Czechoslovak Mathematical Journal

De-xiang Ma; Weigao Ge; Zhan-Ji Gui
Existence and iteration of positive solutions for a singular two-point boundary value problem with a p-Laplacian operator

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 1, 135-152
Persistent URL: http://dml.cz/dmlcz/128161

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

EXISTENCE AND ITERATION OF POSITIVE SOLUTIONS FOR A SINGULAR TWO-POINT BOUNDARY VALUE PROBLEM
 WITH A p-LAPLACIAN OPERATOR

De-Xiang Ma, Beijing, Wei-Gao Ge, Beijing, and Zhan-Ji Gui, Hainan

(Received November 6, 2004)

Abstract. In the paper, we obtain the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the equation $\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}+q(t) f(u)=$ $0,0<t<1$, where $\varphi_{p}(s):=|s|^{p-2} s, p>1$, subject to nonlinear boundary condition. The main tool is the monotone iterative technique. Here, the coefficient $q(t)$ may be singular at $t=0,1$.

Keywords: iteration, symmetric and monotone positive solution, nonlinear boundary value problem, p-Laplacian

MSC 2000: 34B10, 34B15

1. Introduction

The purpose of this paper is to consider the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the nonlinear two-point singular boundary value problem (BVP) with a p-Laplacian operator

$$
\begin{equation*}
\left(\varphi_{p}\left(u^{\prime}\right)\right)^{\prime}+q(t) f(u)=0, \quad 0<t<1 \tag{1}
\end{equation*}
$$

The second author was supported by National Natural Sciences Foundation of China No. 10371006.
subject to
(BC)

$$
\left\{\begin{array}{ll}
(\mathrm{a}) \quad u(0)-B_{0}\left(u^{\prime}(0)\right)=0, & u(1)+B_{1}\left(u^{\prime}(1)\right)=0 \\
(\mathrm{~b}) \quad u(0)-B\left(u^{\prime}(0)\right)=0, & u(1)+B\left(u^{\prime}(1)\right)=0 \\
(\mathrm{c}) \quad u(0)-B\left(u^{\prime}(0)\right)=0, & u^{\prime}(1)=0 \\
(\mathrm{~d}) & u^{\prime}(0)=0,
\end{array} \quad u(1)+B\left(u^{\prime}(1)\right)=0, ~ \$\right.
$$

where $\varphi_{p}(s)=|s|^{p-2} s, p>1, B_{0}, B_{1}$ and B are both continuous functions defined on $(-\infty,+\infty)$, and the coefficient $q(t)$ may be singular at $t=0,1$.

Several papers have been devoted in the recent years to the study of (1) subject to different linear or nonlinear boundary conditions, see [1], [2], [4], [6], [7] and their references. Here, only positive solutions are meaningful. By using the fixed point theorem in cones due to Krasnoselskii [3], Wang [1] and Kong and Wang [2] established the existence of one positive solution for (1) subject to one of the following nonlinear boundary conditions:

$$
\begin{align*}
u(0)-g_{1}\left(u^{\prime}(0)\right) & =0, & u(1)+g_{2}\left(u^{\prime}(1)\right) & =0, \tag{w1}\\
u(0)-g_{1}\left(u^{\prime}(0)\right) & =0, & u^{\prime}(1) & =0, \tag{w2}\\
u^{\prime}(0) & =0, & u(1)+g_{2}\left(u^{\prime}(1)\right) & =0 . \tag{w3}
\end{align*}
$$

By applying a new twin fixed point theorem due to Avery and Henderson [5], He and Ge [4] obtained the existence of two positive solutions for (1) subject to (w1), (w2), (w3). By using the fixed point theorem in cones due to Krasnoselskii [3], R. P. Agarwal, Haishen Lü and D. O'Regan [6] studied the problem of eigenvalues of (1) subject to (BCa) when $B_{0}=B_{1}=0$, they also obtained the existence of two positive solutions. By using an extension of the Leggett-Williams theorem, i.e., the fixed point theorem of five functionals, Guo and Ge [7] got the existence of three positive solutions for (1) subject to (w1), (w2), (w3), and

$$
\begin{equation*}
u(0)=0, \quad u(1)=0 . \tag{g1}
\end{equation*}
$$

We can see easily that all the results obtained in [1], [2], [4], [6], [7] are the existence of positive solutions. Seeing such a fact, we cannot but ask "how can we find the solutions since the solutions exist definitely?" Motivated by the above-mentioned results, in this paper, by improving the classical monotone iterative technique of Amann [8], we obtain not only the existence of positive solutions, but also give an iterative scheme for approximating the solutions. It is worth stating that the first term of our iterative scheme is a constant function or a simple function. Therefore,
the iterative scheme is significant and feasible. At the same time, we give a way to find the solution which will be useful from an application viewpoint.

We consider the Banach space $E=C[0,1]$ equipped with norm $\|w\|=\max _{0 \leqslant t \leqslant 1}|w(t)|$. In this paper, a positive solution w^{*} of (1) and (BC) means a solution w^{*} of (1), (BC) satisfying $w^{*}(t)>0,0<t<1$. A symmetric solution w^{*} of (1), (BC) means a solution w^{*} of (1), (BC) satisfying $w^{*}(t)=w^{*}(1-t), 0 \leqslant t \leqslant 1$. A monotone solution w^{*} of $(1),(\mathrm{BC})$ means a solution w^{*} of $(1),(\mathrm{BC})$ such that $w(t)$ is nondecreasing or $w(t)$ is nonincreasing.

We list the following conditions for convenience:
(H1) $f \in C([0,+\infty),[0,+\infty))$;
(H2) $q(t)$ is a nonnegative measurable function defined on $(0,1)$, and $q(t)$ is not identically zero on any compact subinterval of $(0,1)$. Furthermore, $q(t)$ satisfies

$$
0<\int_{0}^{1} q(t) \mathrm{d} t<+\infty
$$

(H3a) $B_{0}(v)$ and $B_{1}(v)$ are both nondecreasing, continuous, odd functions defined on $(-\infty,+\infty)$ and at least one of them satisfies the condition that there exists $m>0$ such that

$$
0 \leqslant B_{i}(v) \leqslant m v \quad \text { for all } v \geqslant 0, \quad i=0 \text { or } 1 ;
$$

(H3b) $B(v)$ is a nondecreasing, continuous, odd function defined on $(-\infty,+\infty)$ and there exists $m>0$ such that

$$
0 \leqslant B(v) \leqslant m v \quad \text { for all } v \geqslant 0
$$

2. Some background definitions and two lemmas

In this section, we suppose that (H1), (H2) and (H3a) hold.
If $P \subset E$ is a cone, we denote the order induced by P on E by \leqslant, i.e.,

$$
x \leqslant y \quad \text { if and only if } \quad y-x \in P
$$

Definition 2.1. Given a cone P in E, a functional $\psi: P \rightarrow \mathbb{R}$ is said to be nondecreasing on P, provided $\psi(x) \leqslant \psi(y)$, for all $x, y \in P$ with $x \leqslant y$.

Definition 2.2. A functional $\psi:[0,1] \rightarrow \mathbb{R}$ is said to be concave on $[0,1]$, provided $\psi(t x+(1-t) y) \geqslant t \psi(x)+(1-t) \psi(y)$, for all $x, y \in[0,1]$ and $t \in[0,1]$.

Lemma 2.1. For any fixed $k_{1} \geqslant 0, k_{2} \geqslant 0$, if $w_{i}(t) \in E, i=1,2$ satisfy

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(w_{2}^{\prime}(t)\right)\right)^{\prime}+\left(\varphi_{p}\left(w_{1}^{\prime}(t)\right)\right)^{\prime} \geqslant 0, \quad 0 \leqslant t \leqslant 1 \\
k_{1} w_{2}(0)-B_{0} w_{2}^{\prime}(0)=0, \quad k_{2} w_{2}(1)+B_{1} w_{2}^{\prime}(1)=0 \\
k_{1} w_{1}(0)-B_{0} w_{1}^{\prime}(0)=0, \quad k_{2} w_{1}(1)+B_{1} w_{1}^{\prime}(1)=0
\end{array}\right.
$$

then $w_{2}(t) \geqslant w_{1}(t), 0 \leqslant t \leqslant 1$.
Proof. Suppose not, then there exists $t_{0} \in[0,1]$ such that $\left(w_{2}-w_{1}\right)\left(t_{0}\right)=$ $\min _{0 \leqslant t \leqslant 1}\left(w_{2}-w_{1}\right)(t)<0$. We now show that $\left(w_{2}-w_{1}\right)^{\prime}\left(t_{0}\right)=0$. In fact, if $t_{0}=0$, then from the definition of minimum, $\left(w_{2}-w_{1}\right)^{\prime}(0) \geqslant 0$, that is $w_{2}^{\prime}(0) \geqslant w_{1}^{\prime}(0)$. On the other hand, $B_{0}\left(w_{2}^{\prime}(0)\right)-B_{0}\left(w_{1}^{\prime}(0)\right)=k_{1}\left(w_{2}(0)-w_{1}(0)\right) \leqslant 0$, so $w_{2}^{\prime}(0) \leqslant w_{1}^{\prime}(0)$ since $B_{0}(v)$ is nondecreasing. Thus, $\left(w_{2}-w_{1}\right)^{\prime}(0)=0$. If $t_{0}=1$, similarly to $t_{0}=0$, we can also prove that $\left(w_{2}-w_{1}\right)^{\prime}(1)=0$. If $t_{0} \in(0,1)$, then $\left(w_{2}-w_{1}\right)^{\prime}\left(t_{0}\right)=0$ certainly.

Since $\left(\varphi_{p}\left(w_{1}^{\prime}\right)-\varphi_{p}\left(w_{2}^{\prime}\right)\right)^{\prime} \geqslant 0$ and $\varphi_{p}\left(w_{1}^{\prime}\left(t_{0}\right)\right)-\varphi_{p}\left(w_{2}^{\prime}\left(t_{0}\right)\right)=0$, we have
$\varphi_{p}\left(w_{1}^{\prime}(t)\right)-\varphi_{p}\left(w_{2}^{\prime}(t)\right) \geqslant 0, \quad t \in\left[t_{0}, 1\right] \quad$ and $\quad \varphi_{p}\left(w_{1}^{\prime}(t)\right)-\varphi_{p}\left(w_{2}^{\prime}(t)\right) \leqslant 0, \quad t \in\left[0, t_{0}\right]$.
So

$$
w_{1}^{\prime}(t)-w_{2}^{\prime}(t) \geqslant 0, \quad t \in\left[t_{0}, 1\right] \quad \text { and } \quad w_{1}^{\prime}(t)-w_{2}^{\prime}(t) \leqslant 0, \quad t \in\left[0, t_{0}\right]
$$

Thus, when $t \in\left[t_{0}, 1\right]$, $k_{2}\left(w_{1}-w_{2}\right)(t) \leqslant k_{2}\left(w_{1}-w_{2}\right)(1)=B_{1}\left(w_{2}^{\prime}(1)\right)-B_{1}\left(w_{1}^{\prime}(1)\right) \leqslant$ 0 , i.e., $w_{1}(t) \leqslant w_{2}(t)$ and when $t \in\left[0, t_{0}\right], k_{1}\left(w_{1}-w_{2}\right)(t) \leqslant k_{1}\left(w_{1}-w_{2}\right)(0)=$ $-B_{0}\left(w_{2}^{\prime}(0)\right)+B_{0}\left(w_{1}^{\prime}(0)\right) \leqslant 0$, i.e., $w_{1}(t) \leqslant w_{2}(t)$. So, for any $t \in[0,1], w_{2}(t)-w_{1}(t) \geqslant$ 0 , which is a contradiction to the assumption. Therefore, $w_{2}(t) \geqslant w_{1}(t), 0 \leqslant t \leqslant 1$ and the Lemma is proved.

3. Existence and iteration of solution of (1), (BCa)

In this section, we suppose that (H1), (H2) and (H3a) hold.
Define

$$
P_{a}=\{u \in E: u(t) \text { is a nonnegative, concave function }\} .
$$

Then P_{a} is an cone in E. For each $u \in P_{a}$, we define an operator $T: P_{a} \rightarrow E$ by

$$
\left(T_{a} u\right)(t):=\left\{\begin{array}{l}
B_{0} \varphi_{p}^{-1}\left(\int_{0}^{\sigma} q(s) f(u(s)) \mathrm{d} s\right)+\int_{0}^{t} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \tag{2}\\
0 \leqslant t \leqslant \sigma \\
B_{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\int_{t}^{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
\sigma \leqslant t \leqslant 1
\end{array}\right.
$$

where $\sigma=0$ if $(T u)^{\prime}(0)=0$, and $\sigma=1$ if $(T u)^{\prime}(1)=0$; otherwise, σ is a solution of the equation

$$
\begin{equation*}
z(x):=v_{1}(x)-v_{2}(x)=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{array}{r}
v_{1}(x)=B_{0} \varphi_{p}^{-1}\left(\int_{0}^{x} q(s) f(u(s)) \mathrm{d} s\right)+\int_{0}^{x} \varphi_{p}^{-1}\left(\int_{s}^{x} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
0 \leqslant x \leqslant 1
\end{array}
$$

and

$$
\begin{array}{r}
v_{2}(x)=B_{1} \varphi_{p}^{-1}\left(\int_{x}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\int_{x}^{1} \varphi_{p}^{-1}\left(\int_{x}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
0 \leqslant x \leqslant 1
\end{array}
$$

Note that $z(x)$ is a strictly increasing continuous function defined on $[0,1]$ with $z(0)<0$ and $z(1)>0$, and hence there exists a unique $\sigma \in(0,1)$ which satisfies (3). The operator T_{a} is thus well defined.

Just as proved in [1] or [6], a standard argument shows the following result.

Lemma 3.1. $T: P_{a} \rightarrow P_{a}$ is continuous and compact. Furthermore, each fixed point of T_{a} is a nonnegative, concave solution of (1) and (BCa).

Lemma 3.2 ([6]). For any $0<\delta<\frac{1}{2}, u \in P_{a}$ has the following properties:
(a) $u(t) \geqslant\|u\| t(1-t)$ for all $t \in[0,1]$.
(b) $u(t) \geqslant \delta^{2}\|u\|$ for all $t \in[\delta, 1-\delta]$.

For any $0<\delta<\frac{1}{2}$, define

$$
y(x)=\int_{\delta}^{x} \varphi_{p}^{-1}\left(\int_{s}^{x} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s+\int_{x}^{1-\delta} \varphi_{p}^{-1}\left(\int_{x}^{s} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s, \quad x \in[\delta, 1-\delta] .
$$

Then $y(x)$ is continuous and positive on $[\delta, 1-\delta]$.

Theorem 3.1. Assume (H1), (H2) and (H3a) hold. If there exist $\delta \in\left(0, \frac{1}{2}\right)$ and two positive numbers $b<a$ such that
(C1) $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing;
(C2) $f\left(\delta^{2} b\right) \geqslant(b B)^{p-1}, f(a) \leqslant(a A)^{p-1}$, where $B=2 / \Gamma$ and $\Gamma=\min _{x \in[\delta, 1-\delta]} y(x)>$ $0 ; A=1 /(m+1) \varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) \mathrm{d} \tau\right)$,
then (1), (BCa) has one positive solution $w^{*} \in P_{a}$ with $b \leqslant\left\|w^{*}\right\| \leqslant a$ and $\lim _{n \rightarrow+\infty} T_{a}^{n} w_{0}=w^{*}$, where $w_{0}(t)=a, t \in[0,1]$.

Proof. We denote $P_{a}[b, a]=\left\{w \in P_{a}: b \leqslant\|w\| \leqslant a\right\}$. In what follows, we first prove that $T_{a} P_{a}[b, a] \subset P_{a}[b, a]$.

Let $w \in P_{a}[b, a]$, then $0 \leqslant w(t) \leqslant \max _{t \in[0,1]} w(t)=\|w\| \leqslant a$. By Lemma 3.2, $\min _{t \in[\delta, 1-\delta]} w(t) \geqslant \delta^{2}\|w\| \geqslant \delta^{2} b$. So, by the assumptions ($C 1$) and ($C 2$), we have

$$
\begin{align*}
& 0 \leqslant f(w(t)) \leqslant f(a) \leqslant(a A)^{p-1}, \quad t \in[0,1] \tag{4}\\
& f(w(t)) \geqslant f\left(\delta^{2} b\right) \geqslant(b B)^{p-1}, \quad t \in[\delta, 1-\delta] \tag{5}
\end{align*}
$$

Therefore, for $w(t) \in P_{a}[b, a]$, on the one hand, by (5) we have, when $\sigma \in[\delta, 1-\delta]$,

$$
\begin{aligned}
2\left\|T_{a} w\right\|= & 2 T_{a} w(\sigma) \\
= & B_{0} \varphi_{p}^{-1}\left(\int_{0}^{\sigma} q(s) f(u(s)) \mathrm{d} s\right)+\int_{0}^{\sigma} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& +B_{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\int_{\sigma}^{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
\geqslant & \int_{0}^{\sigma} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s+\int_{\sigma}^{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
\geqslant & \int_{\delta}^{\sigma} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s+\int_{\sigma}^{1-\delta} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
\geqslant & b B\left[\int_{\delta}^{\sigma} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s+\int_{\sigma}^{1-\delta} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s\right] \\
= & b B y(\sigma) \geqslant b B \Gamma=2 b,
\end{aligned}
$$

thus, $\left\|T_{a} w\right\| \geqslant b$; when $\sigma \in[0, \delta]$,

$$
\begin{aligned}
\left\|T_{a} w\right\| & \geqslant\left(T_{a} w\right)(\delta) \\
& =B_{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\int_{\delta}^{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geqslant \int_{\delta}^{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \geqslant \int_{\delta}^{1-\delta} \varphi_{p}^{-1}\left(\int_{\delta}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& =b B y(\delta) \geqslant b B \Gamma=2 b \geqslant b
\end{aligned}
$$

and when $\sigma \in[1-\delta, 1]$,

$$
\begin{aligned}
\left\|T_{a} w\right\| & \geqslant\left(T_{a} w\right)(1-\delta) \\
& =B_{0} \varphi_{p}^{-1}\left(\int_{0}^{\sigma} q(s) f(u(s)) \mathrm{d} s\right)+\int_{0}^{1-\delta} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geqslant \int_{0}^{1-\delta} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \geqslant \int_{\delta}^{1-\delta} \varphi_{p}^{-1}\left(\int_{s}^{1-\delta} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& =b B y(1-\delta) \geqslant b B \Gamma=2 b \geqslant b .
\end{aligned}
$$

On the other hand, by (H3a) and (4) we see that at least one of the following holds,

$$
\begin{aligned}
\left\|T_{a} w\right\| & =\left\|T_{a} w(\sigma)\right\| \\
& =B_{0} \varphi_{p}^{-1}\left(\int_{0}^{\sigma} q(s) f(u(s)) \mathrm{d} s\right)+\int_{0}^{\sigma} \varphi_{p}^{-1}\left(\int_{s}^{\sigma} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \leqslant B_{0} \varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \\
& \leqslant(m+1) a A \varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) \mathrm{d} \tau\right)=a
\end{aligned}
$$

or

$$
\begin{aligned}
\left\|T_{a} w\right\| & =\left\|T_{a} w(\sigma)\right\| \\
& =B_{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\int_{\sigma}^{1} \varphi_{p}^{-1}\left(\int_{\sigma}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \leqslant B_{1} \varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(u(s)) \mathrm{d} s\right)+\varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \\
& \leqslant(m+1) a A \varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) \mathrm{d} \tau\right)=a
\end{aligned}
$$

Altogether, we get $b \leqslant\left\|T_{a} w\right\| \leqslant a$ for $w \in P_{a}[b, a]$, which means that $T_{a} P_{a}[b, a] \subset$ $P_{a}[b, a]$.

Let $w_{0}(t)=a, t \in[0,1]$, then $w_{0}(t) \in P_{a}[b, a]$. Let $w_{1}=T_{a} w_{0}$, then $w_{1} \in P_{a}[b, a] ;$ we denote

$$
\begin{equation*}
w_{n+1}=T w_{n}=T^{n+1} w_{0} \quad(n=1,2, \ldots) \tag{6}
\end{equation*}
$$

Since $T_{a} P_{a}[b, a] \subset P_{a}[b, a]$, we have $w_{n} \in P_{a}[b, a],(n=0,1,2, \ldots)$. From Lemma 3.1, T_{a} is compact, so $\left\{w_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{w_{n_{k}}\right\}_{k=1}^{\infty}$ and there exists $w^{*} \in P_{a}[b, a]$, such that $w_{n_{k}} \rightarrow w^{*}$.

Now, since $w_{1} \in P_{a}[b, a]$, we have

$$
0 \leqslant w_{1}(t) \leqslant\left\|w_{1}\right\| \leqslant a=w_{0}(t)
$$

by the definition of w_{1} and w_{2}, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\varphi_{p}\left(w_{1}^{\prime}\right)\right)^{\prime}+q(t) f\left(w_{0}(t)\right)=0, \quad 0<t<1 \\
w_{1}(0)-B_{0}\left(w_{1}^{\prime}(0)\right)=0, \quad w_{1}(1)+B_{1}\left(w_{1}^{\prime}(1)\right)=0,
\end{array}\right. \tag{7}\\
& \left\{\begin{array}{l}
\left(\varphi_{p}\left(w_{2}^{\prime}\right)\right)^{\prime}+q(t) f\left(w_{1}(t)\right)=0, \quad 0<t<1 \\
w_{2}(0)-B_{0}\left(w_{2}^{\prime}(0)\right)=0, \quad w_{2}(1)+B_{1}\left(w_{2}^{\prime}(1)\right)=0 .
\end{array}\right. \tag{8}
\end{align*}
$$

Combining (7), (8), the fact that $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing, and $w_{1} \leqslant w_{0}$, we get

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(w_{1}^{\prime}(t)\right)\right)^{\prime}+\left(\varphi_{p}\left(w_{2}^{\prime}(t)\right)\right)^{\prime} \geqslant 0, \quad 0 \leqslant t \leqslant 1 \\
w_{2}(0)-B_{0} w_{2}^{\prime}(0)=0, \quad w_{2}(1)+B_{1} w_{2}^{\prime}(1)=0 \\
w_{1}(0)-B_{0} w_{1}^{\prime}(0)=0, \quad w_{1}(1)+B_{1} w_{1}^{\prime}(1)=0
\end{array}\right.
$$

By Lemma 2.1 (let $k_{1}=k_{2}=1$), $w_{1}(t) \geqslant w_{2}(t), 0 \leqslant t \leqslant 1$.
By induction, then $w_{n}(t) \geqslant w_{n+1}(t), 0 \leqslant t \leqslant 1(n=0,1,2, \ldots)$. Hence, we see that $w_{n} \rightarrow w^{*}$. Letting $n \rightarrow \infty$ in (6), we obtain $T_{a} w^{*}=w^{*}$ since T_{a} is continuous. Since $\left\|w^{*}\right\| \geqslant b>0$ and w^{*} is a nonnegative concave function on $[0,1]$, we conclude that $w^{*}(t)>0, t \in(0,1)$. Therefore, w^{*} is a positive solution of (1) and (BCa).

Corollary 3.1. Assume (H1), (H2) and (H3a) hold. If there exists a $\delta \in\left(0, \frac{1}{2}\right)$ such that
$\left(\mathrm{C} 1^{\prime}\right) f:[0,+\infty) \rightarrow[0,+\infty)$ is nondecreasing;
$\left(\mathrm{C} 2^{\prime}\right) \varlimsup_{l \rightarrow 0} f(l) / l^{p-1}>\left(B / \delta^{2}\right)^{p-1}$ and $\underset{l \rightarrow+\infty}{\lim _{l}} f(l) / l^{p-1}<A^{p-1}$ (in particular, $\lim _{l \rightarrow 0} f(l) / l^{p-1}=+\infty$ and $\left.\lim _{l \rightarrow+\infty} f(l) / l^{p-1}=0\right)$, where A, B are defined as in Theorem 3.1,
then there exist two constants $a>0$ and $b>0$ such that (1) and (BCa) has one positive solution $w^{*} \in P_{a}$ with $b \leqslant\left\|w^{*}\right\| \leqslant a$ and $\lim _{n \rightarrow+\infty}\left(T_{a}\right)^{n} w_{0}=w^{*}$, where $w_{0}(t)=a, t \in[0,1]$.

If $B_{0}=B_{1}$ in (BCa), then we have an even better result, which we will give in the next section.

4. Existence and iteration of symmetric solution of (1), (BCb)

In this section, we suppose that (H1), (H2), (H3b) hold, and $h(1-t)=h(t)$, $t \in(0,1)$.

Define

$$
P_{b}=\{u \in E: u(t) \text { is nonnegative, symmetric and concave on }[0,1]\} .
$$

Then P_{b} is a cone in E.

Lemma 4.1. For any $0<\delta<\frac{1}{2}, u \in P_{b}$ has the following properties:
(a) $u(t) \geqslant 2\|u\| \min \{t, 1-t\}$ for all $t \in[0,1]$.
(b) $u(t) \geqslant 2 \delta\|u\|$ for all $t \in[\delta, 1-\delta]$.

Proof. By the concavity and symmetry of u, (a) is very easy to prove. (b) follows easily from (a).

When $q(t)=q(1-t), B_{0}=B_{1}=B$, for any $u \in P_{b}$, if we choose $x=\frac{1}{2}$ in (3), then
(9) $z\left(\frac{1}{2}\right)=v_{1}\left(\frac{1}{2}\right)-v_{2}\left(\frac{1}{2}\right)$

$$
\begin{aligned}
= & B \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(u(s)) \mathrm{d} s\right)+\int_{0}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& -B \varphi_{p}^{-1}\left(\int_{1 / 2}^{1} q(s) f(u(s)) \mathrm{d} s\right)-\int_{1 / 2}^{1} \varphi_{p}^{-1}\left(\int_{1 / 2}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s=0 .
\end{aligned}
$$

Thus, for any $u \in E$, we may define

$$
\left(T_{b} u\right)(t):=\left\{\begin{array}{l}
B\left(\varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(u(s)) \mathrm{d} s\right)\right) \tag{10}\\
\quad+\int_{0}^{t} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s, \quad 0 \leqslant t \leqslant \frac{1}{2} \\
B\left(\varphi_{p}^{-1}\left(\int_{1 / 2}^{1} q(s) f(u(s)) \mathrm{d} s\right)\right) \\
\quad+\int_{t}^{1} \varphi_{p}^{-1}\left(\int_{1 / 2}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s, \quad \frac{1}{2} \leqslant t \leqslant 1
\end{array}\right.
$$

and we have

Lemma 4.2. $\quad T_{b}: P_{b} \rightarrow P_{b}$ is continuous and compact. Furthermore, each fixed point of T_{b} in P_{b} is a nonnegative, symmetric and concave solution of (1) and (BCb).

Proof. By Lemma 3.1, we only need to prove that $T_{b} u$ is symmetric for any $u \in P_{b}$.

Indeed, for any $u \in P_{b}$, since $q(t)$ and $u(t)$ are symmetric, when $t \in\left[0, \frac{1}{2}\right]$,

$$
\begin{aligned}
T_{b} u(1-t) & =B\left(\varphi_{p}^{-1}\left(\int_{1 / 2}^{1} q(s) f(u(s)) \mathrm{d} s\right)\right)+\int_{1-t}^{1} \varphi_{p}^{-1}\left(\int_{1 / 2}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& =B\left(\varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(u(s)) \mathrm{d} s\right)\right)+\int_{0}^{t} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& =T_{b} u(t)
\end{aligned}
$$

and when $t \in\left[\frac{1}{2}, 1\right]$,

$$
\begin{aligned}
T_{b} u(1-t) & =B\left(\varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(u(s)) \mathrm{d} s\right)\right)+\int_{0}^{1-t} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& =B\left(\varphi_{p}^{-1}\left(\int_{1 / 2}^{1} q(s) f(u(s)) \mathrm{d} s\right)\right)+\int_{t}^{1} \varphi_{p}^{-1}\left(\int_{1 / 2}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& =T_{b} u(t)
\end{aligned}
$$

Therefore T_{b} leaves invariant the cone P_{b}.
On the other hand, (H2) implies that $0<\int_{0}^{1 / 2} q(r) \mathrm{d} r<+\infty$ and for any $0<\delta<\frac{1}{2}$,

$$
\int_{\delta}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s>0
$$

Theorem 4.1. Assume that (H1), (H2), (H3b) hold, and h(1-t) $=h(t)$, $t \in(0,1)$. If there exist $\delta \in\left(0, \frac{1}{2}\right)$ and two positive numbers $b<a$ such that
(C3) $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing;
(C4) $f(2 \delta b) \geqslant(b B)^{p-1}, f(a) \leqslant(a A)^{p-1}$,
where $B=1 / \int_{\delta}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s, A=1 /\left(m+\frac{1}{2}\right) \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(r) \mathrm{d} r\right)$, then (1), (BCb) has at least two positive, concave and symmetric solutions $w^{*}, v^{*} \in$ P_{b} with

$$
b \leqslant\left\|w^{*}\right\| \leqslant a \text { and } \lim _{n \rightarrow+\infty}\left(T_{b}\right)^{n} w_{0}=w^{*}
$$

where $w_{0}(t)=a, t \in[0,1]$,

$$
b \leqslant\left\|v^{*}\right\| \leqslant a \text { and } \lim _{n \rightarrow+\infty}\left(T_{b}\right)^{n} v_{0}=v^{*}
$$

where $v_{0}(t)=2 b \min \{t, 1-t\}, t \in[0,1]$.

Proof. We denote $P_{b}[b, a]=\left\{w \in P_{b}: b \leqslant\|w\| \leqslant a\right\}$. We first prove that $T_{b} P_{b}[b, a] \subset P_{b}[b, a]$.

Let $w \in P_{b}[b, a]$, then $0 \leqslant w(t) \leqslant \max _{t \in[0,1]} w(t)=\|w\| \leqslant a . \quad$ By Lemma 4.1, $\min _{t \in[\delta, 1-\delta]} w(t) \geqslant 2 \delta\|w\| \geqslant 2 \delta b$. So, by the assumptions ($C 3$) and ($C 4$), we have

$$
\begin{align*}
& 0 \leqslant f(w(t)) \leqslant f(a) \leqslant(a A)^{p-1}, \quad t \in[0,1] \tag{11}\\
& f(w(t)) \geqslant f(2 \delta b) \geqslant(b B)^{p-1}, \quad t \in[\delta, 1-\delta] . \tag{12}
\end{align*}
$$

Thus, for any $w(t) \in P_{b}[b, a]$,

$$
\begin{aligned}
\left\|T_{b} w\right\| & =T_{b} w\left(\frac{1}{2}\right) \\
& =B \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(w(s)) \mathrm{d} s\right)+\int_{0}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{12} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geqslant \int_{\delta}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geqslant b B\left[\int_{\delta}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s\right]=b \\
\left\|T_{b} w\right\| & =T_{b} w\left(\frac{1}{2}\right) \\
& =B\left(\varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(w(s)) \mathrm{d} s\right)\right)+\int_{0}^{1 / 2} \varphi_{p}^{-1}\left(\int_{s}^{1 / 2} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \leqslant m \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(s) f(w(s)) \mathrm{d} s\right)+\frac{1}{2} \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \\
& =\left(m+\frac{1}{2}\right) \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \\
& \leqslant\left(m+\frac{1}{2}\right) a A \varphi_{p}^{-1}\left(\int_{0}^{1 / 2} q(\tau) \mathrm{d} \tau \mathrm{~d} s\right)=a
\end{aligned}
$$

Altogether, we get $b \leqslant\left\|T_{b} w\right\| \leqslant a$ for $w \in P_{b}[b, a]$, which means that $T_{b} P_{b}[b, a] \subset$ $P_{b}[b, a]$.

Let $w_{0}(t)=a, t \in[0,1]$, then $w_{0}(t) \in P_{a}[b, a]$. Let $w_{1}=T_{b} w_{0}$, then $w_{1} \in P_{a}[b, a] ;$ we denote

$$
\begin{equation*}
w_{n+1}=T_{b} w_{n}=T_{b}^{n+1} w_{0} \quad(n=1,2, \ldots) \tag{13}
\end{equation*}
$$

Since $T_{b} P_{a}[b, a] \subset P_{a}[b, a]$, we have $w_{n} \in P_{a}[b, a],(n=0,1,2, \ldots)$. From Lemma 4.1, T_{b} is compact, so $\left\{w_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{w_{n_{k}}\right\}_{k=1}^{\infty}$ and there exists $w^{*} \in P_{b}[b, a]$, such that $w_{n_{k}} \rightarrow w^{*}$.

Now, since $w_{1} \in P_{b}[b, a]$, we have

$$
0 \leqslant w_{1}(t) \leqslant\|w\| \leqslant a=w_{0}(t)
$$

by the definition of w_{1} and w_{2}, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\varphi_{p}\left(w_{1}^{\prime}\right)\right)^{\prime}+q(t) f\left(w_{0}(t)\right)=0, \quad 0<t<1 \\
w_{1}(0)-B\left(w_{1}^{\prime}(0)\right)=0, \quad w_{1}(1)+B\left(w_{1}^{\prime}(1)\right)=0
\end{array}\right. \tag{14}\\
& \left\{\begin{array}{l}
\left(\varphi_{p}\left(w_{2}^{\prime}\right)\right)^{\prime}+q(t) f\left(w_{1}(t)\right)=0, \quad 0<t<1 \\
w_{2}(0)-B\left(w_{2}^{\prime}(0)\right)=0, \quad w_{2}(1)+B\left(w_{2}^{\prime}(1)\right)=0
\end{array}\right. \tag{15}
\end{align*}
$$

Combining (14), (15), the fact that $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing, and $w_{1} \leqslant$ w_{0}, we get

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(w_{1}^{\prime}(t)\right)\right)^{\prime}+\left(\varphi_{p}\left(w_{2}^{\prime}(t)\right)\right)^{\prime} \geqslant 0, \quad 0 \leqslant t \leqslant 1 \\
w_{2}(0)-B w_{2}^{\prime}(0)=0, \quad w_{2}(1)+B w_{2}^{\prime}(1)=0 \\
w_{1}(0)-B w_{1}^{\prime}(0)=0, \quad w_{1}(1)+B w_{1}^{\prime}(1)=0
\end{array}\right.
$$

By Lemma 2.1 (let $\left.k_{1}=k_{2}=1, B_{0}=B_{1}=B\right), w_{1}(t) \geqslant w_{2}(t), 0 \leqslant t \leqslant 1$.
By induction, then $w_{n}(t) \geqslant w_{n+1}(t), 0 \leqslant t \leqslant 1(n=0,1,2, \ldots)$. Hence, we see that $w_{n} \rightarrow w^{*}$. Letting $n \rightarrow \infty$ in (13), we obtain $T_{b} w^{*}=w^{*}$ since T_{b} is continuous. Since $\left\|w^{*}\right\| \geqslant b>0$ and w^{*} is a nonnegative concave function on $[0,1]$, we conclude that $w^{*}(t)>0, t \in(0,1)$. Therefore, w^{*} is a positive, symmetric solution of (1) and (BCb).

Let $v_{0}(t)=2 b \min \{t, 1-t\}, t \in[0,1]$, then $\left\|v_{0}\right\|=b$, and $v_{0}(t) \in P_{b}[b, a]$. Let $v_{1}=\left(T_{b}\right) v_{0}$, then $v_{1} \in P_{a}[b, a]$; we denote

$$
v_{n+1}=T_{b} v_{n}=\left(T_{b}\right)^{n+1} v_{0} \quad(n=1,2, \ldots)
$$

Similarly to $\left\{w_{n}\right\}_{n=1}^{\infty}$, we see that $\left\{v_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{v_{n_{k}}\right\}_{k=1}^{\infty}$ and there exists $v^{*} \in P_{b}[b, a]$ such that $v_{n_{k}} \rightarrow v^{*}$.

Now, since $v_{1} \in P_{b}[b, a]$, we have by Lemma 4.1,

$$
v_{1}(t) \geqslant 2\left\|v_{1}\right\| \min \{t, 1-t\} \geqslant 2 b \min \{t, 1-t\}=v_{0}(t)
$$

Similarly to $\left\{w_{n}\right\}_{n=1}^{\infty}$, we can show easily that $v_{n}(t) \leqslant v_{n+1}(t), 0 \leqslant t \leqslant 1(n=$ $0,1,2, \ldots)$. Hence, we see that $v_{n} \rightarrow v^{*}, T_{b} v^{*}=v^{*}$ and $v^{*}(t)>0, t \in(0,1)$. Therefore, v^{*} is a positive, symmetric solution of (1) and (BCb).

Remark 4.1. We can easily get that w_{*} and v^{*} are the maximal and the minimal solution of (1) and (BCb) in $P_{b}[b, a]$.

Corollary 4.1. Assume that (H1), (H2) and (H3b) hold, and h(1-t)=h(t), $t \in(0,1)$. If there exists $\delta \in\left(0, \frac{1}{2}\right)$ such that
$\left(\mathrm{C} 3^{\prime}\right) f:[0,+\infty) \rightarrow[0,+\infty)$ is nondecreasing;
$\left(\mathrm{C} 4^{\prime}\right) \varlimsup_{l \rightarrow 0} f(l) / l^{p-1}>\left(\frac{1}{2} B / \delta\right)^{p-1}$ and $\underset{l \rightarrow+\infty}{\lim } f(l) / l^{p-1}<(a A)^{p-1}$ (in particular, $\lim _{l \rightarrow 0} f(l) / l^{p-1}=+\infty$ and $\left.\lim _{l \rightarrow+\infty} f(l) / l^{p-1}=0\right)$, where A, B are defined as in Theorem 4.1,
then there exist two constants $a>0$ and $b>0$ such that (1) and (BCb) has two positive, concave and symmetric solutions $w^{*}, v^{*} \in P_{b}$ with

$$
\begin{gathered}
b \leqslant\left\|w^{*}\right\| \leqslant a \text { and } \lim _{n \rightarrow+\infty}\left(T_{b}\right)^{n} w_{0}=w^{*}, \quad \text { where } w_{0}(t)=a, t \in[0,1], \\
b \leqslant\left\|v^{*}\right\| \leqslant a \text { and } \lim _{n \rightarrow+\infty}\left(T_{b}\right)^{n} v_{0}=v^{*}, \quad \text { where } \quad v_{0}(t)=2 b \min \{t, 1-t\}, t \in[0,1] .
\end{gathered}
$$

5. Existence and iteration of monotone solution OF (1), (BCc) AND (1), (BCd)

In this section, we need (H1), (H2) and (H3b) to hold.
Define
(16) $P_{c}=\{u \in E: u(t)$ is nonnegative, nondecreasing and concave on $[0,1]\}$,
(17) $P_{d}=\{u \in E: u(t)$ is nonnegative, nonincreasing and concave on $[0,1]\}$.

Then P_{c} and P_{d} are two cones in E.
Lemma 5.1. If $u \in P_{c}$, then $u(t) \geqslant t\|u\|$ for all $t \in[0,1]$.
For any $u \in E$, define

$$
\begin{align*}
\left(T_{c} u\right)(t)= & B\left(\varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(u(s)) \mathrm{d} s\right)\right) \tag{18}\\
& +\int_{0}^{t} \varphi_{p}^{-1}\left(\int_{s}^{1} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s, \quad t \in[0,1]
\end{align*}
$$

Lemma 5.2. $T_{c}: P_{c} \rightarrow P_{c}$ is continuous and compact. Furthermore, each fixed point of T_{c} in P_{c} is a nonnegative, nondecreasing and concave solution of (1) and (BCc).

Proof. By Lemma 3.2, we only need to prove that $T_{c} u$ is nondecreasing for any $u \in P_{c}$ which is obvious by the definition of $\left(T_{c} u\right)(t)$.

Theorem 5.1. Assume (H1), (H2) and (H3b) hold. If there exist $\delta \in(0,1)$ and two positive numbers $b<a$ such that
(C5) $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing;
(C6) $f(\delta b) \geqslant(b B)^{p-1}, f(a) \leqslant(a A)^{p-1}$, where $B=1 / \int_{\delta}^{1} \varphi_{p}^{-1}\left(\int_{s}^{1} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s$, $A=1 /(m+1) \varphi_{p}^{-1}\left(\int_{0}^{1} q(r) \mathrm{d} r\right)$, then (1), (BCc) has at least two positive and nondecreasing solutions $w^{*}, v^{*} \in P_{c}$ with

$$
\begin{aligned}
& b \leqslant\left\|w^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{c}\right)^{n} w_{0}=w^{*}, \quad \text { where } w_{0}(t)=a, \quad t \in[0,1], \\
& b \leqslant\left\|v^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{c}\right)^{n} v_{0}=v^{*}, \quad \text { where } \quad v_{0}(t)=b t, \quad t \in[0,1] .
\end{aligned}
$$

Proof. We denote $P_{c}[b, a]=\left\{w \in P_{c}: b \leqslant\|w\| \leqslant a\right\}$. We first prove that $T_{c} P_{c}[b, a] \subset P_{c}[b, a]$.

Let $w \in P_{c}[b, a]$, then $0 \leqslant w(t) \leqslant \max _{t \in[0,1]} w(t)=\|w\| \leqslant a . \quad$ By Lemma 5.1, $\min _{t \in[\delta, 1]} w(t) \geqslant \delta\|w\| \geqslant \delta b$. So, by the assumptions $(C 5)$ and $(C 6)$, we have

$$
\begin{gather*}
0 \leqslant f(w(t)) \leqslant f(a) \leqslant(a A)^{p-1}, \quad t \in[0,1], \tag{19}\\
f(w(t)) \geqslant f(\delta b) \geqslant(b B)^{p-1}, \quad t \in[\delta, 1] . \tag{20}
\end{gather*}
$$

Thus, for any $w(t) \in P_{c}[b, a]$,

$$
\begin{aligned}
\left\|T_{c} w\right\| & =T_{c} w(1) \\
& =B \varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(w(s)) \mathrm{d} s\right)+\int_{0}^{1} \varphi_{p}^{-1}\left(\int_{s}^{1} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geqslant \int_{\delta}^{1} \varphi_{p}^{-1}\left(\int_{s}^{1} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geqslant b B \int_{\delta}^{1} \varphi_{p}^{-1}\left(\int_{s}^{1} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s=b \\
\left\|T_{c} w\right\| & =T_{c} w(1) \\
& =B\left(\varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(w(s)) \mathrm{d} s\right)\right)+\int_{0}^{1} \varphi_{p}^{-1}\left(\int_{s}^{1} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \leqslant m \varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(w(s)) \mathrm{d} s\right)+\varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \\
& =(m+1) \varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) f(w(\tau)) \mathrm{d} \tau\right) \\
& \leqslant(m+1) a A \varphi_{p}^{-1}\left(\int_{0}^{1} q(\tau) \mathrm{d} \tau\right)=a
\end{aligned}
$$

Altogether, we get $b \leqslant\left\|T_{c} w\right\| \leqslant a$ for $w \in P_{c}[b, a]$, which means that $T_{c} P_{c}[b, a] \subset$ $P_{c}[b, a]$.

Let $w_{0}(t)=a, t \in[0,1]$, then $w_{0}(t) \in P_{c}[b, a]$. Let $w_{1}=\left(T_{c}\right) w_{0}$, then $w_{1} \in P_{c}[b, a] ;$ we denote

$$
\begin{equation*}
w_{n+1}=T_{c} w_{n}=T_{c}^{n+1} w_{0}, \quad(n=1,2, \ldots) \tag{21}
\end{equation*}
$$

Since $T_{c} P_{c}[b, a] \subset P_{c}[b, a]$ we have $w_{n} \in P_{c}[b, a],(n=0,1,2, \ldots)$. From Lemma 5.1, T_{c} is compact, so $\left\{w_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{w_{n_{k}}\right\}_{k=1}^{\infty}$ and there exists $w^{*} \in P_{c}[b, a]$ such that $w_{n_{k}} \rightarrow w^{*}$.

Now, since $w_{1} \in P_{c}[b, a]$, we have

$$
0 \leqslant w_{1}(t) \leqslant\|w\| \leqslant a=w_{0}(t)
$$

by the definition of w_{1} and w_{2}, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\varphi_{p}\left(w_{1}^{\prime}\right)\right)^{\prime}+q(t) f\left(w_{0}(t)\right)=0, \quad 0<t<1 \\
w_{1}(0)-B\left(w_{1}^{\prime}(0)\right)=0, \quad w_{1}^{\prime}(1)=0
\end{array}\right. \tag{22}\\
& \left\{\begin{array}{l}
\left(\varphi_{p}\left(w_{2}^{\prime}\right)\right)^{\prime}+q(t) f\left(w_{1}(t)\right)=0, \quad 0<t<1 \\
w_{2}(0)-B\left(w_{2}^{\prime}(0)\right)=0, \quad w_{2}^{\prime}(1)=0
\end{array}\right. \tag{23}
\end{align*}
$$

Combining (22), (23), the fact that $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing, and $w_{1} \leqslant$ w_{0}, we get

$$
\left\{\begin{array}{l}
-\left(\varphi_{p}\left(w_{1}^{\prime}(t)\right)\right)^{\prime}+\left(\varphi_{p}\left(w_{2}^{\prime}(t)\right)\right)^{\prime} \geqslant 0, \quad 0 \leqslant t \leqslant 1 \\
w_{2}(0)-B w_{2}^{\prime}(0)=0, \quad w_{2}^{\prime}(1)=0 \\
w_{1}(0)-B w_{1}^{\prime}(0)=0, \quad w_{1}^{\prime}(1)=0
\end{array}\right.
$$

By Lemma 2.1 (let $\left.k_{1}=1, k_{2}=0, B_{0}(v)=B(v), B_{1}(v)=v\right), w_{1}(t) \geqslant w_{2}(t)$, $0 \leqslant t \leqslant 1$.

By induction, then $w_{n}(t) \geqslant w_{n+1}(t), 0 \leqslant t \leqslant 1(n=0,1,2, \ldots)$. Hence, we see that $w_{n} \rightarrow w^{*}$. Letting $n \rightarrow \infty$ in (21), we obtain $T w^{*}=w^{*}$ since T_{c} is continuous. Since $\left\|w^{*}\right\| \geqslant b>0$ and w^{*} is a nonnegative concave function on $[0,1]$, we conclude that $w^{*}(t)>0, t \in(0,1)$. Therefore, w^{*} is a positive, nondecreasing solution of (1), (BCc).

Let $v_{0}(t)=b t, t \in[0,1]$, then $\left\|v_{0}\right\|=b$, and $v_{0}(t) \in P_{c}[b, a]$. Let $v_{1}=\left(T_{c}\right) v_{0}$, then $v_{1} \in P_{c}[b, a]$; we denote

$$
v_{n+1}=T_{c} v_{n}=\left(T_{c}\right)^{n+1} v_{0} \quad(n=1,2, \ldots)
$$

Similarly to $\left\{w_{n}\right\}_{n=1}^{\infty}$, we see that $\left\{v_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{v_{n_{k}}\right\}_{k=1}^{\infty}$ and there exists $v^{*} \in P_{c}[b, a]$, such that $v_{n_{k}} \rightarrow v^{*}$.

Now, since $v_{1} \in P_{b}[b, a]$, we have by Lemma 5.1,

$$
v_{1}(t) \geqslant t\left\|v_{1}\right\| \geqslant b t=v_{0}(t)
$$

Similarly to $\left\{w_{n}\right\}_{n=1}^{\infty}$, we can show easily that $v_{n}(t) \leqslant v_{n+1}(t), 0 \leqslant t \leqslant 1(n=$ $0,1,2, \ldots)$. Hence, we see that $v_{n} \rightarrow v^{*}, T_{c} v^{*}=v^{*}$ and $v^{*}(t)>0, t \in(0,1)$. Therefore, v^{*} is a positive, nondecreasing solution of $(1),(\mathrm{BCc})$.

Remark 5.1. We can easily get that w_{*} and v^{*} are the maximal and the minimal solution of $(1),(\mathrm{BCc})$ in $P_{c}[b, a]$.

Corollary 5.1. Assume that (H1), (H2) and (H3b) hold. If there exists a $\delta \in(0,1)$ such that
$\left(C 5^{\prime}\right) f:[0,+\infty) \rightarrow[0,+\infty)$ is nondecreasing;
$\left(C 6^{\prime}\right) \varlimsup_{l \rightarrow 0} f(l) / l^{p-1}>(B / \delta)^{p-1}$ and $\underset{l \rightarrow+\infty}{\lim } f(l) / l^{p-1}<(a A)^{p-1}$ (in particular, $\lim _{l \rightarrow 0} f(l) / l^{p-1}=+\infty$ and $\left.\lim _{l \rightarrow+\infty} f(l) / l^{p-1}=0\right)$, where A, B are defined as in Theorem 5.1,
then there exist two constants $a>0$ and $b>0$ such that (1) and (BCc) has two positive, nondecreasing solutions $w^{*}, v^{*} \in P_{c}$ with

$$
\begin{aligned}
& b \leqslant\left\|w^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{c}\right)^{n} w_{0}=w^{*}, \quad \text { where } w_{0}(t)=a, \quad t \in[0,1], \\
& b \leqslant\left\|v^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{c}\right)^{n} v_{0}=v^{*}, \quad \text { where } v_{0}(t)=b t, \quad t \in[0,1] .
\end{aligned}
$$

As for (1), (BCd), we have the following results.
Theorem 5.2. Assume that (H1), (H2) and (H3b) hold. If there exists a $\delta \in$ $(0,1)$ and two positive numbers $b<a$ such that
(C7) $f:[0, a] \rightarrow[0,+\infty)$ is nondecreasing;
(C8) $f((1-\delta) b) \geqslant(b B)^{p-1}, f(a) \leqslant(a A)^{p-1}$, where $B=1 / \int_{0}^{\delta} \varphi_{p}^{-1}\left(\int_{0}^{s} q(\tau) \mathrm{d} \tau\right) \mathrm{d} s, A=1 /(m+1) \varphi_{p}^{-1}\left(\int_{0}^{1} q(r) \mathrm{d} r\right)$,
then (1), (BCd) has at least two positive and nonincreasing solutions $w^{*}, v^{*} \in P_{d}$ such that

$$
\begin{gathered}
b \leqslant\left\|w^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{d}\right)^{n} w_{0}=w^{*}, \quad \text { where } w_{0}(t)=a, t \in[0,1], \\
b \leqslant\left\|v^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{d}\right)^{n} v_{0}=v^{*}, \quad \text { where } \quad v_{0}(t)=b(1-t), \quad t \in[0,1],
\end{gathered}
$$

where

$$
\begin{aligned}
\left(T_{d} u\right)(t)= & B\left(\varphi_{p}^{-1}\left(\int_{0}^{1} q(s) f(u(s)) \mathrm{d} s\right)\right) \\
& +\int_{t}^{1} \varphi_{p}^{-1}\left(\int_{0}^{s} q(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s, \quad t \in[0,1]
\end{aligned}
$$

Proof. The proof of Theorem 5.2 is similar to Theorem 5.1, and we omit it.

Corollary 5.2. Assume that (H1), (H2) and (H3b) hold. If
$\left(C 7^{\prime}\right) f:[0,+\infty) \rightarrow[0,+\infty)$ is nondecreasing;
$\left(C 8^{\prime}\right) \varlimsup_{l \rightarrow 0} f(l) / l^{p-1}>(B /(1-\delta))^{p-1}$ and $\underset{l \rightarrow+\infty}{\lim _{l}} f(l) / l^{p-1}<(a A)^{p-1}$ (in particular, $\lim _{l \rightarrow 0} f(l) / l^{p-1}=+\infty$ and $\left.\lim _{l \rightarrow+\infty} f(l) / l^{p-1}=0\right)$, where A, B are defined as in Theorem 5.2,
then there exist two constants $a>0$ and $b>0$, such that (1), (BCd) has two positive, concave and nonincreasing solutions w^{*}, v^{*} with

$$
\begin{gathered}
b \leqslant\left\|w^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{d}\right)^{n} w_{0}=w^{*}, \quad \text { where } w_{0}(t)=a, t \in[0,1], \\
b \leqslant\left\|v^{*}\right\| \leqslant a \quad \text { and } \quad \lim _{n \rightarrow+\infty}\left(T_{d}\right)^{n} v_{0}=v^{*}, \quad \text { where } v_{0}(t)=b(1-t), t \in[0,1] .
\end{gathered}
$$

Example 5.1. Suppose $0<n, m<3$, and consider

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{2} u^{\prime}\right)^{\prime}(t)+\frac{1}{t(1-t)}\left[(u(t))^{m}+\ln \left((u(t))^{n}+1\right)\right]=0, \quad t \in(0,1) \tag{24}
\end{equation*}
$$

subject to

$$
\begin{align*}
& u(0)-\frac{1}{3} u^{\prime}(0)=0, \quad u(1)+\left(u^{\prime}(1)\right)^{3}=0 \tag{Ea}\\
& u(0)-\frac{1}{3} u^{\prime}(0)=0, \quad u(1)+\frac{1}{3} u^{\prime}(1)=0 \tag{Eb}
\end{align*}
$$

$$
u(0)-\frac{1}{3} u^{\prime}(0)=0, \quad u^{\prime}(1)=0
$$

(Ed)

$$
u^{\prime}(0)=0, \quad u(1)+\frac{1}{3} u^{\prime}(1)=0
$$

By Corollary 3.1, Corollary 4.1, Corollary 5.1, and Corollary 5.2, we can get not only the existence but also the iteration of positive solutions for the BVP (24) subject to (Ea), (Eb), (Ec) and (Ed). But the results in [1] can only guarantee the existence of their positive solutions.

References

[1] J. Wang: The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Am. Math. Soc. 125 (1997), 2275-2283.
[2] L. Kong, J. Wang: Multiple positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 42 (2000), 1327-1333.
[3] D. Guo, V. Lakshmikantham: Nonlinear Problems in Abstract. Cones. Academic Press, Boston, 1988.
[4] X. He, W. Ge: Twin positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 56 (2004), 975-984.
[5] R.I. Avery, C. J. Chyan, and J. Henderson: Twin solutions of boundary value problems for ordinary differential equations and finite difference equations. Comput. Math. Appl. 42 (2001), 695-704.
[6] R. P. Agarwal, H. Lü and D. O'Regan: Eigenvalues and the one-dimensional p-Laplacian. J. Math. Anal. Appl. 266 (2002), 383-340.
[7] Y. Guo, W. Ge: Three positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 286 (2003), 491-508.
[8] H. Amann: Fixed point equations and nonlinear eigenvalue problems in order Banach spaces. SIAM Rev. 18 (1976), 620-709.

Authors' addresses: De-Xiang Ma, Department of Mathematics, North China Electric Power University, Beijing 102206, P. R. China, e-mail: madexiangchen@163.com or madexiang@sohu.com; Wei-Gao Ge, Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P. R. China, e-mail: gew@bit.edu.cn; Zhan-Ji Gui, Department of Computer Science, Hainan Normal University, Haikou, Hainan 571158, P. R. China.

