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Abstract. In the paper, we obtain the existence of symmetric or monotone positive solu-
tions and establish a corresponding iterative scheme for the equation (ϕp(u′))′+q(t)f(u) =
0, 0 < t < 1, where ϕp(s) := |s|p−2s, p > 1, subject to nonlinear boundary condition. The
main tool is the monotone iterative technique. Here, the coefficient q(t) may be singular at
t = 0, 1.
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1. Introduction

The purpose of this paper is to consider the existence of symmetric or monotone

positive solutions and establish a corresponding iterative scheme for the nonlinear
two-point singular boundary value problem (BVP) with a p-Laplacian operator

(1) (ϕp(u′))′ + q(t)f(u) = 0, 0 < t < 1,

The second author was supported by National Natural Sciences Foundation of China
No. 10371006.
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subject to

(BC)





(a) u(0)−B0(u′(0)) = 0, u(1) +B1(u′(1)) = 0,

(b) u(0)−B(u′(0)) = 0, u(1) +B(u′(1)) = 0,

(c) u(0)−B(u′(0)) = 0, u′(1) = 0,

(d) u′(0) = 0, u(1) +B(u′(1)) = 0,

where ϕp(s) = |s|p−2s, p > 1, B0, B1 and B are both continuous functions defined
on (−∞,+∞), and the coefficient q(t) may be singular at t = 0, 1.
Several papers have been devoted in the recent years to the study of (1) subject

to different linear or nonlinear boundary conditions, see [1], [2], [4], [6], [7] and
their references. Here, only positive solutions are meaningful. By using the fixed

point theorem in cones due to Krasnoselskii [3], Wang [1] and Kong and Wang [2]
established the existence of one positive solution for (1) subject to one of the following

nonlinear boundary conditions:

u(0)− g1(u′(0)) = 0, u(1) + g2(u′(1)) = 0,(w1)

u(0)− g1(u′(0)) = 0, u′(1) = 0,(w2)

u′(0) = 0, u(1) + g2(u′(1)) = 0.(w3)

By applying a new twin fixed point theorem due to Avery and Henderson [5], He
and Ge [4] obtained the existence of two positive solutions for (1) subject to (w1),

(w2), (w3). By using the fixed point theorem in cones due to Krasnoselskii [3],
R. P. Agarwal, Haishen Lü and D.O’Regan [6] studied the problem of eigenvalues

of (1) subject to (BCa) when B0 = B1 = 0, they also obtained the existence of two
positive solutions. By using an extension of the Leggett-Williams theorem, i.e., the

fixed point theorem of five functionals, Guo and Ge [7] got the existence of three
positive solutions for (1) subject to (w1), (w2), (w3), and

(g1) u(0) = 0, u(1) = 0.

We can see easily that all the results obtained in [1], [2], [4], [6], [7] are the existence

of positive solutions. Seeing such a fact, we cannot but ask “how can we find the
solutions since the solutions exist definitely?” Motivated by the above-mentioned

results, in this paper, by improving the classical monotone iterative technique of
Amann [8], we obtain not only the existence of positive solutions, but also give an

iterative scheme for approximating the solutions. It is worth stating that the first
term of our iterative scheme is a constant function or a simple function. Therefore,
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the iterative scheme is significant and feasible. At the same time, we give a way to

find the solution which will be useful from an application viewpoint.
We consider the Banach space E = C[0, 1] equipped with norm ‖w‖ = max

06t61
|w(t)|.

In this paper, a positive solution w∗ of (1) and (BC) means a solution w∗ of (1),
(BC) satisfying w∗(t) > 0, 0 < t < 1. A symmetric solution w∗ of (1), (BC) means a
solution w∗ of (1), (BC) satisfying w∗(t) = w∗(1− t), 0 6 t 6 1. A monotone solu-
tion w∗ of (1), (BC) means a solution w∗ of (1), (BC) such that w(t) is nondecreasing
or w(t) is nonincreasing.
We list the following conditions for convenience:

(H1) f ∈ C([0,+∞), [0,+∞));
(H2) q(t) is a nonnegative measurable function defined on (0, 1), and q(t) is

not identically zero on any compact subinterval of (0, 1). Furthermore,
q(t) satisfies

0 <
∫ 1

0

q(t) dt < +∞;

(H3a) B0(v) and B1(v) are both nondecreasing, continuous, odd functions defined
on (−∞,+∞) and at least one of them satisfies the condition that there
exists m > 0 such that

0 6 Bi(v) 6 mv for all v > 0, i = 0 or 1;

(H3b) B(v) is a nondecreasing, continuous, odd function defined on (−∞,+∞)
and there exists m > 0 such that

0 6 B(v) 6 mv for all v > 0.

2. Some background definitions and two lemmas

In this section, we suppose that (H1), (H2) and (H3a) hold.
If P ⊂ E is a cone, we denote the order induced by P on E by 6, i.e.,

x 6 y if and only if y − x ∈ P.

Definition 2.1. Given a cone P in E, a functional ψ : P → �
is said to be

nondecreasing on P , provided ψ(x) 6 ψ(y), for all x, y ∈ P with x 6 y.

Definition 2.2. A functional ψ : [0, 1] → �
is said to be concave on [0, 1], pro-

vided ψ(tx+ (1− t)y) > tψ(x) + (1− t)ψ(y), for all x, y ∈ [0, 1] and t ∈ [0, 1].
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Lemma 2.1. For any fixed k1 > 0, k2 > 0, if wi(t) ∈ E, i = 1, 2 satisfy





−(ϕp(w′2(t)))
′ + (ϕp(w′1(t)))

′ > 0, 0 6 t 6 1,

k1w2(0)−B0w
′
2(0) = 0, k2w2(1) +B1w

′
2(1) = 0,

k1w1(0)−B0w
′
1(0) = 0, k2w1(1) +B1w

′
1(1) = 0,

then w2(t) > w1(t), 0 6 t 6 1.
���������

. Suppose not, then there exists t0 ∈ [0, 1] such that (w2 − w1)(t0) =
min

06t61
(w2 − w1)(t) < 0. We now show that (w2 − w1)′(t0) = 0. In fact, if t0 = 0,

then from the definition of minimum, (w2 − w1)′(0) > 0, that is w′2(0) > w′1(0). On
the other hand, B0(w′2(0))− B0(w′1(0)) = k1(w2(0) − w1(0)) 6 0, so w′2(0) 6 w′1(0)
since B0(v) is nondecreasing. Thus, (w2 −w1)′(0) = 0. If t0 = 1, similarly to t0 = 0,
we can also prove that (w2 − w1)′(1) = 0. If t0 ∈ (0, 1), then (w2 − w1)′(t0) = 0
certainly.

Since (ϕp(w′1)− ϕp(w′2))′ > 0 and ϕp(w′1(t0))− ϕp(w′2(t0)) = 0, we have

ϕp(w′1(t))− ϕp(w′2(t)) > 0, t ∈ [t0, 1] and ϕp(w′1(t))− ϕp(w′2(t)) 6 0, t ∈ [0, t0].

So

w′1(t)− w′2(t) > 0, t ∈ [t0, 1] and w′1(t)− w′2(t) 6 0, t ∈ [0, t0].

Thus, when t ∈ [t0, 1], k2(w1 −w2)(t) 6 k2(w1 −w2)(1) = B1(w′2(1))−B1(w′1(1)) 6
0, i.e., w1(t) 6 w2(t) and when t ∈ [0, t0], k1(w1 − w2)(t) 6 k1(w1 − w2)(0) =
−B0(w′2(0))+B0(w′1(0)) 6 0, i.e., w1(t) 6 w2(t). So, for any t ∈ [0, 1], w2(t)−w1(t) >
0, which is a contradiction to the assumption. Therefore, w2(t) > w1(t), 0 6 t 6 1
and the Lemma is proved. �

3. Existence and iteration of solution of (1), (BCa)

In this section, we suppose that (H1), (H2) and (H3a) hold.

Define
Pa = {u ∈ E : u(t) is a nonnegative, concave function}.

Then Pa is an cone in E. For each u ∈ Pa, we define an operator T : Pa → E by

(2) (Tau)(t) :=





B0ϕ
−1
p

(∫ σ

0 q(s)f(u(s)) ds
)

+
∫ t

0 ϕ
−1
p

(∫ σ

s q(τ)f(u(τ)) dτ
)
ds,

0 6 t 6 σ,

B1ϕ
−1
p

(∫ 1

σ
q(s)f(u(s)) ds

)
+

∫ 1

t
ϕ−1

p

(∫ s

σ
q(τ)f(u(τ)) dτ

)
ds,

σ 6 t 6 1,
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where σ = 0 if (Tu)′(0) = 0, and σ = 1 if (Tu)′(1) = 0; otherwise, σ is a solution of
the equation

(3) z(x) := v1(x)− v2(x) = 0,

where

v1(x) = B0ϕ
−1
p

(∫ x

0

q(s)f(u(s)) ds
)

+
∫ x

0

ϕ−1
p

(∫ x

s

q(τ)f(u(τ)) dτ
)

ds,

0 6 x 6 1,

and

v2(x) = B1ϕ
−1
p

(∫ 1

x

q(s)f(u(s)) ds
)

+
∫ 1

x

ϕ−1
p

(∫ s

x

q(τ)f(u(τ)) dτ
)

ds,

0 6 x 6 1.

Note that z(x) is a strictly increasing continuous function defined on [0, 1] with
z(0) < 0 and z(1) > 0, and hence there exists a unique σ ∈ (0, 1) which satisfies (3).
The operator Ta is thus well defined.

Just as proved in [1] or [6], a standard argument shows the following result.

Lemma 3.1. T : Pa → Pa is continuous and compact. Furthermore, each fixed

point of Ta is a nonnegative, concave solution of (1) and (BCa).

Lemma 3.2 ([6]). For any 0 < δ < 1
2 , u ∈ Pa has the following properties:

(a) u(t) > ‖u‖t(1− t) for all t ∈ [0, 1].
(b) u(t) > δ2‖u‖ for all t ∈ [δ, 1− δ].

For any 0 < δ < 1
2 , define

y(x) =
∫ x

δ

ϕ−1
p

(∫ x

s

q(τ) dτ
)

ds+
∫ 1−δ

x

ϕ−1
p

(∫ s

x

q(τ) dτ
)

ds, x ∈ [δ, 1− δ].

Then y(x) is continuous and positive on [δ, 1− δ].

Theorem 3.1. Assume (H1), (H2) and (H3a) hold. If there exist δ ∈ (0, 1
2 ) and

two positive numbers b < a such that

(C1) f : [0, a] → [0,+∞) is nondecreasing;
(C2) f(δ2b) > (bB)p−1, f(a) 6 (aA)p−1, where B = 2/Γ and Γ = min

x∈[δ,1−δ]
y(x) >

0; A = 1/(m+ 1)ϕ−1
p (

∫ 1

0
q(τ) dτ),
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then (1), (BCa) has one positive solution w∗ ∈ Pa with b 6 ‖w∗‖ 6 a and

lim
n→+∞

Tn
a w0 = w∗, where w0(t) = a, t ∈ [0, 1].

���������
. We denote Pa[b, a] = {w ∈ Pa : b 6 ‖w‖ 6 a}. In what follows, we first

prove that TaPa[b, a] ⊂ Pa[b, a].

Let w ∈ Pa[b, a], then 0 6 w(t) 6 max
t∈[0,1]

w(t) = ‖w‖ 6 a. By Lemma 3.2,

min
t∈[δ,1−δ]

w(t) > δ2‖w‖ > δ2b. So, by the assumptions (C1) and (C2), we have

0 6 f(w(t)) 6 f(a) 6 (aA)p−1, t ∈ [0, 1],(4)

f(w(t)) > f(δ2b) > (bB)p−1, t ∈ [δ, 1− δ].(5)

Therefore, for w(t) ∈ Pa[b, a], on the one hand, by (5) we have, when σ ∈ [δ, 1−δ],

2‖Taw‖ = 2Taw(σ)

= B0ϕ
−1
p

(∫ σ

0

q(s)f(u(s)) ds
)

+
∫ σ

0

ϕ−1
p

(∫ σ

s

q(τ)f(u(τ)) dτ
)

ds

+B1ϕ
−1
p

(∫ 1

σ

q(s)f(u(s)) ds
)

+
∫ 1

σ

ϕ−1
p

(∫ s

σ

q(τ)f(u(τ)) dτ
)

ds

>
∫ σ

0

ϕ−1
p

(∫ σ

s

q(τ)f(u(τ)) dτ
)

ds+
∫ 1

σ

ϕ−1
p

(∫ s

σ

q(τ)f(u(τ)) dτ
)

ds

>
∫ σ

δ

ϕ−1
p

(∫ σ

s

q(τ)f(u(τ)) dτ
)

ds+
∫ 1−δ

σ

ϕ−1
p

(∫ s

σ

q(τ)f(u(τ)) dτ
)

ds

> bB

[∫ σ

δ

ϕ−1
p

(∫ σ

s

q(τ) dτ
)

ds+
∫ 1−δ

σ

ϕ−1
p

(∫ s

σ

q(τ) dτ
)

ds
]

= bBy(σ) > bBΓ = 2b,

thus, ‖Taw‖ > b; when σ ∈ [0, δ],

‖Taw‖ > (Taw)(δ)

= B1ϕ
−1
p

(∫ 1

σ

q(s)f(u(s)) ds
)

+
∫ 1

δ

ϕ−1
p

(∫ s

σ

q(τ)f(u(τ)) dτ
)

ds

>
∫ 1

δ

ϕ−1
p

(∫ s

σ

q(τ)f(u(τ)) dτ
)

ds >
∫ 1−δ

δ

ϕ−1
p

(∫ s

δ

q(τ)f(u(τ)) dτ
)

ds

= bBy(δ) > bBΓ = 2b > b;
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and when σ ∈ [1− δ, 1],

‖Taw‖ > (Taw)(1− δ)

= B0ϕ
−1
p

(∫ σ

0

q(s)f(u(s)) ds
)

+
∫ 1−δ

0

ϕ−1
p

(∫ σ

s

q(τ)f(u(τ)) dτ
)

ds

>
∫ 1−δ

0

ϕ−1
p

(∫ σ

s

q(τ)f(u(τ)) dτ
)

ds >
∫ 1−δ

δ

ϕ−1
p

(∫ 1−δ

s

q(τ)f(u(τ)) dτ
)

ds

= bBy(1− δ) > bBΓ = 2b > b.

On the other hand, by (H3a) and (4) we see that at least one of the following
holds,

‖Taw‖ = ‖Taw(σ)‖

= B0ϕ
−1
p

(∫ σ

0

q(s)f(u(s)) ds
)

+
∫ σ

0

ϕ−1
p

(∫ σ

s

q(τ)f(u(τ)) dτ
)

ds

6 B0ϕ
−1
p

(∫ 1

0

q(s)f(u(s)) ds
)

+ ϕ−1
p

(∫ 1

0

q(τ)f(u(τ)) dτ
)

6 (m+ 1)aAϕ−1
p

(∫ 1

0

q(τ) dτ
)

= a

or

‖Taw‖ = ‖Taw(σ)‖

= B1ϕ
−1
p

(∫ 1

σ

q(s)f(u(s)) ds
)

+
∫ 1

σ

ϕ−1
p

(∫ s

σ

q(τ)f(u(τ)) dτ
)

ds

6 B1ϕ
−1
p

(∫ 1

0

q(s)f(u(s)) ds
)

+ ϕ−1
p

(∫ 1

0

q(τ)f(u(τ)) dτ
)

6 (m+ 1)aAϕ−1
p

(∫ 1

0

q(τ) dτ
)

= a.

Altogether, we get b 6 ‖Taw‖ 6 a for w ∈ Pa[b, a], which means that TaPa[b, a] ⊂
Pa[b, a].
Let w0(t) = a, t ∈ [0, 1], then w0(t) ∈ Pa[b, a]. Let w1 = Taw0, then w1 ∈ Pa[b, a];

we denote

(6) wn+1 = Twn = Tn+1w0 (n = 1, 2, . . .).

Since TaPa[b, a] ⊂ Pa[b, a], we have wn ∈ Pa[b, a], (n = 0, 1, 2, . . .). From Lemma 3.1,
Ta is compact, so {wn}∞n=1 has a convergent subsequence {wnk

}∞k=1 and there exists
w∗ ∈ Pa[b, a], such that wnk

→ w∗.
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Now, since w1 ∈ Pa[b, a], we have

0 6 w1(t) 6 ‖w1‖ 6 a = w0(t);

by the definition of w1 and w2, we have

{
(ϕp(w′1))′ + q(t)f(w0(t)) = 0, 0 < t < 1

w1(0)−B0(w′1(0)) = 0, w1(1) +B1(w′1(1)) = 0,
(7)

{
(ϕp(w′2))

′ + q(t)f(w1(t)) = 0, 0 < t < 1

w2(0)−B0(w′2(0)) = 0, w2(1) +B1(w′2(1)) = 0.
(8)

Combining (7), (8), the fact that f : [0, a] → [0,+∞) is nondecreasing, and w1 6 w0,
we get 




−(ϕp(w′1(t)))
′ + (ϕp(w′2(t)))

′ > 0, 0 6 t 6 1,

w2(0)−B0w
′
2(0) = 0, w2(1) +B1w

′
2(1) = 0,

w1(0)−B0w
′
1(0) = 0, w1(1) +B1w

′
1(1) = 0.

By Lemma 2.1 (let k1 = k2 = 1), w1(t) > w2(t), 0 6 t 6 1.
By induction, then wn(t) > wn+1(t), 0 6 t 6 1 (n = 0, 1, 2, . . .). Hence, we see

that wn → w∗. Letting n→∞ in (6), we obtain Taw
∗ = w∗ since Ta is continuous.

Since ‖w∗‖ > b > 0 and w∗ is a nonnegative concave function on [0, 1], we conclude
that w∗(t) > 0, t ∈ (0, 1). Therefore, w∗ is a positive solution of (1) and (BCa). �

Corollary 3.1. Assume (H1), (H2) and (H3a) hold. If there exists a δ ∈ (0, 1
2 )

such that

(C1′) f : [0,+∞) → [0,+∞) is nondecreasing;
(C2′) lim

l→0
f(l)/lp−1 > (B/δ2)p−1 and lim

l→+∞
f(l)/lp−1 < Ap−1 (in particular,

lim
l→0

f(l)/lp−1 = +∞ and lim
l→+∞

f(l)/lp−1 = 0), where A, B are defined

as in Theorem 3.1,

then there exist two constants a > 0 and b > 0 such that (1) and (BCa) has one
positive solution w∗ ∈ Pa with b 6 ‖w∗‖ 6 a and lim

n→+∞
(Ta)nw0 = w∗, where

w0(t) = a, t ∈ [0, 1].

If B0 = B1 in (BCa), then we have an even better result, which we will give in

the next section.
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4. Existence and iteration of symmetric solution of (1), (BCb)

In this section, we suppose that (H1), (H2), (H3b) hold, and h(1 − t) = h(t),
t ∈ (0, 1).
Define

Pb = {u ∈ E : u(t) is nonnegative, symmetric and concave on [0, 1]}.

Then Pb is a cone in E.

Lemma 4.1. For any 0 < δ < 1
2 , u ∈ Pb has the following properties:

(a) u(t) > 2‖u‖min{t, 1− t} for all t ∈ [0, 1].
(b) u(t) > 2δ‖u‖ for all t ∈ [δ, 1− δ].

���������
. By the concavity and symmetry of u, (a) is very easy to prove. (b) fol-

lows easily from (a). �

When q(t) = q(1 − t), B0 = B1 = B, for any u ∈ Pb, if we choose x = 1
2 in (3),

then

z
(1

2

)
= v1

(1
2

)
− v2

(1
2

)
(9)

= Bϕ−1
p

(∫ 1/2

0

q(s)f(u(s)) ds
)

+
∫ 1/2

0

ϕ−1
p

(∫ 1/2

s

q(τ)f(u(τ)) dτ
)

ds

−Bϕ−1
p

(∫ 1

1/2

q(s)f(u(s)) ds
)
−

∫ 1

1/2

ϕ−1
p

(∫ s

1/2

q(τ)f(u(τ)) dτ
)

ds = 0.

Thus, for any u ∈ E, we may define

(10) (Tbu)(t) :=





B

(
ϕ−1

p

(∫ 1/2

0

q(s)f(u(s)) ds
))

+
∫ t

0

ϕ−1
p

(∫ 1/2

s

q(τ)f(u(τ)) dτ
)

ds, 0 6 t 6 1
2
,

B

(
ϕ−1

p

(∫ 1

1/2

q(s)f(u(s)) ds
))

+
∫ 1

t

ϕ−1
p

(∫ s

1/2

q(τ)f(u(τ)) dτ
)

ds,
1
2

6 t 6 1,

and we have
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Lemma 4.2. Tb : Pb → Pb is continuous and compact. Furthermore, each fixed

point of Tb in Pb is a nonnegative, symmetric and concave solution of (1) and (BCb).
���������

. By Lemma 3.1, we only need to prove that Tbu is symmetric for any
u ∈ Pb.

Indeed, for any u ∈ Pb, since q(t) and u(t) are symmetric, when t ∈ [0, 1
2 ],

Tbu(1− t) = B

(
ϕ−1

p

(∫ 1

1/2

q(s)f(u(s)) ds
))

+
∫ 1

1−t

ϕ−1
p

(∫ s

1/2

q(τ)f(u(τ)) dτ
)

ds

= B

(
ϕ−1

p

(∫ 1/2

0

q(s)f(u(s)) ds
))

+
∫ t

0

ϕ−1
p

(∫ 1/2

s

q(τ)f(u(τ)) dτ
)

ds

= Tbu(t),

and when t ∈ [ 12 , 1],

Tbu(1− t) = B

(
ϕ−1

p

(∫ 1/2

0

q(s)f(u(s)) ds
))

+
∫ 1−t

0

ϕ−1
p

(∫ 1/2

s

q(τ)f(u(τ)) dτ
)

ds

= B

(
ϕ−1

p

(∫ 1

1/2

q(s)f(u(s)) ds
))

+
∫ 1

t

ϕ−1
p

(∫ s

1/2

q(τ)f(u(τ)) dτ
)

ds

= Tbu(t).

Therefore Tb leaves invariant the cone Pb. �

On the other hand, (H2) implies that 0 <
∫ 1/2

0
q(r) dr < +∞ and for any

0 < δ < 1
2 , ∫ 1/2

δ

ϕ−1
p

(∫ 1/2

s

q(τ) dτ
)

ds > 0.

Theorem 4.1. Assume that (H1), (H2), (H3b) hold, and h(1 − t) = h(t),
t ∈ (0, 1). If there exist δ ∈ (0, 1

2 ) and two positive numbers b < a such that

(C3) f : [0, a] → [0,+∞) is nondecreasing;
(C4) f(2δb) > (bB)p−1, f(a) 6 (aA)p−1,

where B = 1/
∫ 1/2

δ
ϕ−1

p (
∫ 1/2

s
q(τ) dτ) ds, A = 1/(m+ 1

2 )ϕ−1
p (

∫ 1/2

0
q(r) dr),

then (1), (BCb) has at least two positive, concave and symmetric solutions w∗, v∗ ∈
Pb with

b 6 ‖w∗‖ 6 a and lim
n→+∞

(Tb)nw0 = w∗,

where w0(t) = a, t ∈ [0, 1],

b 6 ‖v∗‖ 6 a and lim
n→+∞

(Tb)nv0 = v∗,

where v0(t) = 2bmin{t, 1− t}, t ∈ [0, 1].
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���������
. We denote Pb[b, a] = {w ∈ Pb : b 6 ‖w‖ 6 a}. We first prove that

TbPb[b, a] ⊂ Pb[b, a].
Let w ∈ Pb[b, a], then 0 6 w(t) 6 max

t∈[0,1]
w(t) = ‖w‖ 6 a. By Lemma 4.1,

min
t∈[δ,1−δ]

w(t) > 2δ‖w‖ > 2δb. So, by the assumptions (C3) and (C4), we have

0 6 f(w(t)) 6 f(a) 6 (aA)p−1, t ∈ [0, 1],(11)

f(w(t)) > f(2δb) > (bB)p−1, t ∈ [δ, 1− δ].(12)

Thus, for any w(t) ∈ Pb[b, a],

‖Tbw‖ = Tbw
(1

2

)

= Bϕ−1
p

(∫ 1/2

0

q(s)f(w(s)) ds
)

+
∫ 1/2

0

ϕ−1
p

(∫ 12

s

q(τ)f(w(τ)) dτ
)

ds

>
∫ 1/2

δ

ϕ−1
p

(∫ 1/2

s

q(τ)f(w(τ)) dτ
)

ds

> bB

[∫ 1/2

δ

ϕ−1
p

(∫ 1/2

s

q(τ) dτ
)

ds
]

= b,

‖Tbw‖ = Tbw
(1

2

)

= B

(
ϕ−1

p

(∫ 1/2

0

q(s)f(w(s)) ds
))

+
∫ 1/2

0

ϕ−1
p

(∫ 1/2

s

q(τ)f(w(τ)) dτ
)

ds

6 mϕ−1
p

(∫ 1/2

0

q(s)f(w(s)) ds
)

+
1
2
ϕ−1

p

(∫ 1/2

0

q(τ)f(w(τ)) dτ
)

=
(
m+

1
2

)
ϕ−1

p

(∫ 1/2

0

q(τ)f(w(τ)) dτ
)

6
(
m+

1
2

)
aAϕ−1

p

(∫ 1/2

0

q(τ) dτ ds
)

= a.

Altogether, we get b 6 ‖Tbw‖ 6 a for w ∈ Pb[b, a], which means that TbPb[b, a] ⊂
Pb[b, a].
Let w0(t) = a, t ∈ [0, 1], then w0(t) ∈ Pa[b, a]. Let w1 = Tbw0, then w1 ∈ Pa[b, a];

we denote

(13) wn+1 = Tbwn = Tn+1
b w0 (n = 1, 2, . . .).

Since TbPa[b, a] ⊂ Pa[b, a], we have wn ∈ Pa[b, a], (n = 0, 1, 2, . . .). From Lemma 4.1,
Tb is compact, so {wn}∞n=1 has a convergent subsequence {wnk

}∞k=1 and there exists
w∗ ∈ Pb[b, a], such that wnk

→ w∗.
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Now, since w1 ∈ Pb[b, a], we have

0 6 w1(t) 6 ‖w‖ 6 a = w0(t);

by the definition of w1 and w2, we have

{
(ϕp(w′1))

′ + q(t)f(w0(t)) = 0, 0 < t < 1

w1(0)−B(w′1(0)) = 0, w1(1) +B(w′1(1)) = 0,
(14)

{
(ϕp(w′2))′ + q(t)f(w1(t)) = 0, 0 < t < 1

w2(0)−B(w′2(0)) = 0, w2(1) +B(w′2(1)) = 0.
(15)

Combining (14), (15), the fact that f : [0, a] → [0,+∞) is nondecreasing, and w1 6
w0, we get 




−(ϕp(w′1(t)))
′ + (ϕp(w′2(t)))

′ > 0, 0 6 t 6 1,

w2(0)−Bw′2(0) = 0, w2(1) +Bw′2(1) = 0,

w1(0)−Bw′1(0) = 0, w1(1) +Bw′1(1) = 0.

By Lemma 2.1 (let k1 = k2 = 1, B0 = B1 = B), w1(t) > w2(t), 0 6 t 6 1.
By induction, then wn(t) > wn+1(t), 0 6 t 6 1 (n = 0, 1, 2, . . .). Hence, we see

that wn → w∗. Letting n→∞ in (13), we obtain Tbw
∗ = w∗ since Tb is continuous.

Since ‖w∗‖ > b > 0 and w∗ is a nonnegative concave function on [0, 1], we conclude
that w∗(t) > 0, t ∈ (0, 1). Therefore, w∗ is a positive, symmetric solution of (1) and
(BCb).

Let v0(t) = 2bmin{t, 1 − t}, t ∈ [0, 1], then ‖v0‖ = b, and v0(t) ∈ Pb[b, a]. Let
v1 = (Tb)v0, then v1 ∈ Pa[b, a]; we denote

vn+1 = Tbvn = (Tb)n+1v0 (n = 1, 2, . . .).

Similarly to {wn}∞n=1, we see that {vn}∞n=1 has a convergent subsequence {vnk
}∞k=1

and there exists v∗ ∈ Pb[b, a] such that vnk
→ v∗.

Now, since v1 ∈ Pb[b, a], we have by Lemma 4.1,

v1(t) > 2‖v1‖min{t, 1− t} > 2bmin{t, 1− t} = v0(t).

Similarly to {wn}∞n=1, we can show easily that vn(t) 6 vn+1(t), 0 6 t 6 1 (n =
0, 1, 2, . . .). Hence, we see that vn → v∗, Tbv

∗ = v∗ and v∗(t) > 0, t ∈ (0, 1).
Therefore, v∗ is a positive, symmetric solution of (1) and (BCb). �

Remark 4.1. We can easily get that w∗ and v∗ are the maximal and the minimal
solution of (1) and (BCb) in Pb[b, a].
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Corollary 4.1. Assume that (H1), (H2) and (H3b) hold, and h(1 − t) = h(t),
t ∈ (0, 1). If there exists δ ∈ (0, 1

2 ) such that
(C3′) f : [0,+∞) → [0,+∞) is nondecreasing;
(C4′) lim

l→0
f(l)/lp−1 > ( 1

2B/δ)
p−1 and lim

l→+∞
f(l)/lp−1 < (aA)p−1 (in particular,

lim
l→0

f(l)/lp−1 = +∞ and lim
l→+∞

f(l)/lp−1 = 0), where A, B are defined as

in Theorem 4.1,
then there exist two constants a > 0 and b > 0 such that (1) and (BCb) has two
positive, concave and symmetric solutions w∗, v∗ ∈ Pb with

b 6 ‖w∗‖ 6 a and lim
n→+∞

(Tb)nw0 = w∗, where w0(t) = a, t ∈ [0, 1],

b 6 ‖v∗‖ 6 a and lim
n→+∞

(Tb)nv0 = v∗, where v0(t) = 2bmin{t, 1− t}, t ∈ [0, 1].

5. Existence and iteration of monotone solution

of (1), (BCc) and (1), (BCd)

In this section, we need (H1), (H2) and (H3b) to hold.

Define

Pc = {u ∈ E : u(t) is nonnegative, nondecreasing and concave on [0, 1]},(16)

Pd = {u ∈ E : u(t) is nonnegative, nonincreasing and concave on [0, 1]}.(17)

Then Pc and Pd are two cones in E.

Lemma 5.1. If u ∈ Pc, then u(t) > t‖u‖ for all t ∈ [0, 1].

For any u ∈ E, define

(Tcu)(t) = B

(
ϕ−1

p

(∫ 1

0

q(s)f(u(s)) ds
))

(18)

+
∫ t

0

ϕ−1
p

(∫ 1

s

q(τ)f(u(τ)) dτ
)

ds, t ∈ [0, 1].

Lemma 5.2. Tc : Pc → Pc is continuous and compact. Furthermore, each fixed

point of Tc in Pc is a nonnegative, nondecreasing and concave solution of (1) and

(BCc).
���������

. By Lemma 3.2, we only need to prove that Tcu is nondecreasing for

any u ∈ Pc which is obvious by the definition of (Tcu)(t). �
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Theorem 5.1. Assume (H1), (H2) and (H3b) hold. If there exist δ ∈ (0, 1) and
two positive numbers b < a such that

(C5) f : [0, a] → [0,+∞) is nondecreasing;
(C6) f(δb) > (bB)p−1, f(a) 6 (aA)p−1, where B = 1/

∫ 1

δ
ϕ−1

p (
∫ 1

s
q(τ) dτ) ds,

A = 1/(m+ 1)ϕ−1
p (

∫ 1

0
q(r) dr), then (1), (BCc) has at least two positive

and nondecreasing solutions w∗, v∗ ∈ Pc with

b 6 ‖w∗‖ 6 a and lim
n→+∞

(Tc)nw0 = w∗, where w0(t) = a, t ∈ [0, 1],

b 6 ‖v∗‖ 6 a and lim
n→+∞

(Tc)nv0 = v∗, where v0(t) = bt, t ∈ [0, 1].

���������
. We denote Pc[b, a] = {w ∈ Pc : b 6 ‖w‖ 6 a}. We first prove that

TcPc[b, a] ⊂ Pc[b, a].
Let w ∈ Pc[b, a], then 0 6 w(t) 6 max

t∈[0,1]
w(t) = ‖w‖ 6 a. By Lemma 5.1,

min
t∈[δ,1]

w(t) > δ‖w‖ > δb. So, by the assumptions (C5) and (C6), we have

0 6 f(w(t)) 6 f(a) 6 (aA)p−1, t ∈ [0, 1],(19)

f(w(t)) > f(δb) > (bB)p−1, t ∈ [δ, 1].(20)

Thus, for any w(t) ∈ Pc[b, a],

‖Tcw‖ = Tcw(1)

= Bϕ−1
p

(∫ 1

0

q(s)f(w(s)) ds
)

+
∫ 1

0

ϕ−1
p

(∫ 1

s

q(τ)f(w(τ)) dτ
)

ds

>
∫ 1

δ

ϕ−1
p

(∫ 1

s

q(τ)f(w(τ)) dτ
)

ds

> bB

∫ 1

δ

ϕ−1
p

(∫ 1

s

q(τ) dτ
)

ds = b,

‖Tcw‖ = Tcw(1)

= B

(
ϕ−1

p

(∫ 1

0

q(s)f(w(s)) ds
))

+
∫ 1

0

ϕ−1
p

(∫ 1

s

q(τ)f(w(τ)) dτ
)

ds

6 mϕ−1
p

(∫ 1

0

q(s)f(w(s)) ds
)

+ ϕ−1
p

(∫ 1

0

q(τ)f(w(τ)) dτ
)

= (m+ 1)ϕ−1
p

(∫ 1

0

q(τ)f(w(τ)) dτ
)

6 (m+ 1)aAϕ−1
p

(∫ 1

0

q(τ) dτ
)

= a.
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Altogether, we get b 6 ‖Tcw‖ 6 a for w ∈ Pc[b, a], which means that TcPc[b, a] ⊂
Pc[b, a].
Let w0(t) = a, t ∈ [0, 1], then w0(t) ∈ Pc[b, a]. Let w1 = (Tc)w0, then w1 ∈ Pc[b, a];

we denote

(21) wn+1 = Tcwn = Tn+1
c w0, (n = 1, 2, . . .).

Since TcPc[b, a] ⊂ Pc[b, a] we have wn ∈ Pc[b, a], (n = 0, 1, 2, . . .). From Lemma 5.1,
Tc is compact, so {wn}∞n=1 has a convergent subsequence {wnk

}∞k=1 and there exists
w∗ ∈ Pc[b, a] such that wnk

→ w∗.

Now, since w1 ∈ Pc[b, a], we have

0 6 w1(t) 6 ‖w‖ 6 a = w0(t);

by the definition of w1 and w2, we have
{

(ϕp(w′1))
′ + q(t)f(w0(t)) = 0, 0 < t < 1

w1(0)−B(w′1(0)) = 0, w′1(1) = 0,
(22)

{
(ϕp(w′2))′ + q(t)f(w1(t)) = 0, 0 < t < 1

w2(0)−B(w′2(0)) = 0, w′2(1) = 0.
(23)

Combining (22), (23), the fact that f : [0, a] → [0,+∞) is nondecreasing, and w1 6
w0, we get 




−(ϕp(w′1(t)))
′ + (ϕp(w′2(t)))

′ > 0, 0 6 t 6 1,

w2(0)−Bw′2(0) = 0, w′2(1) = 0,

w1(0)−Bw′1(0) = 0, w′1(1) = 0.

By Lemma 2.1 (let k1 = 1, k2 = 0, B0(v) = B(v), B1(v) = v), w1(t) > w2(t),
0 6 t 6 1.
By induction, then wn(t) > wn+1(t), 0 6 t 6 1 (n = 0, 1, 2, . . .). Hence, we see

that wn → w∗. Letting n→∞ in (21), we obtain Tw∗ = w∗ since Tc is continuous.
Since ‖w∗‖ > b > 0 and w∗ is a nonnegative concave function on [0, 1], we conclude
that w∗(t) > 0, t ∈ (0, 1). Therefore, w∗ is a positive, nondecreasing solution of (1),
(BCc).

Let v0(t) = bt, t ∈ [0, 1], then ‖v0‖ = b, and v0(t) ∈ Pc[b, a]. Let v1 = (Tc)v0, then
v1 ∈ Pc[b, a]; we denote

vn+1 = Tcvn = (Tc)n+1v0 (n = 1, 2, . . .).

Similarly to {wn}∞n=1, we see that {vn}∞n=1 has a convergent subsequence {vnk
}∞k=1

and there exists v∗ ∈ Pc[b, a], such that vnk
→ v∗.
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Now, since v1 ∈ Pb[b, a], we have by Lemma 5.1,

v1(t) > t‖v1‖ > bt = v0(t).

Similarly to {wn}∞n=1, we can show easily that vn(t) 6 vn+1(t), 0 6 t 6 1 (n =
0, 1, 2, . . .). Hence, we see that vn → v∗, Tcv

∗ = v∗ and v∗(t) > 0, t ∈ (0, 1).
Therefore, v∗ is a positive, nondecreasing solution of (1), (BCc). �

Remark 5.1. We can easily get that w∗ and v∗ are the maximal and the minimal
solution of (1), (BCc) in Pc[b, a].

Corollary 5.1. Assume that (H1), (H2) and (H3b) hold. If there exists a
δ ∈ (0, 1) such that
(C5′) f : [0,+∞) → [0,+∞) is nondecreasing;
(C6′) lim

l→0
f(l)/lp−1 > (B/δ)p−1 and lim

l→+∞
f(l)/lp−1 < (aA)p−1 (in particular,

lim
l→0

f(l)/lp−1 = +∞ and lim
l→+∞

f(l)/lp−1 = 0), where A, B are defined as

in Theorem 5.1,

then there exist two constants a > 0 and b > 0 such that (1) and (BCc) has two
positive, nondecreasing solutions w∗, v∗ ∈ Pc with

b 6 ‖w∗‖ 6 a and lim
n→+∞

(Tc)nw0 = w∗, where w0(t) = a, t ∈ [0, 1],

b 6 ‖v∗‖ 6 a and lim
n→+∞

(Tc)nv0 = v∗, where v0(t) = bt, t ∈ [0, 1].

As for (1), (BCd), we have the following results.

Theorem 5.2. Assume that (H1), (H2) and (H3b) hold. If there exists a δ ∈
(0, 1) and two positive numbers b < a such that

(C7) f : [0, a] → [0,+∞) is nondecreasing;
(C8) f((1− δ)b) > (bB)p−1, f(a) 6 (aA)p−1,

where B = 1/
∫ δ

0 ϕ
−1
p (

∫ s

0 q(τ) dτ) ds, A = 1/(m+ 1)ϕ−1
p (

∫ 1

0 q(r) dr),
then (1), (BCd) has at least two positive and nonincreasing solutions w∗, v∗ ∈ Pd

such that

b 6 ‖w∗‖ 6 a and lim
n→+∞

(Td)nw0 = w∗, where w0(t) = a, t ∈ [0, 1],

b 6 ‖v∗‖ 6 a and lim
n→+∞

(Td)nv0 = v∗, where v0(t) = b(1− t), t ∈ [0, 1],

where

(Tdu)(t) = B

(
ϕ−1

p

(∫ 1

0

q(s)f(u(s)) ds
))

+
∫ 1

t

ϕ−1
p

(∫ s

0

q(τ)f(u(τ)) dτ
)

ds, t ∈ [0, 1].
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���������
. The proof of Theorem 5.2 is similar to Theorem 5.1, and we omit it. �

Corollary 5.2. Assume that (H1), (H2) and (H3b) hold. If
(C7′) f : [0,+∞) → [0,+∞) is nondecreasing;
(C8′) lim

l→0
f(l)/lp−1 > (B/(1− δ))p−1 and lim

l→+∞
f(l)/lp−1 < (aA)p−1 (in particu-

lar, lim
l→0

f(l)/lp−1 = +∞ and lim
l→+∞

f(l)/lp−1 = 0), where A, B are defined

as in Theorem 5.2,

then there exist two constants a > 0 and b > 0, such that (1), (BCd) has two positive,
concave and nonincreasing solutions w∗, v∗ with

b 6 ‖w∗‖ 6 a and lim
n→+∞

(Td)nw0 = w∗, where w0(t) = a, t ∈ [0, 1],

b 6 ‖v∗‖ 6 a and lim
n→+∞

(Td)nv0 = v∗, where v0(t) = b(1− t), t ∈ [0, 1].

Example 5.1. Suppose 0 < n, m < 3, and consider

(24) (|u′|2u′)′(t) +
1

t(1− t)
[(u(t))m + ln((u(t))n + 1)] = 0, t ∈ (0, 1),

subject to

u(0)− 1
3
u′(0) = 0, u(1) + (u′(1))3 = 0,(Ea)

u(0)− 1
3
u′(0) = 0, u(1) +

1
3
u′(1) = 0,(Eb)

u(0)− 1
3
u′(0) = 0, u′(1) = 0,(Ec)

u′(0) = 0, u(1) +
1
3
u′(1) = 0.(Ed)

By Corollary 3.1, Corollary 4.1, Corollary 5.1, and Corollary 5.2, we can get not

only the existence but also the iteration of positive solutions for the BVP (24) subject
to (Ea), (Eb), (Ec) and (Ed). But the results in [1] can only guarantee the existence

of their positive solutions.
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