Czechoslovak Mathematical Journal

Milan Demko

Lexicographic product decompositions of half linearly ordered loops

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 2, 607-629
Persistent URL: http://dml.cz/dmlcz/128193

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

LEXICOGRAPHIC PRODUCT DECOMPOSITIONS OF HALF LINEARLY ORDERED LOOPS

Milan Demko, Prešov

(Received February 25, 2005)

Abstract

In this paper we prove for an hl-loop Q an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop Q with a finite number of lexicographic factors have isomorphic refinements.

Keywords: half linearly ordered quasigroup, half linearly ordered loop, lexicographic product, isomorphic refinements

MSC 2000: 20N05, 06F99

1. Introduction

The notion of a half linearly ordered group has been introduced by Giraudet and Lucas [6]. Lexicographic products of half linearly ordered groups were discussed by Jakubík in [9].

In the present paper we define the Φ-lexicographic product of half linearly ordered loops. This definition includes as a particular case the lexicographic product of half linearly ordered groups and also the lexicographic product of linearly ordered loops. Here we will prove the following assertion analogous to [9; Theorem 4.5]: Let Q be a half linearly ordered loop and let there exist a set of representatives R of Q such that R is a subgroupoid of Q. Then any two lexicographic product decompositions of Q with a finite number of lexicographic factors have isomorphic refinements.

The analogous theorem for lexicographic product decompositions of linearly ordered groups was proved by Maltsev [10]; this result was generalized by Fuchs [5]. Further, lexicographic product decompositions of some types of ordered algebraic structures were dealt with in the papers [2], [3], [7], [8].

2. Preliminaries

General information concerning quasigroups can be found in [1]. Recall that a quasigroup Q is defined as an algebra having a binary operation "." which satisfies the condition that for any $a, b \in Q$ the equations $a x=b$ and $y a=b$ have unique solutions x and y. A quasigroup Q having an identity element 1 (i.e., such that $1 . x=x .1=x$ for each $x \in Q)$ is called a loop. If Q is a quasigroup, then we define $a / b=c$ if and only if $a=c b$; in this case we also put $c \backslash a=b$.

Let Q be a quasigroup. An equivalence relation θ on Q is called a normal congruence relation on Q, if it satisfies the following conditions

$$
a \theta b \Leftrightarrow a c \theta b c \Leftrightarrow c a \theta c b .
$$

A subquasigroup (subloop) H of a quasigroup (loop) Q is called a normal subquasigroup (subloop) of Q if H is a class with respect to some normal congruence relation on Q. If Q is a loop, then a subloop H is normal in Q (see [1]) if and only if $x H=H x$, $x y \cdot H=x \cdot y H, H \cdot x y=H x \cdot y$ for all $x, y \in Q$. It is routine to verify that for loops the following assertion (analogous to that for groups) is valid.
2.1. Lemma. Let H be a normal subloop of a loop Q. Then a relation θ on Q defined by the rule

$$
x \theta y \Leftrightarrow x / y \in H
$$

is a normal congruence relation on Q.
Now, let Q be a quasigroup and at the same time let \leqslant be a partial order on Q. We denote by $Q \uparrow$ (or $Q \downarrow$) the set of all $x \in Q$ such that whenever $y, z \in Q$, then $y \leqslant z$ if and only if $x y \leqslant x z$ (or $y \leqslant z$ if and only if $x y \geqslant x z$, respectively).
2.2. Definition. Q is said to be a half linearly ordered quasigroup (hlquasigroup) if the following conditions are satisfied:
(i) the partial order \leqslant on Q is nontrivial;
(ii) if $x, y, z \in Q$, then $y \leqslant z$ if and only if $y x \leqslant z x$;
(iii) $Q=Q \uparrow \cup Q \downarrow$;
(iv) $Q \uparrow$ is a linearly ordered set.

In particular, if Q is a loop, then Q is called a half linearly ordered loop (hl-loop).
Let Q be an hl-quasigroup. If $Q \downarrow=\emptyset$, then Q is a linearly ordered quasigroup. If Q is a group under the binary operation, then, by the definition in [6], Q is a half linearly ordered group (hl-group). In this case, $Q \downarrow \neq \emptyset$ yields that $Q \uparrow$ is a normal subgroup of Q with index 2 (see [6]). The situation is different if we consider quasigroups instead of groups. There exists an hl-quasigroup Q such that $Q \uparrow$ is not
a subquasigroup of Q (for an example see [4]). On the other hand there exist hlquasigroups Q such that $Q \uparrow$ is normal in Q and the number of classes modulo $Q \uparrow$ is greater than 2; moreover, their number can be infinite (see [4; Theorem 2]). We will apply the following results which were proved in [4].
2.3. Proposition. Let Q be an hl-loop with the identity $1, Q \downarrow \neq \emptyset$. Then
(i) $p \in Q \uparrow$ if and only if p and 1 are comparable;
(ii) if $p \in Q \uparrow, q \in Q \downarrow$, then p and q are incomparable.
2.4. Proposition. Let Q be an hl-loop. Then $Q \uparrow$ is a normal subloop of Q.

Let Q be an hl-quasigroup. For each $a, b \in Q$ we put

$$
\begin{equation*}
a \varrho b \Leftrightarrow a, b \text { are comparable. } \tag{1}
\end{equation*}
$$

2.5. Proposition (Cf. [4]). Let Q be an hl-quasigroup such that $Q \uparrow$ is a subquasigroup of Q. Then ϱ is a normal congruence relation on Q and $Q \uparrow$ is normal in Q.
2.6. Notation. Let Q be an hl-quasigroup. Let ϱ be a congruence relation on a quasigroup Q defined by (1). For each $a \in Q$ we denote $T_{a}=\{x \in Q: x \varrho a\}$. Since ϱ is a normal congruence relation on Q, the sets T_{a} are elements of the quotientquasigroup Q / ϱ with an operation defined by $T_{a} \cdot T_{b}=T_{a b}$ (cf. [1]). The cardinal $\operatorname{card} Q / \varrho$ will be called the index of an hl-quasigroup Q.

If Q is an hl-loop, then, by 2.3, $T_{1}=Q \uparrow$. For the quotient-loop Q / ϱ we will use the notation $Q / Q \uparrow$.
2.7. Definition. Let Q_{1} and Q_{2} be hl-quasigroups and ϱ_{i} be a normal congruence relation on $Q_{i}, i=1,2$, defined by (1). We say that hl-quasigroups Q_{1} and Q_{2} are h-equivalent, written $Q_{1} \sim_{h} Q_{2}$, if Q_{1} / ϱ_{1} and Q_{2} / ϱ_{2} are isomorphic quasigroups.
2.8. Remark. The relation \sim_{h} is obviously reflexive, symmetric and transitive.
2.9. Remark. All hl-quasigroups Q with $Q \downarrow=\emptyset$ are h-equivalent and their index is 1 . All hl-groups G with $G \downarrow \neq \emptyset$ are h-equivalent and they have index 2 .

3. The lexicographic product of hl-LOops

Let $I=\{1,2, \ldots, n\}$. Let Q_{i} be an hl-loop for each $i \in I$. We denote by $Q^{(1)}$ the direct product of the loops Q_{i}. The elements of $Q^{(1)}$ will be expressed as $\bar{g}=$ $\left(g_{1}, g_{2}, \ldots, g_{n}\right) ; g_{i}$ is the component of \bar{g} in Q_{i}. For the components of an identity $\overline{1} \in Q^{(1)}$ we will use the unit notation 1. By $A^{(1)}$ (or $B^{(1)}$) we denote the set of all elements $\bar{g} \in Q^{(1)}$ such that for each $i \in I g_{i} \in Q_{i} \uparrow$ (or $g_{i} \in Q_{i} \downarrow$, respectively).

Let H be a subset of $Q^{(1)}$. We say that a relation \leqslant on H is a lexicographic order on H if for arbitrary elements $\bar{g}, \bar{r} \in H$ we have $\bar{g} \leqslant \bar{r}$ if and only if $\bar{g}=\bar{r}$ or $g_{i}<r_{i}$ for the least $i \in I$ with $g_{i} \neq r_{i}$. It is easy to verify that \leqslant is a partial order on H.

Finally, let us denote by $\mathcal{L}_{Q^{(1)}}$ the set of all H such that
(i_{0}) H is a subloop of $Q^{(1)}$;
(iiio) $A^{(1)} \subseteq H$;
(iiio) under the lexicographic order \leqslant, H is an hl-loop.
3.1. Lemma. Let $H \in \mathcal{L} Q_{Q^{(1)}}$. Then $H \uparrow=A^{(1)}$ and $H \downarrow \subseteq B^{(1)}$.

Proof. Assume that $\bar{g} \in H$ has components $g_{j} \in Q_{j} \uparrow$ and $g_{k} \in Q_{k} \downarrow$ for some $j, k \in I$. There exist elements $\bar{r}, \bar{s} \in A^{(1)}$ such that $r_{j}<s_{j}$ and $r_{i}=s_{i}=1$ for each $i \in I, i \neq j$. By (iiio) $\bar{r}, \bar{s} \in H$. Clearly $\bar{r}<\bar{s}$ and $\bar{g} \cdot \bar{r}<\bar{g} \cdot \bar{s}$. Thus $\bar{g} \in H \uparrow$. Now, let $\overline{r^{\prime}}, \overline{s^{\prime}}$ be the elements of $A^{(1)}$ such that $r_{k}^{\prime}<s_{k}^{\prime}$ and $r_{i}^{\prime}=s_{i}^{\prime}=1$ for each $i \in I$, $i \neq k$ (such elements exist and belong to H). Since $\overline{r^{\prime}}<\overline{s^{\prime}}$ and $g_{k} \in Q_{k} \downarrow$, we have $\bar{g} \cdot \overline{r^{\prime}}>\bar{g} \cdot \overline{s^{\prime}}$. Hence $\bar{g} \in H \downarrow$, which contradicts the fact that $\bar{g} \in H \uparrow$. So, either $\bar{g} \in A^{(1)}$ or $\bar{g} \in B^{(1)}$ and this yields that $H \uparrow=A^{(1)}$ and $H \downarrow \subseteq B^{(1)}$.

In view of 2.6 we will use the notations $T_{\bar{g}}=\{\bar{x} \in H: \bar{x}, \bar{g}$ are comparable $\}$ (or $T_{g_{i}}=\left\{x \in Q_{i}: x, g_{i}\right.$ are comparable $\}$) for elements of $H / H \uparrow$ (or $Q_{i} / Q_{i} \uparrow$, respectively).
3.2. Lemma. Let $H \in \mathcal{L}_{Q^{(1)}}, \bar{g}, \bar{r} \in H$. Let there exist an index $j \in I$ such that $T_{g_{j}}=T_{r_{j}}$. Then $T_{g_{i}}=T_{r_{i}}$ for each $i \in I$.

Proof. Assume that $\bar{g}, \bar{r} \in H, T_{g_{j}}=T_{r_{j}}, T_{g_{k}} \neq T_{r_{k}}$. There exists $\bar{y} \in H$ such that $\bar{r} \cdot \bar{y}=\overline{1}$. Denote $\bar{s}=\bar{g} \cdot \bar{y}$. Obviously $\bar{s} \in H$ and

$$
T_{s_{j}}=T_{g_{j} y_{j}}=T_{g_{j}} T_{y_{j}}=T_{r_{j}} T_{y_{j}}=T_{r_{j} y_{j}}=T_{1}=Q_{j} \uparrow .
$$

Thus $s_{j} \in Q_{j} \uparrow$. At the same time

$$
T_{s_{k}}=T_{g_{k}} T_{y_{k}} \neq T_{r_{k}} T_{y_{k}}=Q_{k} \uparrow
$$

therefore $s_{k} \in Q_{k} \downarrow$, which contradicts 3.1.
3.3. Lemma. Let $H \in \mathcal{L}_{Q^{(1)}}, \bar{g}, \bar{r} \in H$. Then $T_{\bar{g}}=T_{\bar{r}}$ if and only if $T_{g_{i}}=T_{r_{i}}$ for each $i \in I$.

Proof. From $T_{\bar{g}}=T_{\bar{r}}$ it follows that \bar{g}, \bar{r} are comparable. Therefore there exists $k \in I$ such that g_{k} and r_{k} are comparable, i.e., $T_{g_{k}}=T_{r_{k}}$. Then, by $3.2, T_{g_{i}}=T_{r_{i}}$ for each $i \in I$. Conversely, $T_{g_{i}}=T_{r_{i}}$ yields that g_{i}, r_{i} are comparable. Thus \bar{g} and \bar{r} are comparable, i.e., $T_{\bar{g}}=T_{\bar{r}}$.

In the remaining part of the present section we assume that for each $i, j \in I, Q_{i}$ and Q_{j} are h-equivalent hl-loops. This means that for each $i \in I$ there exists an isomorphism (with respect to the loop operation)

$$
\begin{equation*}
\varphi_{i}: Q_{1} / Q_{1} \uparrow \rightarrow Q_{i} / Q_{i} \uparrow \tag{1}
\end{equation*}
$$

Let $\Phi=\left(\varphi_{i}, i \in I\right)$ be a system of isomorphisms (1) such that $\varphi_{1}=i d$, where $i d$ is the identity transformation of $Q_{1} / Q_{1} \uparrow$. We denote by $Q^{(0)}$ the subset of $Q^{(1)}$ such that

$$
\bar{g} \in Q^{(0)} \text { if and only if } T_{g_{i}}=\varphi_{i}\left(T_{g_{1}}\right) \text { for each } i \in I
$$

3.4. Lemma. $Q^{(0)}$ is a subloop of $Q^{(1)}$.

Proof. Obviously $\overline{1} \in Q^{(0)}$. Let $\bar{g}, \bar{r} \in Q^{(0)}$ and $\bar{s}=\bar{g} \cdot \bar{r}$. Since $\varphi_{i} \in \Phi$ is an isomorphism with respect to the loop operation, we have (for each $i \in I$)

$$
\varphi_{i}\left(T_{s_{1}}\right)=\varphi_{i}\left(T_{g_{1} r_{1}}\right)=\varphi_{i}\left(T_{g_{1}} T_{r_{1}}\right)=\varphi_{i}\left(T_{g_{1}}\right) \varphi_{i}\left(T_{r_{1}}\right)=T_{g_{i}} T_{r_{i}}=T_{s_{i}}
$$

Thus $\bar{s} \in Q^{(0)}$. Analogously $\bar{g} / \bar{r} \in Q^{(0)}$ and $\bar{r} \backslash \bar{g} \in Q^{(0)}$.
3.5. Lemma. Under the lexicographic order $\leqslant, Q^{(0)}$ is an hl-loop.

Proof. By 3.4, $Q^{(0)}$ is a loop. Clearly, under $\leqslant, Q^{(0)}$ is a partially ordered set. Since Q_{1} is an hl-loop, there exists $p \in Q_{1} \uparrow, p>1$. Let \bar{r} be an element of $Q^{(1)}$ such that $r_{1}=p$ and $r_{i}=1$ for each $i \in I, i \neq 1$. It is obvious that $\bar{r} \in Q^{(0)}$ and $\overline{1}<\bar{r}$. Thus \leqslant is a nontrivial partial order on $Q^{(0)}$. Likewise, it is trivial to see that if $\bar{g}, \bar{r}, \bar{s} \in Q^{(0)}$, then $\bar{g} \leqslant \bar{r}$ if and only if $\bar{g} \cdot \bar{s} \leqslant \bar{r} \cdot \bar{s}$. We are going to show that $Q^{(0)}=Q^{(0)} \uparrow \cup Q^{(0)} \downarrow$. Evidently $Q^{(0)} \uparrow \cup Q^{(0)} \downarrow \subseteq Q^{(0)}$. Assume that $\bar{g} \in Q^{(0)}$. If $g_{1} \in Q_{1} \uparrow$, then for each $i \in I$ we have $T_{g_{i}}=\varphi_{i}\left(T_{g_{1}}\right)=\varphi_{i}\left(Q_{1} \uparrow\right)=Q_{i} \uparrow$. This yields that $g_{i} \in Q_{i} \uparrow$ for each $i \in I$ and therefore $\bar{g} \in Q^{(0)} \uparrow$. Similarly, if $g_{1} \in Q_{1} \downarrow$, then $\bar{g} \in Q^{(0)} \downarrow$. Therefore $Q^{(0)}=Q^{(0)} \uparrow \cup Q^{(0)} \downarrow$. Further, it is easy to see that $Q^{(0)} \uparrow$ is a linearly ordered set, thus we can conclude that $Q^{(0)}$ is an hl-loop.
3.6. Theorem. Let $Q^{(0)}$ be as above. Then $Q^{(0)} \in \mathcal{L} Q^{(1)}$ and $Q^{(0)}, Q_{i}$ are h-equivalent hl-loops for each $i \in I$.

Proof. By 3.4 and 3.5 (i_{0}) and (iii_{0}) hold. Also, it is easy to verify that $\bar{p} \in A^{(1)}$ implies $\bar{p} \in Q^{(0)}$, thus (iio) is valid. We have that $Q^{(0)} \in \mathcal{L}_{Q^{(1)}}$ and we are going to show that $Q^{(0)} \sim_{h} Q_{i}$. Define

$$
\psi: Q^{(0)} / Q^{(0)} \uparrow \rightarrow Q_{1} / Q_{1} \uparrow ; \quad \psi\left(T_{\bar{g}}\right)=T_{g_{1}} .
$$

In view of 3.2 and 3.3 we have

$$
T_{\bar{g}}=T_{\bar{r}} \text { if and only if } T_{g_{1}}=T_{r_{1}} .
$$

Hence ψ is an injective map. To prove that ψ is a surjection take $T_{r} \in Q_{1} / Q_{1} \uparrow$. For each $i \in I, i \neq 1$ there exists $r_{i} \in Q_{i}$ such that $T_{r_{i}}=\varphi_{i}\left(T_{r}\right)$, where $\varphi_{i} \in \Phi$. Let \bar{g} be an element of $Q^{(1)}$ such that $g_{1}=r$ and $g_{i}=r_{i}$ for each $i \in I, i \neq 1$. Clearly $\bar{g} \in Q^{(0)}$ and $\psi\left(T_{\bar{g}}\right)=T_{r}$. Thus ψ is a surjection. Evidently ψ preserves the loop operation, therefore ψ is an isomorphism of $Q^{(0)} / Q^{(0)} \uparrow$ onto $Q_{1} / Q_{1} \uparrow$. We have shown that $Q^{(0)} \sim_{h} Q_{1}$. Now, since $Q_{1} \sim_{h} Q_{i}$ for all $i \in I$, we can conclude, by 2.8, that $Q^{(0)} \sim_{h} Q_{i}$ for each $i \in I$.
3.7. Definition. Let $Q_{i}(i \in I)$ and $Q^{(0)}$ be as above. Then $Q^{(0)}$ is said to be the Φ-lexicographic product of hl-loops Q_{i} and we express this fact by writing

$$
Q^{(0)}=(\Phi) \sum_{i=1}^{n} Q_{i}
$$

or

$$
Q^{(0)}=(\Phi)\left(Q_{1} \circ Q_{2} \circ \ldots \circ Q_{n}\right) .
$$

The hl-loops Q_{i} are called lexicographic factors of $Q^{(0)}$.
3.8. Remark. The Φ-lexicographic product of hl-loops Q_{i} depends on the system Φ. There exist hl-loops Q_{i} and systems of isomorphisms Φ and Ψ such that $\Phi \neq \Psi$ and hl-loops $(\Phi) \sum_{i=1}^{n} Q_{i}$ and $(\Psi) \sum_{i=1}^{n} Q_{i}$ are not isomorphic (see Example 3.9). If Q_{i} are hl-groups, then there exists exactly one system of isomorphisms (1) and $Q^{(0)}$ is the lexicographic product of hl-groups Q_{i} (cf. [9]). If Q_{i} are linearly ordered loops (or groups), then $Q^{(0)}=Q^{(1)}$ and $Q^{(0)}$ is the lexicographic product of linearly ordered loops (or groups, respectively) Q_{i}.
3.9. Example. Let $\left(\mathbb{Z}_{4}, \oplus\right)$ be the additive group of residues modulo 4. Let $Q=\mathbb{Z}_{4} \times \mathbb{R}(\mathbb{R}$ is the set of all real numbers $)$ and let \leqslant be the relation on Q defined by

$$
(i, x) \leqslant(j, y) \Leftrightarrow i=j \text { and } x \leqslant y .
$$

Put

$$
(i, x) \cdot(j, y)= \begin{cases}(i \oplus j, x+y) & \text { if } i=0 \\ (i \oplus j, x-i y) & \text { if } i \neq 0\end{cases}
$$

It is routine to verify that (Q, \cdot, \leqslant) is an hl-loop and

1. $Q \uparrow=\{(0, x) ; x \in \mathbb{R}\}$ and $Q \downarrow=\left\{(i, x) ; i \in \mathbb{Z}_{4}, i \neq 0, x \in \mathbb{R}\right\} ;$
2. $Q \uparrow$ is normal in Q and $Q / Q \uparrow=\left\{T_{(0,0)}, T_{(1,0)}, T_{(2,0)}, T_{(3,0)}\right\}$.

We take a map $\psi: Q / Q \uparrow \rightarrow Q / Q \uparrow$ such that

$$
\psi: T_{(0,0)} \mapsto T_{(0,0)} ; T_{(1,0)} \mapsto T_{(3,0)} ; T_{(2,0)} \mapsto T_{(2,0)} ; T_{(3,0)} \mapsto T_{(1,0)}
$$

It is trivial to see that ψ is an isomorphism of $Q / Q \uparrow$ onto $Q / Q \uparrow$ with respect to the loop operation. Let us put

$$
\begin{aligned}
& Q^{(0)}=(\Phi)(Q \circ Q), \text { where } \Phi=\{\mathrm{id}, \mathrm{id}\}, \\
& G^{(0)}=(\Psi)(Q \circ Q), \text { where } \Psi=\{\mathrm{id}, \psi\} .
\end{aligned}
$$

Clearly $\left.Q^{(0)}=\{((0, x),(0, y)),((1, x),(1, y)),((2, x),(2, y)),(3, x),(3, y)): x, y \in \mathbb{R}\right\}$ and $G^{(0)}=\{((0, x),(0, y)),((1, x),(3, y)),((2, x),(2, y)),((3, x),(1, y)): x, y \in \mathbb{R}\}$.

Now we consider the following condition for hl-loops.
(C) There exists T_{a} such that for each $b \in T_{a}$ the assertion $a \cdot a=b \cdot b$ holds.

Since $Q^{(0)}$ satisfies (C) (taking $a=((1, x),(1, y))$ for any $\left.x, y \in \mathbb{R}\right)$ and for $G^{(0)}(\mathrm{C})$ fails to hold, the hl-loops $Q^{(0)}$ and $G^{(0)}$ are not isomorphic.

Let Q be an hl-loop. The isomorphism

$$
\alpha: Q \rightarrow(\Phi) \sum_{i=1}^{n} Q_{i}
$$

with respect to the loop operation and the partial order is said to be a Φ-lexicographic product decomposition of Q.
3.10. Remark. Let $\alpha_{0}: Q \rightarrow Q_{1}$ be an isomorphism of the hl-loop Q onto the hl-loop Q_{1}. We regard α_{0} as a lexicographic product decomposition of Q and Q_{1} as a Φ-lexicographic product with one factor Q_{1}, where Φ contains only the identity transformation of $Q_{1} / Q_{1} \uparrow$.

Let

$$
\beta: Q \rightarrow(\Psi) \sum_{i=1}^{m} G_{i}
$$

be a Ψ-lexicographic product decomposition of an hl-loop Q. We say that α, β are isomorphic decompositions if $m=n$ and Q_{i}, G_{i} are isomorphic hl-loops for each $i=1,2, \ldots, n$.

4. Two-Factor Φ-LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

The lexicographic product decompositions of a partially ordered quasigroup with an idempotent element h were discussed in [3]. Putting $h=1$ we can apply these results to the linearly ordered loops, especially for $Q \uparrow$, where Q is an hl-loop. We start this section by recalling some notions from [3], formulated for the case of Q a linearly ordered loop.

Let Q be a linearly ordered loop and let A be a subloop of Q. A linear order on Q induces a linear order on A under which A is again a linearly ordered loop; A will be called a linearly ordered subloop of Q.

Let A, B be the linearly ordered subloops of Q such that (cf. [3, Section 4], where we put $h=1$):
(C1) for each $p \in Q$ there exists exactly one pair (a, b) such that $a \in A, b \in B$ and $p=a b ;$
(C2) if $p_{1}, p_{2} \in Q, p_{1}=a_{1} b_{1}, p_{2}=a_{2} b_{2}, a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$, then

$$
p_{1} p_{2}=\left(a_{1} a_{2}\right) \cdot\left(b_{1} b_{2}\right)
$$

(C3) under the notation as in (C2), the relation $p_{1} \leqslant p_{2}$ is valid if and only if either $a_{1}<a_{2}$ or $a_{1}=a_{2}$ and $b_{1} \leqslant b_{2}$.
Then we write

$$
Q=A \circ B
$$

From [3, Section 4] we have that if $Q=A \circ B$, then Q is isomorphic to the lexicographic product of A and B (with respect to the loop operation and the linear order). Conversely, if Q is a lexicographic product of linearly ordered loops Q_{1}, Q_{2}, then there exist linearly ordered subloops A, B of Q such that $Q=A \circ B$. We say that $Q=A \circ B$ defines the lexicographic product decomposition of Q.

Now, let Q be an hl-loop. We take one element from every class $T_{r} \in Q / Q \uparrow$; from $T_{1}=Q \uparrow$ we choose an identity element 1 . We denote by R the set of all elements chosen from the respective $T_{r} ; R$ will be called the set of representatives of an hl-loop Q. In what follows we assume that R is any fixed set of representatives of Q.
4.1. Lemma. If $Q \uparrow=A \circ B$, then each element $x \in Q$ can be uniquely written in the form $x=a b \cdot r$, where $a \in A, b \in B$ and $r \in R$.

Proof. For each element $x \in Q$ there exists exactly one element $r \in R$ such that $r \in T_{x}$. Since $x / r \in Q \uparrow$, by (C1) there exists exactly one pair of elements $a \in A, b \in B$ such that $x=a b \cdot r$.

In view of 4.1 we employ the following notation.
4.2. Notation. Let $Q \uparrow=A \circ B$ and let R be a set of representatives of Q. For each $x \in Q$ we denote $a_{x} \in A, b_{x} \in B$ and $r_{x} \in R$ the elements which fulfil $x=a_{x} b_{x} \cdot r_{x}$. By 4.1 these elements are uniquely determined (for a fixed set R).

Obviously $r_{x}=r_{y}$ if and only if $T_{x}=T_{y}$ (i.e., x and y are comparable).
4.3. Lemma. Let $Q \uparrow=A \circ B$, where A, B are normal subloops of Q. Then for each $x, y, z \in Q$ the following conditions are satisfied:
(i) $r_{x z}=r_{y z} \Leftrightarrow r_{x}=r_{y}$;
(ii) if $r_{x}=r_{y}$, then $b_{x} \leqslant b_{y} \Leftrightarrow b_{x z} \leqslant b_{y z}$.

Proof. (i) This is obvious. (ii) Put $r=r_{x}=r_{y}$. Since A, B are normal subloops of Q, there exist $a_{x}^{(1)}, a_{x}^{(2)}, a_{x}^{(3)} \in A$ and $b_{x}^{(1)}, b_{x}^{(2)} \in B$ such that:

$$
\begin{aligned}
x z & =\left(a_{x} b_{x} \cdot r\right) z=\left(a_{x}^{(1)} \cdot b_{x} r\right) z=a_{x}^{(2)} \cdot\left(b_{x} r \cdot z\right)=a_{x}^{(2)}\left(b_{x}^{(1)} \cdot r z\right) \\
& =a_{x}^{(2)}\left[b_{x}^{(1)} \cdot\left(a_{r z} b_{r z} \cdot r_{r z}\right)\right]=a_{x}^{(2)}\left[\left(b_{x}^{(2)} \cdot a_{r z} b_{r z}\right) \cdot r_{r z}\right] .
\end{aligned}
$$

Hence, applying (C2), we obtain

$$
x z=a_{x}^{(2)}\left[\left(a_{r z} \cdot b_{x}^{(2)} b_{r z}\right) \cdot r_{r z}\right]=\left[a_{x}^{(3)}\left(a_{r z} \cdot b_{x}^{(2)} b_{r z}\right)\right] r_{r z}=\left(a_{x}^{(3)} a_{r z} \cdot b_{x}^{(2)} b_{r z}\right) r_{r z} .
$$

Analogously

$$
\begin{aligned}
y z & =\left(a_{y} b_{y} \cdot r\right) z=\left(a_{y}^{(1)} \cdot b_{y} r\right) z=a_{y}^{(2)} \cdot\left(b_{y} r \cdot z\right)=a_{y}^{(2)}\left(b_{y}^{(1)} \cdot r z\right) \\
& =a_{y}^{(2)}\left[b_{y}^{(1)} \cdot\left(a_{r z} b_{r z} \cdot r_{r z}\right)\right]=a_{y}^{(2)}\left[\left(b_{y}^{(2)} \cdot a_{r z} b_{r z}\right) \cdot r_{r z}\right] \\
& =a_{y}^{(2)}\left[\left(a_{r z} \cdot b_{y}^{(2)} b_{r z}\right) \cdot r_{r z}\right]=\left[a_{y}^{(3)}\left(a_{r z} \cdot b_{y}^{(2)} b_{r z}\right)\right] r_{r z}=\left(a_{y}^{(3)} a_{r z} \cdot b_{y}^{(2)} b_{r z}\right) r_{r z} .
\end{aligned}
$$

By 4.1, we have

$$
b_{x z}=b_{x}^{(2)} b_{r z}, \quad b_{y z}=b_{y}^{(2)} b_{r z} .
$$

Using 2.2 (ii) and the above equations we can conclude:

$$
\begin{aligned}
b_{x} \leqslant b_{y} & \Leftrightarrow b_{x} r \cdot z \leqslant b_{y} r \cdot z \\
& \Leftrightarrow b_{x}^{(1)} \cdot r z \leqslant b_{y}^{(1)} \cdot r z \Leftrightarrow\left(b_{x}^{(2)} \cdot a_{r z} b_{r z}\right) r_{r z} \leqslant\left(b_{y}^{(2)} \cdot a_{r z} b_{r z}\right) r_{r z} \\
& \Leftrightarrow b_{x}^{(2)} \leqslant b_{y}^{(2)} \Leftrightarrow b_{x}^{(2)} b_{r z} \leqslant b_{y}^{(2)} b_{r z} \Leftrightarrow b_{x z} \leqslant b_{y z} .
\end{aligned}
$$

Using similar methods as in the proof of 4.3 we obtain
4.4. Lemma. Let $Q \uparrow=A \circ B$, where A, B are normal subloops of Q. Then for each $x, y, z \in Q$ the following conditions are satisfied:
(i) $r_{z x}=r_{z y} \Leftrightarrow r_{x}=r_{y}$;
(ii) if $z \in Q \uparrow$ and $r_{x}=r_{y}$, then $b_{x} \leqslant b_{y} \Leftrightarrow b_{z x} \leqslant b_{z y}$;
(iii) if $z \in Q \downarrow$ and $r_{x}=r_{y}$, then $b_{x} \leqslant b_{y} \Leftrightarrow b_{z x} \geqslant b_{z y}$.

Let $Q \uparrow=A \circ B$. For $x=a_{x} b_{x}$ and $y=a_{y} b_{y}$ from $Q \uparrow$ we put

$$
\begin{equation*}
x \tau_{1} y \Leftrightarrow a_{x}=a_{y}, x \tau_{2} y \Leftrightarrow b_{x}=b_{y} \tag{2}
\end{equation*}
$$

It is routine to verify that τ_{1}, τ_{2} are normal congruence relations on $Q \uparrow$. For $i=1,2$ and $x \in Q \uparrow$ we set $\tau_{i}[x]=\left\{y \in Q \uparrow: y \tau_{i} x\right\}$. Clearly $\tau_{1}[1]=B$ and $\tau_{2}[1]=A$.

Now, for $i=1,2$ we define a relation Θ_{i} on Q :

$$
\begin{equation*}
x \Theta_{i} y \Leftrightarrow x / y \in Q \uparrow \text { and } x / y \tau_{i} 1 . \tag{3}
\end{equation*}
$$

If A and B (i.e., $\tau_{2}[1]$ and $\tau_{1}[1]$) are normal subloops of Q, then, by $2.1, \Theta_{1}, \Theta_{2}$ are normal congruence relations on Q. Analogously as above, for each $i=1,2$ and $x \in Q$ we set $\Theta_{i}[x]=\left\{y \in Q: y \Theta_{i} x\right\}$.
4.5. Lemma. Let $Q \uparrow=A \circ B$, where A, B are normal subloops of Q. Let $x, y \in Q$. Then

$$
\begin{aligned}
& x \Theta_{1} y \Leftrightarrow r_{x}=r_{y} \text { and } a_{x}=a_{y}, \\
& x \Theta_{2} y \Leftrightarrow r_{x}=r_{y} \text { and } b_{x}=b_{y} .
\end{aligned}
$$

Proof. Assume that $x \Theta_{1} y$. Then $x / y \tau_{1}$ 1, i.e., $x=b y, b \in B$. Using the notations from 4.2 and the assumption that B is a normal subloop of Q we can write:

$$
a_{x} b_{x} \cdot r_{x}=b\left(a_{y} b_{y} \cdot r_{y}\right)=\left(b^{\prime} \cdot a_{y} b_{y}\right) r_{y},
$$

where $b^{\prime} \in B$. By (C2) we obtain $a_{x} b_{x} \cdot r_{x}=\left(a_{y} \cdot b^{\prime} b_{y}\right) r_{y}$ and hence, in view of 4.1, we get $r_{x}=r_{y}$ and $a_{x}=a_{y}$. Conversely, let x, y be elements of Q such that $a_{x}=a_{y}, r_{x}=r_{y}$. From $r_{x}=r_{y}$ we have $x / y \in Q \uparrow$. Therefore $x=p y$, where $p \in Q \uparrow$. Thus $a_{x} b_{x} \cdot r_{x}=p\left(a_{x} b_{y} \cdot r_{x}\right)$. Since $Q \uparrow$ is a normal subloop of Q, there exists $z \in Q \uparrow$ such that

$$
\begin{equation*}
a_{x} b_{x} \cdot r_{x}=p\left(a_{x} b_{y} \cdot r_{x}\right)=\left(z \cdot a_{x} b_{y}\right) r_{x} . \tag{4}
\end{equation*}
$$

Hence $a_{x} b_{x}=z \cdot a_{x} b_{y}$. From $z \in Q \uparrow$ we have $z=a b$, where $a \in A, b \in B$. Then $a_{x} b_{x}=a b \cdot a_{x} b_{y}$ and hence, in view of (C2) and (C1), we get $a_{x}=a a_{x}$. Thus $a=1$, and therefore $z \in B$. Since B is a normal subloop of Q and $z \in B$, we have, by (4), $p \in B\left(=\tau_{1}[1]\right)$. Hence $x / y \tau_{1} 1$, i.e., $x \Theta_{1} y$. The proof for Θ_{2} is analogous.

4.6. Lemma.

(i) If $A=\{1\}$, then $\left(x \Theta_{1} y \Leftrightarrow T_{x}=T_{y}\right)$ and $\left(x \Theta_{2} y \Leftrightarrow x=y\right)$.
(ii) If $B=\{1\}$, then $\left(x \Theta_{2} y \Leftrightarrow T_{x}=T_{y}\right)$ and $\left(x \Theta_{1} y \Leftrightarrow x=y\right)$.

Proof. This is a consequence of 4.5.
In what follows we assume that $Q \uparrow=A \circ B, A, B$ are normal subloops of Q and $A, B \neq\{1\}$. For each $i=1,2$ we denote

$$
\bar{Q}_{i}=\left\{\Theta_{i}[x]: x \in Q\right\} .
$$

Since Θ_{i} is a normal congruence relation on Q, \bar{Q}_{i} with the operation $\Theta_{i}[x] \cdot \Theta_{i}[y]=$ $\Theta_{i}[x y]$ is a loop. Put

$$
\begin{equation*}
\Theta_{1}[x] \leqslant \Theta_{1}[y] \Leftrightarrow r_{x}=r_{y} \text { and } a_{x} \leqslant a_{y} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta_{2}[x] \leqslant \Theta_{2}[y] \Leftrightarrow r_{x}=r_{y} \text { and } b_{x} \leqslant b_{y} . \tag{6}
\end{equation*}
$$

It is easy to verify that the relation \leqslant is correctly defined on $\bar{Q}_{i}(i=1,2)$, i.e., it does not depend on the choice of the elements from $\Theta_{i}[x]$. Further, we immediately obtain
4.7. Lemma. The relation \leqslant is a partial order on $\bar{Q}_{i}, i=1,2$.

4.8. Lemma.

(i) $\Theta_{1}[x]$ and $\Theta_{1}[y]$ are comparable (by the relation \leqslant) if and only if $\Theta_{2}[x]$ and $\Theta_{2}[y]$ are comparable;
(ii) $x=y$ if and only if $\Theta_{i}[x]=\Theta_{i}[y]$ for $i=1,2$.

Proof. Since arbitrary two elements of $Q \uparrow$ are comparable, (i) follows from (5) and (6). The assertion (ii) is an immediate consequence of 4.5 .

4.9. Lemma.

(i) If $\Theta_{1}[x]<\Theta_{1}[y]$, then $x<y$.
(ii) If $x \leqslant y$, then $\Theta_{1}[x] \leqslant \Theta_{1}[y]$.

Proof. (i) From 4.5 and (5) it follows that $\Theta_{1}[x]<\Theta_{1}[y]$ implies $r_{x}=r_{y}$, $a_{x}<a_{y}$. Thus, by (C3), $x<y$. (ii) $x \leqslant y \Rightarrow r_{x}=r_{y}, a_{x} b_{x} \leqslant a_{y} b_{y} \Rightarrow r_{x}=r_{y}$, $a_{x} \leqslant a_{y} \Rightarrow \Theta_{1}[x] \leqslant \Theta_{1}[y]$.

Now, for each $i=1,2$ we denote

$$
H_{i}^{\uparrow}=\left\{\Theta_{i}[x] ; x \in Q \uparrow\right\}, \quad H_{i}^{\downarrow}=\left\{\Theta_{i}[x] ; x \in Q \downarrow\right\} .
$$

Clearly $\bar{Q}_{i}=H_{i}^{\uparrow} \cup H_{i}^{\downarrow}$.
4.10. Lemma. For each $i=1,2$, the loop \bar{Q}_{i} under the relation (5) (or (6), respectively) is an hl-loop with $\bar{Q}_{i} \uparrow=H_{i}^{\uparrow}$ and $\bar{Q}_{i} \downarrow=H_{i}^{\downarrow}$.

Proof. We are going to prove that \bar{Q}_{1} fulfills the conditions (i)-(iv) from 2.2. By 4.7 , under the relation \leqslant, \bar{Q}_{1} is a partially ordered set. Since $A \neq\{1\}$, there exists $x \in A$ such that $x<1$. Then $\Theta_{1}[x]<\Theta_{1}[1]$, thus \leqslant is a nontrivial partial order on \bar{Q}_{1}; hence (i) is valid. Let $x, y, z \in Q$. Clearly

$$
\Theta_{1}[x]=\Theta_{1}[y] \Leftrightarrow \Theta_{1}[x z]=\Theta_{1}[y z]
$$

and, in view of 4.9,

$$
\begin{aligned}
\Theta_{1}[x]<\Theta_{1}[y] & \Leftrightarrow x<y, \Theta_{1}[x] \neq \Theta_{1}[y] \Leftrightarrow \\
& \Leftrightarrow x z<y z, \Theta_{1}[x z] \neq \Theta_{1}[y z] \Leftrightarrow \Theta_{1}[x z]<\Theta_{1}[y z] \\
& \Leftrightarrow \Theta_{1}[x] \cdot \Theta_{1}[z]<\Theta_{1}[y] \cdot \Theta_{1}[z],
\end{aligned}
$$

thus (ii) is valid. Using a similar method as above we can prove that $\bar{Q}_{1} \uparrow=$ H_{1}^{\uparrow} and $\bar{Q}_{1} \downarrow=H_{1}^{\downarrow}$. Hence $\bar{Q}_{1}=\bar{Q}_{1} \uparrow \cup \bar{Q}_{1} \downarrow$; thus (iii) holds. Finally, since $\bar{Q}_{1} \uparrow$ is obviously a linearly ordered set, we have that \bar{Q}_{1} is an hl-loop.

The proof that (6) is a nontrivial partial order on \bar{Q}_{2} is analogous to that for \bar{Q}_{1}. Let $x, y, z \in Q$. From (6) and 4.3 we obtain

$$
\begin{aligned}
\Theta_{2}[x] \leqslant \Theta_{2}[y] & \Leftrightarrow r_{x}=r_{y}, b_{x} \leqslant b_{y} \Leftrightarrow r_{x z}=r_{y z}, b_{x z} \leqslant b_{y z} \\
& \Leftrightarrow \Theta_{2}[x] \Theta_{2}[z] \leqslant \Theta_{2}[y] \Theta_{2}[z]
\end{aligned}
$$

thus 2.2 (ii) is valid. We are going to show that $\bar{Q}_{2} \downarrow=H_{2}^{\downarrow}$. Let $\Theta_{2}[z] \in \bar{Q}_{2} \downarrow$. By way of contradiction, suppose that $z \in Q \uparrow$. Since \leqslant is a nontrivial partial order on \bar{Q}_{2}, there exist $x, y \in Q$ such that $\Theta_{2}[x]<\Theta_{2}[y]$. Then $\Theta_{2}[z x]>\Theta_{2}[z y]$, and thus $b_{z x}>b_{z y}, r_{z x}=r_{z y}$ Hence, by 4.4, $b_{x}>b_{y}, r_{x}=r_{y}$, which contradicts the fact that $\Theta_{2}[x]<\Theta_{2}[y]$. Therefore $z \in Q \downarrow$, i.e., $\Theta_{2}[z] \in H_{2}^{\downarrow}$. To prove the converse inclusion take $\Theta_{2}[z] \in H_{2}^{\downarrow}$ (this means that $z \in Q \downarrow$). Then

$$
\begin{aligned}
\Theta_{2}[x] \leqslant \Theta_{2}[y] & \Leftrightarrow r_{x}=r_{y}, b_{x} \leqslant b_{y} \\
& \Leftrightarrow r_{z x}=r_{z y}, b_{z x} \geqslant b_{z y} \Leftrightarrow \Theta_{2}[z x] \geqslant \Theta_{2}[z y] .
\end{aligned}
$$

Thus $\Theta_{2}[z] \in \bar{Q}_{2} \downarrow$. We have $\bar{Q}_{2} \downarrow=H_{2}^{\downarrow}$. To prove that $\bar{Q}_{2} \uparrow=H_{2}^{\uparrow}$ we proceed similarly. Now it is easy to see that $\bar{Q}_{2}=\bar{Q}_{2} \uparrow \cup \bar{Q}_{2} \downarrow$, and since $\bar{Q}_{2} \uparrow$ is a linearly ordered set, we can conclude that \bar{Q}_{2} is an hl-loop.

The hl-loops \bar{Q}_{1}, \bar{Q}_{2} are h-equivalent. Indeed, let

$$
\varphi: \bar{Q}_{1} / \bar{Q}_{1} \uparrow \rightarrow \bar{Q}_{2} / \bar{Q}_{2} \uparrow ; T_{\Theta_{1}[x]} \mapsto T_{\Theta_{2}[x]}
$$

By 4.8 (i), $T_{\Theta_{2}[x]}=T_{\Theta_{2}[y]}$ if and only if $T_{\Theta_{1}[x]}=T_{\Theta_{1}[y]}$, thus φ is an injective mapping. Moreover, it is easy to see that φ is a surjection and φ preserves the loop operation. Thus $\bar{Q}_{1} \sim_{h} \bar{Q}_{2}$.

Since φ is an isomorphism (with respect to the loop operation), we can construct Φ-lexicographic product

$$
\bar{G}=(\Phi)\left(\bar{Q}_{1} \circ \bar{Q}_{2}\right), \text { where } \Phi=\{\mathrm{id}, \varphi\} .
$$

4.11. Lemma. $\left(\Theta_{1}[x], \Theta_{2}[y]\right) \in \bar{G}$ if and only if $T_{x}=T_{y}$.

Proof. $\quad\left(\Theta_{1}[x], \Theta_{2}[y]\right) \in \bar{G} \Leftrightarrow \varphi\left(T_{\Theta_{1}[x]}\right)=T_{\Theta_{2}[y]} \Leftrightarrow T_{\Theta_{2}[x]}=T_{\Theta_{2}[y]} \Leftrightarrow$ $\Theta_{2}[x], \Theta_{2}[y]$ are comparable $\Leftrightarrow T_{x}=T_{y}$.

Let us put

$$
\psi: Q \rightarrow \bar{G} ; \psi(x)=\left(\Theta_{1}[x], \Theta_{2}[x]\right) .
$$

4.12. Lemma. ψ is an isomorphism of the hl-loop Q onto the hl-loop \bar{G}.

Proof. By 4.11, $\left(\Theta_{1}[x], \Theta_{2}[x]\right) \in \bar{G}$ for each $x \in Q$. Using 4.8 (ii) it is easy to see that ψ is an injective mapping. We are going to show that ψ is a surjection. Let $\left(\Theta_{1}[x], \Theta_{2}[y]\right) \in \bar{G}$. By 4.11, $T_{x}=T_{y}$, and thus there exists $r \in R$ (R is the set of representatives of Q) such that $x=a_{x} b_{x} \cdot r$ and $y=a_{y} b_{y} \cdot r$. Put $z=a_{x} b_{y} \cdot r$. Since $\Theta_{1}[z]=\Theta_{1}[x]$ and $\Theta_{2}[z]=\Theta_{2}[y]$, we have $\psi(z)=\left(\Theta_{1}[x], \Theta_{2}[y]\right)$. Thus ψ is a surjection. It is routine to verify that ψ preserves the loop operation. Finally,

$$
\begin{aligned}
\psi(x) \leqslant \psi(y) & \Leftrightarrow \Theta_{1}[x]<\Theta_{1}[y] \text { or }\left(\Theta_{1}[x]=\Theta_{1}[y], \Theta_{2}[x] \leqslant \Theta_{2}[y]\right) \\
& \Leftrightarrow\left(r_{x}=r_{y}, a_{x}<a_{y}\right) \text { or }\left(r_{x}=r_{y}, a_{x}=a_{y}, b_{x} \leqslant b_{y}\right) \\
& \Leftrightarrow a_{x} b_{x} \cdot r_{x} \leqslant a_{y} b_{y} \cdot r_{y} \Leftrightarrow x \leqslant y .
\end{aligned}
$$

Thus ψ is an isomorphism with respect to the loop operation and the partial order.

Summarizing, we have
4.13. Theorem. Let Q be an hl-loop and let A, B be nontrivial normal subloops of Q such that $Q \uparrow=A \circ B$. Then ψ is a Φ-lexicographic product decomposition of Q.

5. Finite-Factor Φ-LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

The finite-factor lexicographic product decomposition of a partially ordered quasigroup Q with an idempotent element h has been studied by author in [3]. Analogously as in Section 4, putting $h=1$, we can apply these results to a linearly ordered loop $Q \uparrow$ in case Q is an hl-loop.

Firstly, assume that Q is a linearly ordered loop. Let A_{1}, A_{2}, A_{3} be linearly ordered subloops of Q. Then (cf. [3, Lemma 4.5]) $Q=\left(A_{1} \circ A_{2}\right) \circ A_{3}$ if and only if $Q=A_{1} \circ$ $\left(A_{2} \circ A_{3}\right)$. Hence, by induction, we can conclude that the finite-factor lexicographic product decomposition of Q does not depend on the setting of parentheses. Moreover, putting $h=1$ in [3; (4.4)] we immediately obtain
5.1. Lemma. Let $Q=A_{1} \circ A_{2} \circ A_{3}$. Then $a^{(1)} \cdot\left(a^{(2)} \cdot a^{(3)}\right)=\left(a^{(1)} \cdot a^{(2)}\right) \cdot a^{(3)}$ for arbitrary elements $a^{(i)} \in A_{i}, i=1,2,3$.

For the lexicographic product decomposition of the linearly ordered loop Q with lexicographic factors $A_{1}, A_{2}, \ldots, A_{n}$ we use the notation

$$
Q=A_{1} \circ A_{2} \circ \ldots \circ A_{n} .
$$

By 5.1, provided $Q=A_{1} \circ A_{2} \circ \ldots \circ A_{n}$ the parentheses in the product $a^{(1)} a^{(2)} \ldots . . a^{(n)}$ of elements $a^{(i)} \in A_{i}$ can be omitted. Moreover, by (C1), arbitrary elements $x, y \in Q$ can be uniquely written in the form $x=a^{(1)} a^{(2)} \ldots a^{(n)}, y=b^{(1)} b^{(2)} \ldots b^{(n)}$, where $a^{(i)}, b^{(i)} \in A_{i}$ and, by (C2), $x y=\left(a^{(1)} b^{(1)}\right) \cdot\left(a^{(2)} b^{(2)}\right) \cdot \ldots \cdot\left(a^{(n)} b^{(n)}\right)$.

Now, let Q be an hl-loop, R be a set of representatives of Q. Suppose that

$$
\begin{equation*}
Q \uparrow=A_{1} \circ A_{2} \circ \ldots \circ A_{n} \tag{1}
\end{equation*}
$$

is a lexicographic product decomposition of the linearly ordered loop $Q \uparrow$. It is easy to verify that the generalization of 4.1 is valid, i.e., each element $x \in Q$ can be uniquely written in the form $\left(a^{(1)} a^{(2)} \ldots a^{(n)}\right) \cdot r$, where $a^{(i)} \in A_{i}$ and $r \in R$. In view of this fact we will employ the notations $x=a_{x}^{(1)} a_{x}^{(2)} \ldots a_{x}^{(n)} \cdot r_{x}, a_{x}^{(i)} \in A_{i}, r_{x} \in R$, $y=a_{y}^{(1)} a_{y}^{(2)} \ldots a_{y}^{(n)} \cdot r_{y}, a_{y}^{(i)} \in A_{i}, r_{y} \in R, x y=a_{x y}^{(1)} a_{x y}^{(2)} \ldots a_{x y}^{(n)} \cdot r_{x y}, a_{x y}^{(i)} \in A_{i}$, $r_{x y} \in R$, etc. (we recall that the relations $a_{x y}^{(i)}=a_{x}^{(i)} a_{y}^{(i)}, r_{x y}=r_{x} r_{y}$ don't hold in general).
5.2. Lemma. Let Q be an hl-loop. Let $A_{i}, i=1,2, \ldots, n$, be normal subloops of Q such that $Q \uparrow=A_{1} \circ A_{2} \circ \ldots \circ A_{n}$. Then $B=A_{i_{1}} \circ A_{i_{2}} \circ \ldots \circ A_{i_{k}}$ is a normal subloop of Q for arbitrary $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}, i_{1}<i_{2}<\ldots<i_{k}$.

Proof. The assertion of the lemma is trivial for $k=1$. Let $k \in N, 1<k \leqslant n$. We are going to show that if $B^{*}=A_{i_{1}} \circ A_{i_{2}} \circ \ldots \circ A_{i_{k-1}}$ is normal in Q, then B is a normal subloop of Q. It is routine to verify that B is a subloop of Q. Let $x \in Q$, $b \in B$. Clearly $b=c a$, where $c \in B^{*}$ and $a \in A_{i_{k}}$. Since $A_{i_{k}}, B^{*}$ are normal subloops of Q, there exist $a^{\prime} \in A_{i_{k}}, c^{\prime} \in B^{*}$ such that $x b=x \cdot c a=c^{\prime} a^{\prime} \cdot x$. Therefore $x b \in B x$. Analogously we obtain $b x \in x B$, thus we have $x B=B x$ for each $x \in Q$. Similarly, if $x, y \in Q$, then $x y \cdot B=x \cdot y B$ and $B \cdot x y=B x \cdot y$. Therefore B is a normal subloop of Q.

Suppose that (1) is valid and A_{i} is normal in Q for each $i=1,2, \ldots, n$. We define a relation $\tau_{i}(i=1,2, \ldots, n)$ on $Q \uparrow$:

$$
\begin{equation*}
x \tau_{i} y \Leftrightarrow a_{x}^{(i)}=a_{y}^{(i)} \tag{2}
\end{equation*}
$$

It is easy to see that τ_{i} is a normal congruence relation on $Q \uparrow$. By $5.2, \tau_{i}[1]=\{x \in$ $\left.Q \uparrow: x \tau_{i} 1\right\}$ is a normal subloop of Q. Now, for $x, y \in Q$ and for each $i=1,2, \ldots, n$ we put

$$
\begin{equation*}
x \Theta_{i} y \Leftrightarrow x / y \in Q \uparrow \text { and } x / y \tau_{i} 1 . \tag{3}
\end{equation*}
$$

In view of $2.1 \Theta_{i}$ is a normal congruence relation on Q. Analogously as in Section 4 we denote $\Theta_{i}[x]=\left\{z \in Q: z \Theta_{i} x\right\}$ and $\bar{Q}_{i}=\left\{\Theta_{i}[x]: x \in Q\right\}$. Recall that under the operation $\Theta_{i}[x] \cdot \Theta_{i}[y]=\Theta_{i}[x y], \bar{Q}_{i}$ is a loop.
5.3. Lemma. For each $i=1,2, \ldots, n$ the following holds

$$
x \Theta_{i} y \Leftrightarrow a_{x}^{(i)}=a_{y}^{(i)} \text { and } r_{x}=r_{y} .
$$

Proof. In view of 5.2 it suffices to apply the same method as in the proof of 4.5.

Let us denote (for each $i=1,2, \ldots, n$)

$$
H_{i}^{\uparrow}=\left\{\Theta_{i}[x] ; x \in Q \uparrow\right\}, \quad H_{i}^{\downarrow}=\left\{\Theta_{i}[x] ; x \in Q \downarrow\right\} .
$$

Clearly $\bar{Q}_{i}=H_{i}^{\uparrow} \cup H_{i}^{\downarrow}$. For $\Theta_{i}[x], \Theta_{i}[y] \in \bar{Q}_{i}$ we set

$$
\begin{equation*}
\Theta_{i}[x] \leqslant \Theta_{i}[y] \Leftrightarrow r_{x}=r_{y} \text { and } a_{x}^{(i)} \leqslant a_{y}^{(i)} \tag{4}
\end{equation*}
$$

It is easy to see that the relation \leqslant is a partial order on \bar{Q}_{i}.
5.4. Lemma. Let Q be an hl-loop. Let $Q \uparrow=A_{1} \circ A_{2} \circ A_{3}$, where A_{1}, A_{2}, A_{3} are nontrivial normal subloops of Q. Then for each $i=1,2,3 \bar{Q}_{i}$ is an hl-loop and $\bar{Q}_{i} \uparrow=H_{i}^{\uparrow}, \bar{Q}_{i} \downarrow=H_{i}^{\downarrow}$.

Proof. Denote $B=A_{1} \circ A_{2}$. By $5.2, B$ is normal in Q. Clearly $Q \uparrow=B \circ A_{3}$, thus each element $x \in Q$ can be uniquely written in the form $x=b a \cdot r$, where $b \in B$, $a \in A_{3}$ and $r \in R$. Let η be a relation defined on Q by the rule

$$
(b a \cdot r) \eta\left(b^{\prime} a^{\prime} \cdot r^{\prime}\right) \Leftrightarrow a=a^{\prime}, r=r^{\prime}
$$

and let

$$
\eta[b a \cdot r] \leqslant^{\prime} \eta\left[b^{\prime} a^{\prime} \cdot r^{\prime}\right] \Leftrightarrow a \leqslant a^{\prime}, r=r^{\prime} .
$$

Denote $\bar{G}=\{\eta[x]: x \in Q\}$. By 4.10, under the relation $\leqslant^{\prime}, \bar{G}$ is an hl-loop. But it is easy to see that $\bar{G}=\bar{Q}_{3}$ and

$$
\eta[x] \leqslant \leqslant^{\prime} \eta[y] \Leftrightarrow \Theta_{3}[x] \leqslant \Theta_{3}[y],
$$

where \leqslant is the relation defined by (4). Therefore we can conclude that \bar{Q}_{3} is an hl-loop and $\bar{Q}_{3} \uparrow=H_{3}^{\uparrow}, \bar{Q}_{3} \downarrow=H_{3}^{\downarrow}$. Analogously \bar{Q}_{1} is an hl-loop and $\bar{Q}_{1} \uparrow=H_{1}^{\uparrow}$, $\bar{Q}_{1} \downarrow=H_{1}^{\downarrow}$. We are going to show that \bar{Q}_{2} is an hl-loop. As in the proof of 4.10 it can be seen that \leqslant is a nontrivial partial order on \bar{Q}_{2}. For completing the proof we verify (ii)-(iv) from 2.2. Denote $B=A_{2} \circ A_{3}$. Then $Q \uparrow=A_{1} \circ B$. Any elements $x, y \in Q$ can be uniquely expressed as $x=a_{x}^{(1)} b_{x} \cdot r_{x}$ and $y=a_{y}^{(1)} b_{y} \cdot r_{y}$, where b_{x}, b_{y} are elements of B, which are uniquely determined by $b_{x}=a_{x}^{(2)} a_{x}^{(3)}$ and $b_{y}=a_{y}^{(2)} a_{y}^{(3)}$. Let $z \in Q$. The elements $x z, y z$ can be uniquely written in the form

$$
x z=a_{x z}^{(1)} a_{x z}^{(2)} a_{x z}^{(3)} \cdot r_{x z}=a_{x z}^{(1)} b_{x z} \cdot r_{x z},
$$

where $a_{x z}^{(i)} \in A_{i}, r_{x z} \in R, b_{x z}=a_{x z}^{(2)} a_{x z}^{(3)} \in B$, and

$$
y z=a_{y z}^{(1)} a_{y z}^{(2)} a_{y z}^{(3)} \cdot r_{y z}=a_{y z}^{(1)} b_{y z} \cdot r_{y z},
$$

where $a_{y z}^{(i)} \in A_{i}, r_{y z} \in R, b_{y z}=a_{y z}^{(2)} a_{y z}^{(3)} \in B$. Clearly

$$
\Theta_{2}[x]=\Theta_{2}[y] \Leftrightarrow \Theta_{2}[x z]=\Theta_{2}[y z]
$$

and

$$
\begin{equation*}
\Theta_{2}[x]<\Theta_{2}[y] \Leftrightarrow r_{x}=r_{y}, a_{x}^{(2)}<a_{y}^{(2)} \Leftrightarrow r_{x}=r_{y}, a_{x}^{(2)} \neq a_{y}^{(2)}, b_{x}<b_{y} . \tag{5}
\end{equation*}
$$

Since $Q \uparrow=A_{1} \circ B$, where A_{1}, B are normal subloops of Q, from (5) and 4.3 it follows that

$$
\begin{aligned}
\Theta_{2}[x]<\Theta_{2}[y] & \Leftrightarrow a_{x z}^{(2)} \neq a_{y z}^{(2)}, r_{x z}=r_{y z}, b_{x z}<b_{y z} \\
& \Leftrightarrow a_{x z}^{(2)}<a_{y z}^{(2)}, r_{x z}=r_{y z} \Leftrightarrow \Theta_{2}[x] \Theta_{2}[z]<\Theta_{2}[y] \Theta_{2}[z],
\end{aligned}
$$

thus (ii) from 2.2 holds. Using similar methods as above we obtain (cf. also the proof of 4.10)

$$
\bar{Q}_{2} \uparrow=H_{2}^{\uparrow} \text { and } \bar{Q}_{2} \downarrow=H_{2}^{\downarrow}
$$

which yields $\bar{Q}_{2}=\bar{Q}_{2} \uparrow \cup \bar{Q}_{2} \downarrow$. Now, since $\bar{Q}_{2} \uparrow$ is a linearly ordered set, we can conclude that \bar{Q}_{2} is an hl-loop.
5.5. Lemma. Let Q be an hl-loop. Let $Q \uparrow=A_{1} \circ A_{2} \circ \ldots \circ A_{n}, n \neq 1$, where A_{i} $(i=1,2, \ldots, n)$ are nontrivial normal subloops of Q. Then for each $i=1,2, \ldots, n$ \bar{Q}_{i} is an hl-loop and $\bar{Q}_{i} \uparrow=H_{i}^{\uparrow}, \bar{Q}_{i} \downarrow=H_{i}^{\downarrow}$.

Proof. In view of 4.10 and 5.4 it suffices to consider the case $n \geqslant 4$. Let $i \neq 1$ and $i \neq n$. We denote $B_{1}=A_{1} \circ A_{2} \circ \ldots \circ A_{i-1}, B_{2}=A_{i+1} \circ \ldots \circ A_{n}$. Then $Q \uparrow=B_{1} \circ A_{i} \circ B_{2}$, thus, by $5.4, \bar{Q}_{i}$ is an hl-loop. For $i=1$ and $i=n$ the assertion of the lemma follows from 5.4, where we set $Q \uparrow=A_{1} \circ B \circ A_{n}, B=A_{2} \circ \ldots \circ A_{n-1}$.

Let Q be an hl-loop. We assume that (1) holds, $n \neq 1$ and $A_{i}, i=1,2, \ldots, n$, are the nontrivial normal subloops of Q. For each $i=1,2, \ldots, n$ we set

$$
\begin{equation*}
\psi_{i}: \bar{Q}_{1} / \bar{Q}_{1} \uparrow \rightarrow \bar{Q}_{i} / \bar{Q}_{i} \uparrow ; T_{\Theta_{1}[x]} \rightarrow T_{\Theta_{i}[x]} \tag{6}
\end{equation*}
$$

Analogously as in Section 4 it can be shown that ψ_{i} is a loop isomorphism. Denote $\Psi=\left(\psi_{i} ; i=1,2, \ldots, n\right)$ the system of isomorphisms from (6) (it is obvious that ψ_{1} is the identity permutation of $\bar{Q}_{1} / \bar{Q}_{1} \uparrow$). Let

$$
\alpha_{1}: Q \rightarrow(\Psi) \sum_{i=1}^{n} \bar{Q}_{i} ; \alpha_{1}(x)=\left(\Theta_{1}[x], \Theta_{2}[x], \ldots, \Theta_{n}[x]\right) .
$$

Then α_{1} is a Ψ-lexicographic product decomposition of Q (the proof is analogous with that of 4.12). Also, it is easy to see that the linearly ordered loops $\bar{Q}_{i} \uparrow$ and A_{i} are isomorphic. The decomposition α_{1} will be called an extension of the decomposition (1).

Now, for each $i=1,2, \ldots, n, n \geqslant 2$, let G_{i} be an hl-loop and let

$$
\begin{equation*}
\gamma: Q \rightarrow(\Phi) \sum_{i=1}^{n} G_{i} \tag{7}
\end{equation*}
$$

be a Φ-lexicographic product decomposition of an hl-loop Q. The component of $\gamma(x)$ in G_{i} will be denoted by $\gamma(x)_{i}$. For $i=1,2, \ldots, n$ we consider the relation Θ_{i}^{*} defined on Q by

$$
x \Theta_{i}^{*} y \Leftrightarrow \gamma(x)_{i}=\gamma(y)_{i} .
$$

Clearly, Θ_{i}^{*} is a normal congruence relation on Q. Under the relation

$$
\Theta_{i}^{*}[x] \leqslant \Theta_{i}^{*}[y] \Leftrightarrow \gamma(x)_{i} \leqslant \gamma(y)_{i}
$$

Q / Θ_{i}^{*} is an hl-loop, $Q / \Theta_{i}^{*} \uparrow=\left\{\Theta_{i}^{*}[x] ; x \in Q \uparrow\right\}, Q / \Theta_{i}^{*} \downarrow=\left\{\Theta_{i}^{*}[x] ; x \in Q \downarrow\right\}$. It is routine to verify that $G_{i}, Q / \Theta_{i}^{*}$ are isomorphic hl-loops. For each $i=1,2, \ldots n$ let

$$
B_{i}=\left\{x \in Q \uparrow: \gamma(x)_{j}=1 \text { for each } j \neq i\right\}
$$

Obviously B_{i} are normal, nontrivial subloops of Q and

$$
\begin{equation*}
Q \uparrow=B_{1} \circ B_{2} \circ \ldots \circ B_{n} . \tag{8}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\gamma_{1}: Q \rightarrow(\Psi) \sum_{i=1}^{n} \bar{Q}_{i} ; \gamma_{1}(x)=\left(\Theta_{1}[x], \Theta_{2}[x], \ldots, \Theta_{n}[x]\right) \tag{9}
\end{equation*}
$$

an extension of (8).
5.6. Lemma. γ and γ_{1} are isomorphic decompositions.

Proof. From (8) it follows that elements $x, y \in Q$ can be uniquely written in the form $x=\left(b_{x}^{(1)} b_{x}^{(2)} \ldots b_{x}^{(n)}\right) \cdot r_{x}, y=\left(b_{y}^{(1)} b_{y}^{(2)} \ldots b_{y}^{(n)}\right) \cdot r_{y}$, where $b_{x}^{(i)}, b_{y}^{(i)} \in B_{i}$, $r_{x}, r_{y} \in R$. If $\Theta_{i}^{*}[x] \leqslant \Theta_{i}^{*}[y]$, then $r_{x}=r_{y}$. Indeed, from $\Theta_{i}^{*}[x] \leqslant \Theta_{i}^{*}[y]$ it follows that $T_{\gamma(x)_{i}}=T_{\gamma(y)_{i}}$, thus, by 3.2 and $3.3, T_{\gamma(x)}=T_{\gamma(y)}$ and since γ is an isomorphism with respect to the partial order, we have $T_{x}=T_{y}$, i.e., $r_{x}=r_{y}$. Thus we can write

$$
\begin{aligned}
\Theta_{i}^{*}[x] \leqslant \Theta_{i}^{*}[y] & \Leftrightarrow \gamma(x)_{i} \leqslant \gamma(y)_{i} \\
& \Leftrightarrow \gamma\left(b_{x}^{(1)} b_{x}^{(2)} \ldots b_{x}^{(n)} \cdot r_{x}\right)_{i} \leqslant \gamma\left(b_{y}^{(1)} b_{y}^{(2)} \ldots b_{y}^{(n)} \cdot r_{y}\right)_{i} \\
& \Leftrightarrow \gamma\left(b_{x}^{(i)}\right)_{i} \leqslant \gamma\left(b_{y}^{(i)}\right)_{i} \Leftrightarrow \gamma\left(b_{x}^{(i)}\right) \leqslant \gamma\left(b_{y}^{(i)}\right) \\
& \Leftrightarrow b_{x}^{(i)} \leqslant b_{y}^{(i)} \Leftrightarrow \Theta_{i}[x] \leqslant \Theta_{i}[y] .
\end{aligned}
$$

At the same time

$$
\Theta_{i}^{*}[x]=\Theta_{i}^{*}[y] \Leftrightarrow \Theta_{i}[x]=\Theta_{i}[y] .
$$

Hence $Q / \Theta_{i}^{*}=\bar{Q}_{i}$, and since the hl-loops Q / Θ_{i}^{*} and G_{i} are isomorphic, we can conclude that \bar{Q}_{i} and G_{i} are isomorphic hl-loops.
5.7. Lemma. Let Q be an hl-loop. Let there exist a set of representatives R of Q such that R is a subgroupoid of Q. Then any two decompositions $Q \uparrow=A \circ B$ and $Q \uparrow=C \circ B$, where A, B, C are normal nontrivial subloops of Q, have isomorphic extensions.

Proof. Each element $x \in Q$ can be uniquely written in the form $x=a_{x} b_{x} \cdot r_{x}$, where $a_{x} \in A, b_{x} \in B, r_{x} \in R$ and at the same time in the form $x=c_{x} d_{x} \cdot r_{x}$, where $c_{x} \in C, d_{x} \in B$. Let

$$
\begin{equation*}
\alpha_{1}: Q \rightarrow(\Phi)\left(Q / \Theta_{1} \circ Q / \Theta_{2}\right) \tag{10}
\end{equation*}
$$

be an extension of the decomposition $Q \uparrow=A \circ B$ and

$$
\begin{equation*}
\beta_{1}: Q \rightarrow\left(\Phi^{\prime}\right)\left(Q / \eta_{1} \circ Q / \eta_{2}\right) \tag{11}
\end{equation*}
$$

be an extension of the decomposition $Q \uparrow=C \circ B$. We are going to show that

$$
\psi: Q / \Theta_{1} \rightarrow Q / \eta_{1} ; \psi\left(\Theta_{1}[x]\right)=\eta_{1}[x]
$$

is an isomorphism of the hl-loop Q / Θ_{1} onto Q / η_{1}. Let $x=a_{x} b_{x} \cdot r_{x}, y=a_{y} b_{y} \cdot r_{y}$. If $\Theta_{1}[x]=\Theta_{1}[y]$, then, by $5.3, r_{x}=r_{y}, a_{x}=a_{y}$. There are unique $c \in C, d \in B$ such that $a_{x}=c d$. Hence $x=\left(c d \cdot b_{x}\right) r_{x}=\left(c \cdot d b_{x}\right) r_{x}$ and $y=\left(c d \cdot b_{y}\right) r_{x}=\left(c \cdot d b_{y}\right) r_{x}$. Thus $\eta_{1}[x]=\eta_{1}[y]$. Analogously, if $\eta_{1}[x]=\eta_{1}[y]$, then $\Theta_{1}[x]=\Theta_{1}[y]$. We see that ψ is an injective map. Obviously, ψ is a surjection which preserves the loop operation. Since ψ is an injection, we have that $r_{x}=r_{y}$ implies

$$
a_{x} \neq a_{y} \Leftrightarrow c_{x} \neq c_{y} .
$$

Thus, provided $r_{x}=r_{y}$ we obtain

$$
\begin{aligned}
\Theta_{1}[x]<\Theta_{1}[y] & \Leftrightarrow a_{x}<a_{y} \Leftrightarrow x<y, a_{x} \neq a_{y} \\
& \Leftrightarrow c_{x}<c_{y} \Leftrightarrow \eta_{1}[x]<\eta_{1}[y] .
\end{aligned}
$$

Hence ψ is an isomorphism of the hl-loop Q / Θ_{1} onto Q / η_{1}.
Now, we are going to show that Q / Θ_{2} and Q / η_{2} are isomorphic hl-loops. Consider

$$
\xi: Q / \Theta_{2} \rightarrow Q / \eta_{2} ; \xi\left(\Theta_{2}[x]\right)=\eta_{2}\left[b_{x} r_{x}\right] .
$$

It is routine to verify that ξ is a bijection which preserves the partial order. Since B is a normal subloop of Q and R is a subgroupoid of Q, for each $b, d \in B$ and $r, s \in R$ we obtain $b r \cdot d s=b_{0} r_{0}$, where $b_{0} \in B, r_{0}=r s \in R$. Using this fact we get that ξ preserves the operation. Thus Q / Θ_{2} and Q / η_{2} are isomorphic hl-loops.

6. ISOMORPHIC REFINEMENTS

Let Q be an hl-loop and let

$$
\begin{align*}
& \alpha: Q \rightarrow(\Phi) \tag{1}\\
& \beta: Q \rightarrow(\Psi) \Gamma_{i \in I} G_{i}, I=\{1,2, \ldots n\} \tag{2}\\
& \Gamma_{k K} H_{k}, K=\{1,2, \ldots m\}
\end{align*}
$$

be two lexicographic product decompositions of Q.
6.1. Definition (Cf. [11]). The lexicographic product decomposition β is said to be a refinement of α if for each $i \in I$ there exists a subset $K(i)$ of K and a lexicographic product decomposition

$$
\alpha_{i}: G_{i} \rightarrow\left(\Phi_{i}\right) \Gamma_{k \in K(i)} H_{k}
$$

such that, whenever $x \in Q, i \in I$ and $k \in K(i)$, then

$$
\beta(x)_{k}=\alpha_{i}\left(\alpha(x)_{i}\right)_{k} .
$$

We obviously have
6.2. Lemma. Let α and β be isomorphic lexicographic product decompositions of Q and let α^{\prime} be a refinement of α. Then there exists a refinement β^{\prime} of β such that α^{\prime} and β^{\prime} are isomorphic.

Let

$$
\begin{equation*}
Q \uparrow=A_{1} \circ A_{2} \circ \ldots \circ A_{n}, \tag{3}
\end{equation*}
$$

where $A_{1}, A_{2}, \ldots A_{n}$ are normal subloops of Q. Suppose that for each $i=1,2, \ldots, n$ there exists a lexicographic product decomposition

$$
A_{i}=A_{i 1} \circ A_{i 2} \circ \ldots \circ A_{i k(i)}
$$

where $A_{i j}$ are normal subloops of Q. Then (cf. [3])

$$
\begin{equation*}
Q \uparrow=A_{11} \circ A_{12} \circ \ldots \circ A_{i j} \circ \ldots \circ A_{n k(n)} . \tag{4}
\end{equation*}
$$

Now, let

$$
\alpha_{1}: Q \rightarrow(\Phi)\left(\bar{Q}_{1} \circ \bar{Q}_{2} \circ \ldots \circ \bar{Q}_{n}\right)
$$

be an extension of (3) and

$$
\beta_{1}: Q \rightarrow(\Psi)\left(\bar{Q}_{11} \circ \bar{Q}_{12} \circ \ldots \circ \bar{Q}_{12} \ldots \circ \bar{Q}_{n k(n)}\right)
$$

be an extension of (4). From the construction of the extensions α_{1} and β_{1} we obtain
6.3. Lemma. β_{1} is a refinement of α_{1}.
6.4. Theorem. Let Q be an hl-loop and let there exist a set of representatives R of Q such that R is a subgroupoid of Q. Then any two lexicographic product decompositions of Q have isomorphic refinements.

Proof. If $Q \downarrow=\emptyset$, then the assertion is valid in view of [3]. Suppose that $Q \downarrow \neq \emptyset$. Let

$$
\begin{aligned}
& \alpha: Q \rightarrow(\Phi) \sum_{i=1}^{n} G_{i}, \\
& \beta: Q \rightarrow(\Psi) \sum_{k=1}^{m} H_{k}
\end{aligned}
$$

be two lexicographic product decompositions of Q. We prove the theorem by induction on $n+m, n+m \geqslant 2$. It is clear for $n+m=2$. Let $n+m>2$. The case $m=1$ or $n=1$ is trivial. Assume that $m, n \neq 1$. In the same way as we have constructed the decomposition (8) in Section 5 for γ and the extension γ_{1} of γ, we can construct

$$
\begin{array}{ll}
Q \uparrow=A_{1} \circ A_{2} \circ \ldots \circ A_{n} & \text { for } \alpha, \\
Q \uparrow=B_{1} \circ B_{2} \circ \ldots \circ B_{m} & \text { for } \beta \tag{6}
\end{array}
$$

and the extensions α_{1} of (5) and β_{1} of (6)

$$
\begin{aligned}
& \alpha_{1}: Q \rightarrow\left(\Phi_{1}\right)\left(\bar{Q}_{1} \circ \bar{Q}_{2} \circ \ldots \circ \bar{Q}_{n}\right), \\
& \beta_{1}: Q \rightarrow\left(\Psi_{1}\right)\left(\bar{G}_{1} \circ \bar{G}_{2} \circ \ldots \circ \bar{G}_{m}\right) .
\end{aligned}
$$

By 5.6, α, α_{1} are isomorphic decompositions and also β, β_{1} are isomorphic decompositions. According to [3; Lemma 4.7(i)] we can suppose without loss of generality that $A_{n} \subseteq B_{m}$. Hence, by (6) and [3; Lemma 4.7 (ii)], we have

$$
\begin{equation*}
Q \uparrow=B_{1} \circ B_{2} \circ \ldots \circ B_{m-1} \circ B_{m 1} \circ B_{m 2} \tag{7}
\end{equation*}
$$

where $B_{m 1}=B_{m} \cap\left(A_{1} \circ A_{2} \circ \ldots \circ A_{n-1}\right)$ and $B_{m 2}=A_{n}$. From the construction of (5) and (6) it follows that the subloops A_{i} and B_{j} are normal in Q for each $i=1,2, \ldots n$, $j=1,2, \ldots m$. Since, according to $5.2, B_{m 1}$ is an intersection of normal subloops of $Q, B_{m 1}$ is normal in Q. Thus there exists an extension β_{2} of (7)

$$
\beta_{2}: Q \rightarrow\left(\Psi_{2}\right)\left(\bar{G}_{1} \circ \bar{G}_{2} \circ \ldots \circ \bar{G}_{m-1} \circ \bar{G}_{m 1} \circ \bar{G}_{m 2}\right)
$$

In view of $6.3 \beta_{2}$ is a refinement of β_{1}. Denote

$$
A=A_{1} \circ A_{2} \circ \ldots \circ A_{n-1}
$$

and

$$
B=B_{1} \circ B_{2} \circ \ldots \circ B_{m-1} \circ B_{m 1}
$$

(by $5.2, A, B$ are normal subloops of Q). Then

$$
\begin{equation*}
Q \uparrow=A \circ A_{n} \tag{8}
\end{equation*}
$$

and at the same time

$$
\begin{equation*}
Q \uparrow=B \circ A_{n} \tag{9}
\end{equation*}
$$

Let $Q \rightarrow\left(\Phi^{\prime}\right)\left(\bar{Q}_{A} \circ \bar{Q}_{A_{n}}\right)$ be an extension of (8) and $Q \rightarrow\left(\Psi^{\prime}\right)\left(\bar{G}_{B} \circ \bar{G}_{A_{n}}\right)$ be an extension of (9). According to $5.7, \bar{Q}_{A}, \bar{G}_{B}$ and also $\bar{Q}_{A_{n}}, \bar{G}_{A_{n}}$ are isomorphic hl-loops. Moreover, it can be verified that

$$
\begin{equation*}
\bar{Q}_{A_{n}}=\bar{Q}_{n} \text { and } \bar{G}_{A_{n}}=\bar{G}_{m 2} \tag{10}
\end{equation*}
$$

We denote by $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ the isomorphisms from the system Φ_{1} and by ψ_{1}, ψ_{2}, $\ldots, \psi_{m 2}$ the isomorphisms from Ψ_{2}. Put $\Phi_{1}^{*}=\Phi_{1}-\left\{\varphi_{n}\right\}$ and $\Psi_{2}^{*}=\Psi_{2}-\left\{\psi_{m 2}\right\}$. There exist decompositions
(I) $\bar{Q}_{A} \rightarrow\left(\Phi_{1}^{*}\right)\left(\bar{Q}_{1} \circ \bar{Q}_{2} \circ \ldots \circ \bar{Q}_{n-1}\right)$;
(II) $\bar{G}_{B} \rightarrow\left(\Psi_{2}^{*}\right)\left(\bar{G}_{1} \circ \bar{G}_{2} \circ \ldots \circ \bar{G}_{m-1} \circ \bar{G}_{m 1}\right)$.

By the induction hypothesis there exist lexicographic product decompositions $\alpha_{1}^{\prime}, \beta_{1}^{\prime}$ such that

- α_{1}^{\prime} is a refinement of (I), β_{1}^{\prime} is a refinement of (II)
- $\alpha_{1}^{\prime}, \beta_{1}^{\prime}$ are isomorphic decompositions.

Hence according to (10), α_{1} and β_{2} have isomorphic refinements. Therefore, by 6.2, the lexicographic product decompositions α and β have isomorphic refinements.

References

[1] V. D. Belousov: Foundations of the theory of quasigroups and loops. Nauka Moscow, 1967. (In Russian.)
[2] Š. C'ernák: Lexicographic products of cyclically ordered groups. Math. Slovaca 45 (1995), 29-38.
[3] M. Demko: Lexicographic product decompositions of partially ordered quasigroups. Math. Slovaca 51 (2001), 13-24.
[4] M. Demko: On half linearly ordered quasigroups. Acta Facultatis Prešov 39 (2002), 39-45.
[5] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963.
[6] M. Giraudet and F. Lucas: Groupes à moitié ordonnés. Fund. Math. 139 (1991), 75-89. Zbl
[7] J. Jakubik: Lexicographic products of partially ordered groupoids. Czech. Math. J. 14 (1964), 281-305. (In Russian.)
zbl
[8] J. Jakubik: Lexicographic product decompositions of cyclically ordered groups. Czech. Math. J. 48 (1998), 229-241.
zbl
[9] J. Jakubik: Lexicographic products of half linearly ordered groups. Czech. Math. J. 51 (2001), 127-138.
[10] A. I. Maltsev: On ordered group. Izv. Akad. Nauk SSSR, Ser. Matem. 13 (1949), 473-482. (In Russian.)

Author's address: Milan Demko, KM FHPV PU, 17. novembra 1, 08116 Prešov, Slovakia, e-mail: demko@unipo.sk.

