Miroslav Ćirić; Tatjana Petković; Stojan Bogdanović Subdirect products of certain varieties of unary algebras

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 2, 573-578

Persistent URL: http://dml.cz/dmlcz/128190

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

SUBDIRECT PRODUCTS OF CERTAIN VARIETIES OF UNARY ALGEBRAS

M. ĆIRIĆ, Niš, T. PETKOVIĆ, Turku, and S. BOGDANOVIĆ, Niš

(Received December 7, 2004)

Abstract. J. Plonka in [12] noted that one could expect that the regularization $\mathscr{R}(K)$ of a variety K of unary algebras is a subdirect product of K and the variety D of all discrete algebras (unary semilattices), but is not the case. The purpose of this note is to show that his expectation is fulfilled for those and only those irregular varieties K which are contained in the generalized variety TDir of the so-called trap-directable algebras.

Keywords: unary algebra, subdirect product, variety, directable algebra

MSC 2000: 08A60, 08B26, 08B15, 08A70

The basic algebraic notions are defined here as for algebras in general (cf. [6], [9], for example), but we reformulate some of them, to fit them into specific notation which comes from the theory of automata. In what follows, X is always a nonempty alphabet, X^* denotes the free monoid over X, and e denotes its identity. An algebra of type X, or an X-algebra, is a system A = (A, X) where A is a nonempty set and every symbol $x \in X$ is realized as a unary operation $x^A \colon A \to A$. For any $a \in A$ and $x \in X$, we write ax^A for $x^A(a)$. For any word $w = x_1x_2...x_n \in X^*$, $w^A \colon A \to A$ is defined as the composition of the mappings $x_1^A, x_2^A, \ldots, x_n^A$, that is to say, $aw^A = ax_1^Ax_2^A...x_n^A$ for any $a \in A$. In particular, e^A is the identity mapping of A. If A is known from the context, we write simply aw instead of aw^A .

We define *terms* of type X over a set V of *variables* as expressions of the form gu, where $g \in V$ and $u \in X^*$, and we denote by $T_X(V)$ the set of all such terms. The *term* X-algebra $T_X(V) = (T_X(V), X)$ is defined so that (gu)x = g(ux) for all $gu \in T_X(V)$ and $x \in X$ (see § 1.6 of [8]). An *identity* of type X over V is an expression $gu \approx hv$,

This work was supported by Grant 1227 of Ministry of Science and Technology, Republic of Serbia.

where $gu, hv \in T_X(V)$. An X-algebra A is said to satisfy an identity $gu \approx hv$ if $(g\alpha)u^A = (h\alpha)v^A$ for all valuations $\alpha \colon V \to A$ of the variables. Identities of the form $gu \approx gv$ are called *regular*, whereas identities of the form $gu \approx hv$, with $g \neq h$, are *irregular*. A variety of X-algebras is *regular* if it is determined by a set of regular identities, otherwise it is *irregular*. A class of X-algebras is said to be a *generalized variety* if it is closed under subalgebras, homomorphic images, finite direct products and arbitrary direct powers, or equivalently, if it is a directed union of varieties (see [1], [2], [3]).

In the paper we consider only algebras of a fixed type X, and for brevity we simply say 'algebra' instead of 'X-algebra'. The least subalgebra of an algebra A, if it exists, is called the *kernel* of A, and if A has a least nontrivial subalgebra, it is called the core of A. The monogenic subalgebra of A generated by $a \in A$ is denoted by $\langle a \rangle$. It is obvious that $\langle a \rangle = \{aw: w \in X^*\}$. An element $a \in A$ is called a trap if ax = a, for every $x \in X$. An algebra is called *discrete* if all of its elements are traps. For a set H, Δ_H and ∇_H denote respectively the *diagonal* and the *universal* relation on H. The Rees congruence ρ_B on an algebra A modulo a subalgebra B of A is defined by $\varrho_B = \nabla_B \cup \Delta_A$. The corresponding *Rees quotient* A/ϱ_B is denoted by A/B, and A is said to be an *extension* of B by an algebra C if $A/B \cong C$. If this is the case, C evidently has a trap which corresponds to the image of B under the canonical epimorphism of A onto A/B. In other words, we may regard C as the result of contracting the subalgebra B of A into one element, a trap of C. A trap-extension of an algebra is obtained by adjoining to it a trap, that is to say, A is a trap-extension of B if it is an extension of B by a two-element discrete algebra. If B is a subalgebra of A, a congruence θ on A is called a B-congruence if $\theta \cap \nabla_B = \Delta_B$, and if Δ_A is the only B-congruence on A, we say that A is a *dense extension* of B. In particular, every algebra is a dense extension of itself.

An algebra A is connected if for all $a, b \in A$ there exist $u, v \in X^*$ such that au = bv, and it is strongly connected if for all $a, b \in A$ there exists $u \in X^*$ such that au = b. Obviously, A is strongly connected if and only if $\langle a \rangle = A$, for every $a \in A$. A connected algebra can have at most one trap, and if it has a trap, it is called *trap-connected*. Furthermore, a nontrivial algebra A is strongly trapconnected if it has a trap a_0 and $\langle a \rangle = A$, for every $a \in A \setminus \{a_0\}$. Every strongly trapconnected algebra is trap-connected, but the converse does not hold. An algebra A is directable if there exists a word $u \in X^*$ such that au = bu, for every pair of elements $a, b \in A$. Any directable algebra is connected, so it can have at most one trap, and if it has a trap, it is called *trap-directable*. Let **Dir**, **TDir** and **D** denote respectively the classes of all directable, trap-directable and discrete algebras. It is known that **D** is a variety and **Dir** and **TDir** are generalized varieties (see [2], [5], [10]). Moreover, a variety **K** of unary algebras is regular if and only if it contains D, and it is irregular if and only if it is contained in Dir (cf. [2], [5], [10]).

An algebra A is the *direct sum* of algebras A_{α} , $\alpha \in Y$, if $A = \bigcup_{\alpha \in Y} A_{\alpha}$ and $A_{\alpha} \cap A_{\beta} = \emptyset$, for all $\alpha, \beta \in Y$ such that $\alpha \neq \beta$. If A can not be decomposed into a direct sum of two or more algebras, then it is *direct sum indecomposable*. For more information on direct sum decompositions we refer to [7]. Let \mathbf{K}_1 and \mathbf{K}_2 be two classes of algebras. The subdirect product $\mathbf{K}_1 \otimes \mathbf{K}_2$ of \mathbf{K}_1 and \mathbf{K}_2 is the class of all subdirect products of an algebra from \mathbf{K}_1 and an algebra from \mathbf{K}_2 , and the Mal'cev product $\mathbf{K}_1 \circ \mathbf{K}_2$ is the class of all algebras A which have a congruence ρ such that $A/\rho \in \mathbf{K}_2$ and every ρ -class which is a subalgebra of A belongs to \mathbf{K}_1 . In particular, $\mathbf{K} \circ \mathbf{D}$ is the class of all direct sums of algebras from \mathbf{K} .

J. Płonka in [11], [12] studied the regularization operator $\mathscr{R}: \mathbf{K} \mapsto \mathscr{R}(\mathbf{K})$ on the lattice of varieties of unary algebras and proved, among other things, that

$$\mathscr{R}(K) = K \lor D = K \circ D$$

(for some related results we refer to [2]). He also noted in [12] that one could expect that $\mathscr{R}(\mathbf{K}) = \mathbf{K} \otimes \mathbf{D}$, but is not the case. In terminology from the theory of automata, in the example which confirms this note he assumed \mathbf{K} to be the variety of *reset* or 1-*definite* algebras, and A to be a trap-extension of a two-element reset algebra, and showed that A belongs to $\mathscr{R}(\mathbf{K})$, but does not belong to $\mathbf{K} \otimes \mathbf{D}$.

In this paper we show that a considerably large class of varieties of unary algebras fulfills the Plonka's expectation. Namely, for an irregular variety K of unary algebras¹ we prove that $\mathscr{R}(K) = K \otimes D$ if and only if $K \subseteq TDir$. For that purpose we use a lot of specific notions which come from the theory of automata (cf. [2], [4], [5], [7], [10]), and a general characterization of subdirectly irreducible unary algebras from [4]. This is the following result:

Theorem 1. A nontrivial algebra A is subdirectly irreducible if and only if it is a dense extension of a nontrivial subdirectly irreducible subalgebra B by a trapconnected algebra and this B satisfies one of the following conditions:

- (C0) B is the core of A and strongly connected;
- (C1) B is the core of A and strongly trap-connected, or B is a trap-extension of the core of A and the core is strongly connected;
- (C2) B is the core of A and a two-element discrete algebra.

Moreover, for each k = 0, 1, 2, B satisfies the condition (Ck) if and only if A has exactly k traps.

¹ Contrary to Płonka, who studied algebras having both unary and nullary fundamental operations, here we consider only algebras all of whose operations are unary.

We also need the following lemma.

Lemma 1. Let A' be a trap-extension of an algebra A. Then A' is a dense extension of A if and only if A does not have a trap.

Proof. Let $a \in A' \setminus A$ be the trap adjoined to A. We shall prove that A' is not a dense extension of A if and only if A has a trap.

Suppose that A' is not a dense extension of A, i.e., there exists an A-congruence θ on A' different than $\Delta_{A'}$. Then there exists $(b, c) \in \theta$ such that $b \neq c$, and since θ is an A-congruence, then one of b and c, say c, must be equal to a. For every $x \in X$ we have that $(ax, bx) \in \theta$, i.e., $(a, bx) \in \theta$, which together with $(b, a) \in \theta$ yields

$$(b, bx) \in \theta \cap \nabla_A = \Delta_A.$$

Therefore, b = bx, and we have obtained that A has a trap b.

Conversely, suppose that A has a trap b. Then $C = \{a, b\}$ is a subalgebra of A' and the Rees congruence on A' modulo C is an A-congruence on A' different than $\Delta_{A'}$, so A' can not be a dense extension of A.

Recall that every irregular variety of unary algebras is contained in the generalized variety Dir of all directable automata (Corollary 5.1 of [2]).

Theorem 2. Let K be an irregular variety of algebras. Then the following conditions are equivalent:

- (i) $K \subseteq TDir$;
- (ii) K does not contain a nontrivial strongly connected algebra;
- (iii) K does not contain a nontrivial subdirectly irreducible strongly connected algebra.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are obvious, and it remains to prove the implication (iii) \Rightarrow (i).

Suppose that (iii) holds. Let $A \in \mathbf{K}$ be any nontrivial subdirectly irreducible algebra. Then A has a nontrivial subdirectly irreducible subalgebra B which satisfies one of the conditions (C0), (C1) and (C2) of Theorem 1. We can immediately exclude the case (C2), since A is directable and can not have two different traps, whereas the case (C0) is excluded by our hypothesis (iii), because $B \in \mathbf{K}$. Therefore, B must satisfy (C1), and we conclude that A has a trap. Having in mind that A is directable, the existence of a trap in A implies $A \in TDir$. Hence, we have proved that every subdirectly irreducible algebra from \mathbf{K} belongs to TDir.

Further, consider an arbitrary algebra $A \in \mathbf{K}$. Then A is a subdirect product of subdirectly irreducible algebras A_i , $i \in I$, and evidently, $A_i \in \mathbf{K}$, and hence $A_i \in TDir$, for every $i \in I$. Let P^i be the direct product of the algebras A_i , $i \in I$. Since every A_i has exactly one trap, P also has exactly one trap. On the other hand, $P \in \mathbf{K} \subseteq Dir$, so we conclude that $P \in TDir$, and now $A \in TDir$, as a subalgebra of P. Therefore, we have proved (i). This completes the proof of the theorem. \Box

Note that a variety K is contained in TDir if and only if it satisfies a set of identities $\{gux \approx hu: x \in X\}$, for some $u \in X^*$ (see [10] or [5]).

Now we are ready to state and prove the main theorem of the paper.

Theorem 3. Let K be an irregular variety of algebras. Then

$$K \lor D = K \otimes D \Longleftrightarrow K \subseteq TDir$$

Proof. Let $K \vee D = K \otimes D$. Suppose that $K \not\subseteq TDir$. Then by Theorem 2, there exists a nontrivial subdirectly irreducible strongly connected algebra $A \in K$. Since A is a nontrivial strongly connected algebra, it has no trap, thus $A \in K \setminus TDir$. According to Lemma 1, A' is a dense extension of A. Now, by Theorem 5.1 of [4] it follows that A' is subdirectly irreducible. On the other hand, A' is a direct sum of A and a one-element algebra, which both belong to K, so our starting hypothesis yields

$$A' \in \mathbf{K} \circ \mathbf{D} = \mathbf{K} \lor \mathbf{D} = \mathbf{K} \otimes \mathbf{D}.$$

But, $A' \in \mathbf{K} \otimes \mathbf{D}$ and subdirect irreducibility of A' imply that

$$A' \in \boldsymbol{D}$$
 or $A' \in \boldsymbol{K}$,

which is not true, because A' is neither discrete nor directable algebra. Therefore, we conclude that $K \subseteq TDir$.

Conversely, let $K \subseteq TDir$. Since every algebra from $K \vee D$ is a subdirect product of subdirectly irreducible algebras from $K \vee D$, it is enough to prove that every subdirectly irreducible algebra from $K \vee D$ belongs either to K or to D.

Let $A \in \mathbf{K} \vee \mathbf{D} = \mathbf{K} \circ \mathbf{D}$ be an arbitrary subdirectly irreducible algebra. Then A is a direct sum of algebras A_{α} , $\alpha \in Y$, where $A_{\alpha} \in \mathbf{K} \subseteq \mathbf{TDir}$, for each $\alpha \in Y$. This means that every A_{α} has exactly one trap, and by Theorem 1, $|Y| \leq 2$. If |Y| = 2, then Theorem 1 says that A has exactly two traps a_1 and a_2 , and $B = \{a_1, a_2\}$ is the core of A. If $B \neq A$, then A is connected and direct sum indecomposable, which contradicts the hypothesis |Y| = 2. Thus, we conclude that A must be a two-element discrete algebra, and hence $A \in \mathbf{D}$. Finally, if |Y| = 1, then clearly $A \in \mathbf{K}$. This completes the proof of the theorem.

References

[1]	C. J.	Ash: Pseudovarieties,	generalized	varieties	and	similarly	described	classes.	J. A	Al-
	gebra	<i>92</i> (1985), 104–115.								\mathbf{zbl}

- [2] S. Bogdanović, M. Ćirić, B. Imreh, T. Petković, and M. Steinby: On local properties of unary algebras. Algebra Colloquium 10 (2003), 461–478.
- [3] S. Bogdanović, M. Ćirić, and T. Petković: Generalized varieties of algebras. Internat. J. Algebra Comput. Submitted.
- [4] S. Bogdanović, M. Ćirić, T. Petković, B. Imreh, and M. Steinby: Traps, cores, extensions and subdirect decompositions of unary algebras. Fundamenta Informaticae 34 (1999), 51–60.
- [5] S. Bogdanović, B. Imreh, M. Ćirić, and T. Petković: Directable automata and their generalizations. A survey. Novi Sad J. Math. 29 (1999), 31–74.
 Zbl
- [6] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981.
- [7] M. Ćirić, S. Bogdanović: Lattices of subautomata and direct sum decompositions of automata. Algebra Colloquium 6 (1999), 71–88.
- [8] F. Gécseg, I. Peák: Algebraic Theory of Automata. Akadémiai Kiadó, Budapest, 1971. zbl

 \mathbf{zbl}

- [9] G. Grätzer: Universal Algebra, 2nd ed. Springer-Verlag, New York-Heidelberg-Berlin, 1979.
- [10] T. Petković, M. Ćirić, and S. Bogdanović: Decompositions of automata and transition semigroups. Acta Cybernetica (Szeged) 13 (1998), 385–403.
- [11] J. Płonka: On the sum of a system of disjoint unary algebras corresponding to a given type. Bull. Acad. Pol. Sci., Ser. Sci. Math. 30 (1982), 305–309.
- [12] J. Plonka: On the lattice of varieties of unary algebras. Simon Stevin 59 (1985), 353–364. zbl

Authors' addresses: Miroslav Ćirić, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, P.O. Box 224, 18000 Niš, Serbia, e-mail: ciricm@bankerinter. net; Tatjana Petković, Academy of Finland and Department of Information Technology, University of Turku, FIN-20014 Turku, Finland, e-mail: tatpet@utu.fi; Stojan Bogdanović, Faculty of Economics, University of Niš, Trg Kralja Aleksandra 11, P.O. Box 121, 18000 Niš, Serbia, e-mail: sbogdan@pmf.ni.ac.yu.