µ(B̃t/2j )

∫

B̃
t/2
j

|f −m
B̃

t/2
j

(f)| dµ 6 t/A.

Then, by recalling that mBt
i
(f) > t and m

B̃
t/2
j

(f) 6 t/2, we have

∑

i∈Ij

(t− t/2)µ(Bti ) 6
∑

i∈Ij

∫

Bt
i

(f −m
B̃

t/2
j

(f)) dµ 6 (t/A)µ(B̃t/2j ),

which implies

(3.11) µ

( ⋃

i∈Ij

Bti

)
=

∑

i∈Ij

µ(Bti ) 6 (2/A)µ(B̃t/2j ).

Since
⋃
i∈Ij

Bti ⊂ B̃
t/2
j , and from the fact that w satisfies the A∞ condition (1.3), there

exist positive constants C and δ such that

w

( ⋃

i∈Ij

Bti

) /
w(B̃t/2j ) 6 C

(
µ

( ⋃

i∈Ij

Bti

) /
µ(B̃t/2j )

)δ
.

Therefore, from (3.11) we obtain

(3.12) w

( ⋃

i∈Ij

Bti

) /
w(B̃t/2j ) 6 C/Aδ .

But {Bti}i∈ � are disjoint, then, this inequality allows us to get

∑

i∈Ij

w(Bti ) 6 C

Aδ
w(B̃t/2j ) 6 C

Aδ
w(Bt/2j ).

Thus, from the above estimate, (3.9) and (3.10) we have

µ

( ⋃

i∈Ij

Bti

)
6 (C/A)µ(B̃t/2j ).
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Setting α(t) =
∑
i∈ �

w(Bti ), the inequality (3.8) can be written as

(3.13) α(t) 6 Cw({M ]f > t/A}) +
C

Aδ
α(t/2).

Now, let β(t) = w({Mf > t}). Since Bti ⊂ {Mf > t} if t > 2mX(f), we have
α(t) 6 β(t), t > 2mXf . On the other hand we get {Mf > t} ⊂ ⋃

i∈ �
B̃ti so it follows

that β(t) 6 Cα(t) for every t.
Let us observe that, if N > 0,

(3.14)
∫ N

2mX(f)

ptp−1α(t) dt 6
∫ N

2mX(f)

ptp−1β(t) dt 6 C‖Mf‖Lp(w) < +∞.

Thus, from (3.13) we can obtain
∫ N

2mX (f)

ptp−1α(t) dt

6 C

∫ N

2mX(f)

ptp−1w({M ]f > t/A}) dt+
C

Aδ

∫ N

2mX (f)

ptp−1α(t/2) dt

6 C

∫ N

2mX(f)

ptp−1w({M ]f > t/A}) dt+
C

Aδ

∫ N

mX (f)

ptp−1α(t) dt.

Writing the last integral as
∫ 2mX(f)

mX(f)

ptp−1α(t) dt+
∫ N

2mX(f)

ptp−1α(t) dt,

choosing A such that C/Aδ = 1/2 and taking into account (3.14) we get

1
2

∫ N

2mX(f)

ptp−1α(t) dt

6 C

∫ N

2mX (f)

ptp−1w({M ]f > t/A}) dt+
1
2

∫ 2mX (f)

mX(f)

ptp−1α(t) dt

6 C

∫ ∞

2mX (f)

ptp−1w({M ]f > t/A}) dt+ Cw(X)(mX (f))p.

Finally, by using that α(t) 6 β(t) when t > 2mX(f), and β(t) 6 w(X) for all t > 0,
we have the estimate

∫

X

|Mf |pw(x) dµ 6
∫ 2mX (f)

0

ptp−1β(t) dt+
∫ ∞

2mX(f)

ptp−1α(t) dt

6 Cw(X)(mX (f))p +
∫

X

|M ]f |pw(x) dµ,

which proves our result (note that mX(f) = 0 when µ(X) = ∞). �
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4. Proof of theorem 1.4

In order to give a rigorous definition of Tmb , note that for the case m = 1, the
operator

(4.1) T 1
b f = bTf − T (bf)

is well defined if b belongs to L∞ and f ∈ D. If b ∈ BMO, by the John-Nirenberg
lemma, b ∈ Lploc, 1 < p <∞. Then, for f ∈ D and b ∈ BMO, T 1

b f is well defined.

For the general case, it is easy to see that, in a formal sense, the operator (1.1)
satisfies the following identity

(4.2) Tmb f =
m−1∑

i=0

Ci(b(x) − λ)m−iT ibf(x) + T ((b− λ)mf)(x),

for any λ in
�
and constants Ci (from the Newton’s formula). Then, for b in L∞

and f in D, Tmb f can be defined inductively from the case m = 1. The extension
for b in BMO and a wider set of f will be obtained by an argument of density from
the inequalities proved in our main results.

The next two lemmas are devoted to show connections between the operators Tmb ,
Mε and M ] and are the key points for the reasoning. The Euclidean case of the first

one is contained in [19].

4.3. Lemma. Let b ∈ BMO, with ‖b‖BMO = 1 and 0 < δ < ε < 1. Then, there
exists a positive constant C = Cδ such that

(4.4) M ]
δ(T

m
b f)(x) 6 C

(m−1∑

j=0

Mε(T
j
b f)(x) +Mm+1f(x)

)

holds for every f ∈ D, for a.e. x ∈ X and for each m = 0, 1, 2, . . .

4.5. Remark. When m = 0 we understand (4.4) as M ]
δ (Tf)(x) 6 CMf(x).

�����	��

. The proof follows the same lines as in the Euclidean case with obvious

changes (see [19]). �
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4.6. Lemma. Let f ∈ D, b ∈ BMO with ‖b‖BMO = 1 and 0 < δ < ε < 1. Then
the following estimate for Tmb holds

∫

X

|Tmb f |δ dµ 6 C

(m−1∑

j=0

∫

X

|Mε(T
j
b f)(x)|δ dµ(x) + µ(X)‖f‖δL(logL)m,X

)
.

�����	��

. The case µ(X) = ∞ is obvious. Let us consider µ(X) <∞. Using the

expression (4.2) for Tmb we have
∫

X

|Tmb f |δ dµ

6 C

(m−1∑

j=0

∫

X

|b(x)− λ|(m−j)δ |T jb f(x)|δ dµ(x) +
∫

X

|T ((b− λ)mf)(x)|δ dµ(x)
)

6 C(A+B).

Let us first estimate B. If we take λ = bX , since T is of weak type (1.1), then

Kolmogorov’s inequality, (2.4) and (2.6) allow us to get

∫

X

|T ((b− λ)mf)(x)|δ dµ(x) 6 µ(X)
(

1
µ(X)

∫

X

|b(x)− bX |mf(x) dµ(x)
)δ

6 µ(X)‖(b− bX)m‖δexpL1/m,X‖f‖δL(logL)m,X

6 Cµ(X)‖b‖δBMO‖f‖δL(logL)m,X

= Cµ(X)‖f‖δL(logL)m,X .

In order to estimate A we select r such that 1 < r < ε/δ we use Hölder’s inequality
and the equivalence between norms in BMO to obtain

m−1∑

j=0

∫

X

|b(x)− bX |(m−j)δ |T jb f(x)|δ dµ(x)

6
m−1∑

j=0

µ(X)
(

1
µ(X)

∫

X

|b(x)− bX |(m−j)δr
′
dµ(x)

)1/r′

×
(

1
µ(X)

∫

X

|T jb f(x)|δr dµ(x)
)1/r

6 Cµ(X)
m−1∑

j=0

(
1

µ(X)

∫

X

|T jb f(x)|ε dµ(x)
)δ/ε

6 Cµ(X)
m−1∑

j=0

(Mε(T
j
b f)(x))δ

for almost every x ∈ X .
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Then, from the estimates for A and B, we get

∫

X

|Tmb f |δ dµ 6 Cµ(X)
(m−1∑

j=0

|Mε(T
j
b f)(x)|δ + ‖f‖δL(logL)m,X

)
.

Finally, integrating on X we obtain the desired result. �

Now we are in position to proceed with the proof of Theorem 1.4.
�����	��


of Theorem 1.4. Assuming ‖b‖BMO = 1, we proceed by induction.
Let us prove the case m = 0 for X satisfying µ(X) = ∞. Since w ∈ A∞, there

exists r > 1 such that w ∈ Ar. We can select 0 < ε < 1 such that 0 < ε < p/r,

and choose δ < ε small enough such that p/δ > r and w ∈ Ap/δ . Then, we have
that the Hardy Littlewood maximal operator is bounded from Lp/δ(w) into Lp/δ(w)
(see [16]). Consequently, since ‖Tf‖Lp(w) <∞, we get

‖Mδ(Tf)‖Lp(w) = ‖M(|Tf |δ)‖1/δ
Lp/δ(w)

6 C‖ |Tf |δ‖1/δ
Lp/δ(w)

6 C‖Tf‖Lp(w) <∞.

From Lebesgue’s Differentiation theorem, Proposition 3.4 and Lemma 4.3 we have

‖Tf‖Lp(w) 6 ‖Mδ(Tf)‖Lp(w) 6 ‖M ]
δ(Tf)‖Lp(w) 6 C‖Mf‖Lp(w).

Let us now consider the case µ(X) <∞. Proposition 3.4 yields

‖Tf‖Lp(w) 6 ‖Mδ(Tf)‖Lp(w)

6 C
(
w(X)1/p(mX(|Tf |δ))1/δ + ‖M ]

δ(Tf)‖Lp(w)

)

= I + II.

We estimate II as in the previous case. For I we use Kolmogorov’s inequality to

obtain

I = C
w(X)1/p

µ(X)1/δ

(∫

X

|Tf |δ dµ
)1/δ

6 w(X)1/p
1

µ(X)

∫

X

|f | dµ

6
(∫

X

(
1

µ(X)

∫

X

|f | dµ
)p
w dµ

)1/p

6
(∫

X

|Mf |pw dµ
)1/p

,

which completes the case m = 0.
Now, suppose the result holds for 0, 1, . . . ,m−1. Let X be such that µ(X) = +∞.

Reasoning as in the case m = 0 we get that ‖Mδ(Tmb f)‖Lp(w) < ∞. Then, we can
apply Proposition 3.4 and Lemma 4.3 to get

‖Tmb f‖Lp(w) 6 ‖Mδ(Tmb f)‖Lp(w) 6 ‖M ]
δ(T

m
b f)‖Lp(w)

6 C

(m−1∑

j=0

‖Mε(T
j
b f)‖Lp(w) + ‖Mm+1f‖Lp(w)

)
.
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Since w ∈ Ap/ε and from the inductive hypothesis, we have that the last expression
in the above inequality is bounded by

C

(m−1∑

j=0

‖T jb f‖Lp(w) + ‖Mm+1f‖Lp(w)

)

6 C

(m−1∑

j=0

‖M j+1f‖Lp(w) + ‖Mm+1f‖Lp(w)

)

6 C‖Mm+1f‖Lp(w),

as we wanted to prove.
Let us now consider the case µ(X) <∞. By Proposition 3.4 for this case we have

‖Tmb f‖Lp(w) 6 ‖Mδ(Tmb f)‖Lp(w)

6 C
(
w(X)(mX (|Tmb f |δ))p/δ + ‖M ]

δ (T
m
b f)‖pLp(w)

)1/p

6 C
(
(w(X)(mX (|Tmb f |δ))p/δ)1/p + ‖M ]

δ(T
m
b f)‖Lp(w)

)

= C(A+B).

An estimate for B can be obtained following similar lines as in the previous case.
In order to get the estimate of A, we first apply Lemma 4.6 to obtain

(4.7) A 6 w(X)1/p

µ(X)1/δ

(m−1∑

j=0

∫

X

|Mε(T
j
b f)(x)|δ dµ(x) + µ(X)‖f‖δL(logL)m,X

)1/δ

.

Let ε and δ be as before. Then, since w ∈ Ap/ε we have that

∫

X

|M δ
ε (T

j
b f)(x)| dµ(x) 6

(∫

X

|M(|T jb f |ε)(x)|p/εw(x) dµ(x)
)δ/p

×
(∫

X

w−δ/(p−δ)
)1−δ/p

6 C

(∫

X

|T jb f |pw(x) dµ(x)
)δ/p(∫

X

w−1/(p/δ−1)

)1−δ/p
.

So, from (4.7) we obtain

A 6 C
w(X)1/p

µ(X)1/δ

((∫

X

w−1/(p/δ−1)

)1−δ/p
(4.8)

×
m−1∑

j=0

‖T jb f)‖δLp(w) + µ(X)‖f‖δL(logL)m,X

)1/δ

.
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Using an induction argument like in the case µ(X) = ∞ we obtain that the last

expression is bounded by

C
w(X)1/p

µ(X)1/δ

(
‖Mm+1f)‖δLp(w)

(∫

X

w−1/(p/δ−1)

)1−δ/p
+ µ(X)‖f‖δL(logL)m,X

)1/δ

(4.9)

6 C

(
w(X)δ/p

µ(X)
‖Mm+1f)‖δLp(w)

(∫

X

w−1/(p/δ−1)

)1−δ/p

+ w(X)δ/p‖f‖δL(logL)m,X

)1/δ

= (I + II)1/δ .

Let us consider I . We recall that w ∈ Ap/δ , so, since X becomes a ball,

1
µ(X)

∫

X

w

(
1

µ(X)

∫

X

w−1/(p/δ−1)

)p/δ−1

6 C.

Thus we have

(4.10) I 6 C‖Mm+1f‖δLp(w).

To estimate II we use the fact that there exists positive constants C1 and C2 such
that

(4.11) C1ML(logL)mf(x) 6 Mm+1f(x) 6 C2ML(logL)mf(x)

(for
� n this result is due to C. Pérez ([19]). In the general setting of spaces of

homogeneous type, the left inequality was proved in [20]. The right one can be
proved by reasoning as in the Euclidean case ([19], p. 174) with minor changes.

So, using (2.5) and (4.11), we obtain

w(X)δ/p‖f‖δL(logL)m,X =
(∫

X

‖f‖pL(logL)m,Xw(x) dµ(x)
)δ/p

6
(∫

X

(ML(logL)mf(x))pw(x) dµ(x)
)δ/p

6 C‖Mm+1f‖δLp(w).

Finally, from (4.7), (4.8), (4.9), (4.10) and the last inequality we get the desired
result.

If ‖b‖BMO 6= 1 we apply the above case with b/‖b‖BMO to conclude the result,
taking in account that Tmb/‖b‖BMO

f = Tmb f/‖b‖mBMO. �
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5. Proof of Theorem 1.5

In order to prove this theorem we are going to apply, like in [18], a duality ar-

gument. For this method we need the following result concerning the operator Mϕ

defined in (2.5). The proof is in [21]. We remark that the same result is proved
by R. Wheeden and C. Pérez in [20], but under the additional hypothesis that the

annuli in (X, d, µ) are nonempty.
We recall that a doubling Young function ϕ satisfies the Bp condition, 1 < p <∞,

if there is a positive constant c such that

∫ ∞

c

ϕ(t)
tp

dt
t
∼=

∫ ∞

c

( tp
′

ϕ̃(t)

)p−1 dt
t
<∞.

5.1. Theorem. Let 1 < p < ∞, ϕ be a doubling Young function and (X, d, µ)
a space of homogeneous type with µ(X) = ∞. Then the following statements are
equivalent:

i) ϕ ∈ Bp.
ii) There exists a constant C such that

∫

X

(Mϕf(x))p dµ(x) 6 C

∫

X

|f(x)|p dµ(x)

for all nonnegative functions f .

iii) There exists a constant C such that

∫

X

(Mϕf(x))pw(x) dµ(x) 6 C

∫

X

|f(x)|pMw(x) dµ(x)

for all nonnegative functions f and all weights w, where M is the Hardy-

Littlewood maximal operator.

iv) There exists a constant C such that

(5.2)
∫

X

(Mf(x))p
w(x)

(Mϕ̃(u1/p)(x))p
dµ(x) 6 C

∫

X

|f(x)|pMw(x)
u(x)

dµ(x)

for all nonnegative functions f and all weights w and u.

5.3. Remark. If µ(X) <∞, the implications i) ⇒ ii) ⇒ iii) ⇒ iv) still hold but
the converses results are not true (see [21]).

�����	��

of Theorem 1.5. The proof can be done by reasoning as in the case

X =
� n (see [18]), with minor changes. The main steps are:
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Step 1. For simplicity, we denote k(p) = [(k + 1)p] + 1. Instead of proving (1.6),
and from the fact that the adjoint operator to T kb is essentially the same, we consider
the corresponding dual inequality

(5.4)
∫

X

|T kb f(x)|p′(Mk(p)w(x))1−p
′
dµ(x) 6 C

∫

X

|f(x)|p′w(x)1−p
′
dµ(x).

Step 2. Since (Mk(p)w)1−p
′
belongs to the A∞ class of Muckenhoupt, from The-

orem 1.4 we have that

∫

X

|T kb f(x)|p′ (Mk(p)w)1−p
′
dµ(x) 6 C

∫

X

(Mk+1f(x))p
′
(Mk(p)w)1−p

′
dµ(x).

Step 3. Then, the proof is reduced to proving the next two weighted norm in-
equalities for the maximal operator Mm+1

∫

X

(Mk+1f(x))p
′
(Mk(p)w)1−p

′
dµ(x) 6 C

∫

X

|f(x)|p′w(x)1−p
′
dµ(x).

This type of inequality follows as an application of Theorem 5.1. �
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