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Abstract. In this paper we prove for an hl-loop Q an assertion analogous to the result
of Jakubík concerning lexicographic products of half linearly ordered groups. We found
conditions under which any two lexicographic product decompositions of an hl-loop Q with
a finite number of lexicographic factors have isomorphic refinements.
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1. Introduction

The notion of a half linearly ordered group has been introduced by Giraudet and

Lucas [6]. Lexicographic products of half linearly ordered groups were discussed by
Jakubík in [9].

In the present paper we define the Φ-lexicographic product of half linearly ordered
loops. This definition includes as a particular case the lexicographic product of half

linearly ordered groups and also the lexicographic product of linearly ordered loops.
Here we will prove the following assertion analogous to [9; Theorem 4.5]: Let Q be

a half linearly ordered loop and let there exist a set of representatives R of Q such
that R is a subgroupoid of Q. Then any two lexicographic product decompositions

of Q with a finite number of lexicographic factors have isomorphic refinements.
The analogous theorem for lexicographic product decompositions of linearly or-

dered groups was proved by Maltsev [10]; this result was generalized by Fuchs [5].
Further, lexicographic product decompositions of some types of ordered algebraic

structures were dealt with in the papers [2], [3], [7], [8].

607



2. Preliminaries

General information concerning quasigroups can be found in [1]. Recall that a
quasigroup Q is defined as an algebra having a binary operation “·” which satisfies
the condition that for any a, b ∈ Q the equations ax = b and ya = b have unique
solutions x and y. A quasigroup Q having an identity element 1 (i.e., such that
1.x = x.1 = x for each x ∈ Q) is called a loop. If Q is a quasigroup, then we define
a/b = c if and only if a = cb; in this case we also put c \ a = b.

Let Q be a quasigroup. An equivalence relation θ on Q is called a normal congru-
ence relation on Q, if it satisfies the following conditions

aθb⇔ acθbc⇔ caθcb.

A subquasigroup (subloop) H of a quasigroup (loop) Q is called a normal subquasi-
group (subloop) of Q if H is a class with respect to some normal congruence relation

on Q. If Q is a loop, then a subloopH is normal in Q (see [1]) if and only if xH = Hx,
xy ·H = x · yH , H · xy = Hx · y for all x, y ∈ Q. It is routine to verify that for loops
the following assertion (analogous to that for groups) is valid.

2.1. Lemma. Let H be a normal subloop of a loop Q. Then a relation θ on Q
defined by the rule

xθy ⇔ x/y ∈ H

is a normal congruence relation on Q.

Now, let Q be a quasigroup and at the same time let 6 be a partial order on Q.
We denote by Q↑ (or Q↓) the set of all x ∈ Q such that whenever y, z ∈ Q, then
y 6 z if and only if xy 6 xz (or y 6 z if and only if xy > xz, respectively).

2.2. Definition. Q is said to be a half linearly ordered quasigroup (hl-
quasigroup) if the following conditions are satisfied:
(i) the partial order 6 on Q is nontrivial;
(ii) if x, y, z ∈ Q, then y 6 z if and only if yx 6 zx;
(iii) Q = Q↑ ∪ Q↓;
(iv) Q↑ is a linearly ordered set.

In particular, if Q is a loop, then Q is called a half linearly ordered loop (hl-loop).
Let Q be an hl-quasigroup. If Q↓ = ∅, then Q is a linearly ordered quasigroup.

If Q is a group under the binary operation, then, by the definition in [6], Q is a
half linearly ordered group (hl-group). In this case, Q↓ 6= ∅ yields that Q↑ is a
normal subgroup of Q with index 2 (see [6]). The situation is different if we consider
quasigroups instead of groups. There exists an hl-quasigroup Q such that Q↑ is not
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a subquasigroup of Q (for an example see [4]). On the other hand there exist hl-

quasigroups Q such that Q↑ is normal in Q and the number of classes modulo Q↑ is
greater than 2; moreover, their number can be infinite (see [4; Theorem 2]). We will
apply the following results which were proved in [4].

2.3. Proposition. Let Q be an hl-loop with the identity 1, Q↓ 6= ∅. Then
(i) p ∈ Q↑ if and only if p and 1 are comparable;
(ii) if p ∈ Q↑, q ∈ Q↓, then p and q are incomparable.

2.4. Proposition. Let Q be an hl-loop. Then Q↑ is a normal subloop of Q.

Let Q be an hl-quasigroup. For each a, b ∈ Q we put

(1) a%b⇔ a, b are comparable.

2.5. Proposition (Cf. [4]). Let Q be an hl-quasigroup such that Q↑ is a sub-
quasigroup of Q. Then % is a normal congruence relation on Q and Q↑ is normal
in Q.

2.6. Notation. Let Q be an hl-quasigroup. Let % be a congruence relation on a
quasigroup Q defined by (1). For each a ∈ Q we denote Ta = {x ∈ Q : x%a}. Since
% is a normal congruence relation on Q, the sets Ta are elements of the quotient-

quasigroup Q/% with an operation defined by Ta · Tb = Tab (cf. [1]). The cardinal
cardQ/% will be called the index of an hl-quasigroup Q.
If Q is an hl-loop, then, by 2.3, T1 = Q↑. For the quotient-loop Q/% we will use

the notation Q/Q↑.

2.7. Definition. Let Q1 and Q2 be hl-quasigroups and %i be a normal congru-
ence relation on Qi, i = 1, 2, defined by (1). We say that hl-quasigroups Q1 and Q2

are h-equivalent, written Q1 ∼h Q2, if Q1/%1 and Q2/%2 are isomorphic quasigroups.

2.8. Remark. The relation ∼h is obviously reflexive, symmetric and transitive.

2.9. Remark. All hl-quasigroups Q with Q↓ = ∅ are h-equivalent and their
index is 1. All hl-groups G with G↓ 6= ∅ are h-equivalent and they have index 2.
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3. The lexicographic product of hl-loops

Let I = {1, 2, . . . , n}. Let Qi be an hl-loop for each i ∈ I . We denote by Q(1)

the direct product of the loops Qi. The elements of Q(1) will be expressed as g =
(g1, g2, . . . , gn); gi is the component of g in Qi. For the components of an identity
1̄ ∈ Q(1) we will use the unit notation 1. By A(1) (or B(1)) we denote the set of all

elements g ∈ Q(1) such that for each i ∈ I gi ∈ Qi↑ (or gi ∈ Qi↓, respectively).
Let H be a subset of Q(1). We say that a relation 6 on H is a lexicographic order

on H if for arbitrary elements g, r̄ ∈ H we have g 6 r̄ if and only if g = r̄ or gi < ri

for the least i ∈ I with gi 6= ri. It is easy to verify that 6 is a partial order on H .
Finally, let us denote by L Q(1) the set of all H such that

(i0) H is a subloop of Q(1);

(ii0) A(1) ⊆ H ;
(iii0) under the lexicographic order 6, H is an hl-loop.

3.1. Lemma. Let H ∈ L Q(1) . Then H↑ = A(1) and H↓ ⊆ B(1).
���������

. Assume that g ∈ H has components gj ∈ Qj↑ and gk ∈ Qk↓ for some
j, k ∈ I . There exist elements r̄, s̄ ∈ A(1) such that rj < sj and ri = si = 1 for each
i ∈ I , i 6= j. By (ii0) r̄, s̄ ∈ H . Clearly r̄ < s̄ and g · r̄ < g · s̄. Thus g ∈ H↑. Now,
let r̄′, s̄′ be the elements of A(1) such that r′k < s′k and r

′
i = s′i = 1 for each i ∈ I ,

i 6= k (such elements exist and belong to H). Since r̄′ < s̄′ and gk ∈ Qk↓, we have
g · r̄′ > g · s̄′. Hence g ∈ H↓, which contradicts the fact that g ∈ H↑. So, either
g ∈ A(1) or g ∈ B(1) and this yields that H↑ = A(1) and H↓ ⊆ B(1). �

In view of 2.6 we will use the notations Tg = {x̄ ∈ H : x̄, g are comparable} (or
Tgi = {x ∈ Qi : x, gi are comparable}) for elements of H/H↑ (or Qi/Qi↑, respec-
tively).

3.2. Lemma. Let H ∈ L Q(1) , g, r̄ ∈ H . Let there exist an index j ∈ I such

that Tgj = Trj . Then Tgi = Tri for each i ∈ I .
���������

. Assume that g, r̄ ∈ H , Tgj = Trj , Tgk
6= Trk

. There exists y ∈ H such
that r̄ · y = 1̄. Denote s̄ = g · y. Obviously s̄ ∈ H and

Tsj = Tgjyj = TgjTyj = TrjTyj = Trjyj = T1 = Qj↑.

Thus sj ∈ Qj↑. At the same time

Tsk
= Tgk

Tyk
6= Trk

Tyk
= Qk↑,

therefore sk ∈ Qk↓, which contradicts 3.1. �
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3.3. Lemma. Let H ∈ L Q(1) , g, r̄ ∈ H . Then Tg = Tr̄ if and only if Tgi = Tri

for each i ∈ I .
���������

. From Tg = Tr̄ it follows that g, r̄ are comparable. Therefore there exists

k ∈ I such that gk and rk are comparable, i.e., Tgk
= Trk

. Then, by 3.2, Tgi = Tri

for each i ∈ I . Conversely, Tgi = Tri yields that gi, ri are comparable. Thus g and r̄

are comparable, i.e., Tg = Tr̄. �

In the remaining part of the present section we assume that for each i, j ∈ I , Qi

and Qj are h-equivalent hl-loops. This means that for each i ∈ I there exists an

isomorphism (with respect to the loop operation)

(1) ϕi : Q1/Q1↑ → Qi/Qi↑.

Let Φ = (ϕi, i ∈ I) be a system of isomorphisms (1) such that ϕ1 = id, where id is

the identity transformation of Q1/Q1↑. We denote by Q(0) the subset of Q(1) such
that

g ∈ Q(0) if and only if Tgi = ϕi(Tg1) for each i ∈ I.

3.4. Lemma. Q(0) is a subloop of Q(1).

���������
. Obviously 1̄ ∈ Q(0). Let g, r̄ ∈ Q(0) and s̄ = g · r̄. Since ϕi ∈ Φ is an

isomorphism with respect to the loop operation, we have (for each i ∈ I)

ϕi(Ts1) = ϕi(Tg1r1) = ϕi(Tg1Tr1) = ϕi(Tg1)ϕi(Tr1) = TgiTri = Tsi .

Thus s̄ ∈ Q(0). Analogously g/r̄ ∈ Q(0) and r̄ \ g ∈ Q(0). �

3.5. Lemma. Under the lexicographic order 6, Q(0) is an hl-loop.

���������
. By 3.4, Q(0) is a loop. Clearly, under 6, Q(0) is a partially ordered

set. Since Q1 is an hl-loop, there exists p ∈ Q1↑, p > 1. Let r̄ be an element of Q(1)

such that r1 = p and ri = 1 for each i ∈ I , i 6= 1. It is obvious that r̄ ∈ Q(0) and

1̄ < r̄. Thus 6 is a nontrivial partial order on Q(0). Likewise, it is trivial to see that
if g, r̄, s̄ ∈ Q(0), then g 6 r̄ if and only if g · s̄ 6 r̄ · s̄. We are going to show that
Q(0) = Q(0)↑ ∪ Q(0)↓. Evidently Q(0)↑ ∪ Q(0)↓ ⊆ Q(0). Assume that g ∈ Q(0). If
g1 ∈ Q1↑, then for each i ∈ I we have Tgi = ϕi(Tg1) = ϕi(Q1↑) = Qi↑. This yields
that gi ∈ Qi↑ for each i ∈ I and therefore g ∈ Q(0)↑. Similarly, if g1 ∈ Q1↓, then
g ∈ Q(0)↓. Therefore Q(0) = Q(0)↑ ∪ Q(0)↓. Further, it is easy to see that Q(0)↑ is a
linearly ordered set, thus we can conclude that Q(0) is an hl-loop. �
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3.6. Theorem. Let Q(0) be as above. Then Q(0) ∈ L Q(1) and Q(0), Qi are

h-equivalent hl-loops for each i ∈ I .
���������

. By 3.4 and 3.5 (i0) and (iii0) hold. Also, it is easy to verify that p̄ ∈ A(1)

implies p̄ ∈ Q(0), thus (ii0) is valid. We have that Q(0) ∈ L Q(1) and we are going to

show that Q(0) ∼h Qi. Define

ψ : Q(0)/Q(0)↑ → Q1/Q1↑; ψ(Tg) = Tg1 .

In view of 3.2 and 3.3 we have

Tg = Tr̄ if and only if Tg1 = Tr1 .

Hence ψ is an injective map. To prove that ψ is a surjection take Tr ∈ Q1/Q1↑.
For each i ∈ I , i 6= 1 there exists ri ∈ Qi such that Tri = ϕi(Tr), where ϕi ∈ Φ.
Let g be an element of Q(1) such that g1 = r and gi = ri for each i ∈ I , i 6= 1.
Clearly g ∈ Q(0) and ψ(Tg) = Tr. Thus ψ is a surjection. Evidently ψ preserves the

loop operation, therefore ψ is an isomorphism of Q(0)/Q(0)↑ onto Q1/Q1↑. We have
shown that Q(0) ∼h Q1. Now, since Q1 ∼h Qi for all i ∈ I , we can conclude, by 2.8,
that Q(0) ∼h Qi for each i ∈ I . �

3.7. Definition. Let Qi (i ∈ I) and Q(0) be as above. Then Q(0) is said to be

the Φ-lexicographic product of hl-loops Qi and we express this fact by writing

Q(0) = (Φ)
n

Γ
i=1

Qi

or
Q(0) = (Φ)(Q1 ◦Q2 ◦ . . . ◦Qn).

The hl-loops Qi are called lexicographic factors of Q(0).

3.8. Remark. The Φ-lexicographic product of hl-loops Qi depends on the system
Φ. There exist hl-loops Qi and systems of isomorphisms Φ and Ψ such that Φ 6= Ψ
and hl-loops (Φ)

n

Γ
i=1

Qi and (Ψ)
n

Γ
i=1

Qi are not isomorphic (see Example 3.9). If Qi

are hl-groups, then there exists exactly one system of isomorphisms (1) and Q(0) is

the lexicographic product of hl-groups Qi (cf. [9]). If Qi are linearly ordered loops (or
groups), then Q(0) = Q(1) and Q(0) is the lexicographic product of linearly ordered

loops (or groups, respectively) Qi.

3.9. Example. Let ( � 4,⊕) be the additive group of residues modulo 4. Let
Q = � 4× 	 ( 	 is the set of all real numbers) and let 6 be the relation on Q defined
by

(i, x) 6 (j, y) ⇔ i = j and x 6 y.
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Put

(i, x) · (j, y) =





(i⊕ j, x+ y) if i = 0,

(i⊕ j, x− iy) if i 6= 0.
It is routine to verify that (Q, ·,6) is an hl-loop and
1. Q↑ = {(0, x) ; x ∈ 	 } and Q↓ = {(i, x) ; i ∈ � 4, i 6= 0, x ∈ 	 };
2. Q↑ is normal in Q and Q/Q↑ = {T(0,0), T(1,0), T(2,0), T(3,0)}.
We take a map ψ : Q/Q↑ → Q/Q↑ such that

ψ : T(0,0) 7→ T(0,0); T(1,0) 7→ T(3,0); T(2,0) 7→ T(2,0); T(3,0) 7→ T(1,0).

It is trivial to see that ψ is an isomorphism of Q/Q↑ onto Q/Q↑ with respect to the
loop operation. Let us put

Q(0) = (Φ)(Q ◦Q), where Φ = {id, id},
G(0) = (Ψ)(Q ◦Q), where Ψ = {id, ψ}.

Clearly Q(0) = {((0, x), (0, y)), ((1, x), (1, y)), ((2, x), (2, y)), (3, x), (3, y)) : x, y ∈ 	 }
and G(0) = {((0, x), (0, y)), ((1, x), (3, y)), ((2, x), (2, y)), ((3, x), (1, y)) : x, y ∈ 	 }.
Now we consider the following condition for hl-loops.

(C) There exists Ta such that for each b ∈ Ta the assertion a · a = b · b holds.

Since Q(0) satisfies (C) (taking a = ((1, x), (1, y)) for any x, y ∈ 	 ) and for G(0) (C)

fails to hold, the hl-loops Q(0) and G(0) are not isomorphic.
Let Q be an hl-loop. The isomorphism

α : Q→ (Φ)
n

Γ
i=1

Qi

with respect to the loop operation and the partial order is said to be a Φ-lexicographic
product decomposition of Q.

3.10. Remark. Let α0 : Q → Q1 be an isomorphism of the hl-loop Q onto the
hl-loop Q1. We regard α0 as a lexicographic product decomposition of Q and Q1

as a Φ-lexicographic product with one factor Q1, where Φ contains only the identity
transformation of Q1/Q1↑.
Let

β : Q→ (Ψ)
m

Γ
i=1

Gi

be a Ψ-lexicographic product decomposition of an hl-loop Q. We say that α, β are
isomorphic decompositions if m = n and Qi, Gi are isomorphic hl-loops for each
i = 1, 2, . . . , n.
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4. Two-factor Φ-lexicographic product decompositions

The lexicographic product decompositions of a partially ordered quasigroup with

an idempotent element h were discussed in [3]. Putting h = 1 we can apply these
results to the linearly ordered loops, especially for Q↑, where Q is an hl-loop. We
start this section by recalling some notions from [3], formulated for the case of Q a
linearly ordered loop.

Let Q be a linearly ordered loop and let A be a subloop of Q. A linear order on
Q induces a linear order on A under which A is again a linearly ordered loop; A will

be called a linearly ordered subloop of Q.
Let A,B be the linearly ordered subloops of Q such that (cf. [3, Section 4], where

we put h = 1):

(C1) for each p ∈ Q there exists exactly one pair (a, b) such that a ∈ A, b ∈ B and
p = ab;

(C2) if p1, p2 ∈ Q, p1 = a1b1, p2 = a2b2, a1, a2 ∈ A, b1, b2 ∈ B, then

p1p2 = (a1a2) · (b1b2);

(C3) under the notation as in (C2), the relation p1 6 p2 is valid if and only if

either a1 < a2 or a1 = a2 and b1 6 b2.

Then we write

Q = A ◦B.
From [3, Section 4] we have that if Q = A ◦ B, then Q is isomorphic to the

lexicographic product of A and B (with respect to the loop operation and the linear

order). Conversely, if Q is a lexicographic product of linearly ordered loops Q1, Q2,
then there exist linearly ordered subloops A,B of Q such that Q = A ◦ B. We say
that Q = A ◦B defines the lexicographic product decomposition of Q.
Now, let Q be an hl-loop. We take one element from every class Tr ∈ Q/ Q↑; from

T1 = Q↑ we choose an identity element 1. We denote by R the set of all elements
chosen from the respective Tr; R will be called the set of representatives of an hl-loop

Q. In what follows we assume that R is any fixed set of representatives of Q.

4.1. Lemma. If Q↑ = A ◦B, then each element x ∈ Q can be uniquely written
in the form x = ab · r, where a ∈ A, b ∈ B and r ∈ R.
���������

. For each element x ∈ Q there exists exactly one element r ∈ R such

that r ∈ Tx. Since x/r ∈ Q↑, by (C1) there exists exactly one pair of elements
a ∈ A, b ∈ B such that x = ab · r. �

In view of 4.1 we employ the following notation.

614



4.2. Notation. Let Q↑ = A ◦ B and let R be a set of representatives of Q.
For each x ∈ Q we denote ax ∈ A, bx ∈ B and rx ∈ R the elements which fulfil

x = axbx · rx. By 4.1 these elements are uniquely determined (for a fixed set R).

Obviously rx = ry if and only if Tx = Ty (i.e., x and y are comparable).

4.3. Lemma. Let Q↑ = A ◦B, where A,B are normal subloops of Q. Then for
each x, y, z ∈ Q the following conditions are satisfied:
(i) rxz = ryz ⇔ rx = ry;

(ii) if rx = ry, then bx 6 by ⇔ bxz 6 byz.

���������
. (i) This is obvious. (ii) Put r = rx = ry . Since A,B are normal

subloops of Q, there exist a(1)
x , a

(2)
x , a

(3)
x ∈ A and b(1)x , b

(2)
x ∈ B such that:

xz = (axbx · r)z = (a(1)
x · bxr)z = a(2)

x · (bxr · z) = a(2)
x (b(1)x · rz)

= a(2)
x [b(1)x · (arzbrz · rrz)] = a(2)

x [(b(2)x · arzbrz) · rrz ].

Hence, applying (C2), we obtain

xz = a(2)
x [(arz · b(2)x brz) · rrz] = [a(3)

x (arz · b(2)x brz)]rrz = (a(3)
x arz · b(2)x brz)rrz.

Analogously

yz = (ayby · r)z = (a(1)
y · byr)z = a(2)

y · (byr · z) = a(2)
y (b(1)y · rz)

= a(2)
y [b(1)y · (arzbrz · rrz)] = a(2)

y [(b(2)y · arzbrz) · rrz ]

= a(2)
y [(arz · b(2)y brz) · rrz] = [a(3)

y (arz · b(2)y brz)]rrz = (a(3)
y arz · b(2)y brz)rrz.

By 4.1, we have

bxz = b(2)x brz, byz = b(2)y brz.

Using 2.2 (ii) and the above equations we can conclude:

bx 6 by ⇔ bxr · z 6 byr · z
⇔ b(1)x · rz 6 b(1)y · rz ⇔ (b(2)x · arzbrz)rrz 6 (b(2)y · arzbrz)rrz

⇔ b(2)x 6 b(2)y ⇔ b(2)x brz 6 b(2)y brz ⇔ bxz 6 byz.

�

Using similar methods as in the proof of 4.3 we obtain
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4.4. Lemma. Let Q↑ = A ◦B, where A,B are normal subloops of Q. Then for
each x, y, z ∈ Q the following conditions are satisfied:
(i) rzx = rzy ⇔ rx = ry;

(ii) if z ∈ Q↑ and rx = ry, then bx 6 by ⇔ bzx 6 bzy;

(iii) if z ∈ Q↓ and rx = ry, then bx 6 by ⇔ bzx > bzy.

Let Q↑ = A ◦B. For x = axbx and y = ayby from Q↑ we put

(2) x τ1 y ⇔ ax = ay, x τ2 y ⇔ bx = by.

It is routine to verify that τ1, τ2 are normal congruence relations on Q↑. For i = 1, 2
and x ∈ Q↑ we set τi[x] = {y ∈ Q↑ : y τi x}. Clearly τ1[1] = B and τ2[1] = A.

Now, for i = 1, 2 we define a relation Θi on Q:

(3) x Θi y ⇔ x/y ∈ Q↑ and x/y τi 1.

If A and B (i.e., τ2[1] and τ1[1]) are normal subloops of Q, then, by 2.1, Θ1, Θ2

are normal congruence relations on Q. Analogously as above, for each i = 1, 2 and
x ∈ Q we set Θi[x] = {y ∈ Q : y Θi x}.

4.5. Lemma. Let Q↑ = A ◦ B, where A,B are normal subloops of Q. Let
x, y ∈ Q. Then

x Θ1 y ⇔ rx = ry and ax = ay,

x Θ2 y ⇔ rx = ry and bx = by.

���������
. Assume that x Θ1 y. Then x/y τ1 1, i.e., x = by, b ∈ B. Using the

notations from 4.2 and the assumption that B is a normal subloop of Q we can write:

axbx · rx = b(ayby · ry) = (b′ · ayby)ry ,

where b′ ∈ B. By (C2) we obtain axbx · rx = (ay · b′by)ry and hence, in view of
4.1, we get rx = ry and ax = ay. Conversely, let x, y be elements of Q such that
ax = ay, rx = ry. From rx = ry we have x/y ∈ Q↑. Therefore x = py, where p ∈ Q↑.
Thus axbx · rx = p(axby · rx). Since Q↑ is a normal subloop of Q, there exists z ∈ Q↑
such that

(4) axbx · rx = p(axby · rx) = (z · axby)rx.

Hence axbx = z · axby. From z ∈ Q↑ we have z = ab, where a ∈ A, b ∈ B. Then

axbx = ab · axby and hence, in view of (C2) and (C1), we get ax = aax. Thus a = 1,
and therefore z ∈ B. Since B is a normal subloop of Q and z ∈ B, we have, by (4),
p ∈ B (= τ1[1]). Hence x/y τ1 1, i.e., x Θ1 y. The proof for Θ2 is analogous. �
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4.6. Lemma.

(i) If A = {1}, then (x Θ1 y ⇔ Tx = Ty) and (x Θ2 y ⇔ x = y).
(ii) If B = {1}, then (x Θ2 y ⇔ Tx = Ty) and (x Θ1 y ⇔ x = y).

���������
. This is a consequence of 4.5. �

In what follows we assume that Q↑ = A ◦ B, A,B are normal subloops of Q and
A,B 6= {1}. For each i = 1, 2 we denote

Qi = {Θi[x] : x ∈ Q}.

Since Θi is a normal congruence relation on Q, Qi with the operation Θi[x] ·Θi[y] =
Θi[xy] is a loop. Put

(5) Θ1[x] 6 Θ1[y] ⇔ rx = ry and ax 6 ay,

and

(6) Θ2[x] 6 Θ2[y] ⇔ rx = ry and bx 6 by.

It is easy to verify that the relation 6 is correctly defined on Qi (i = 1, 2), i.e., it
does not depend on the choice of the elements from Θi[x]. Further, we immediately
obtain

4.7. Lemma. The relation 6 is a partial order on Qi, i = 1, 2.

4.8. Lemma.

(i) Θ1[x] and Θ1[y] are comparable (by the relation 6) if and only if Θ2[x] and
Θ2[y] are comparable;

(ii) x = y if and only if Θi[x] = Θi[y] for i = 1, 2.

���������
. Since arbitrary two elements of Q↑ are comparable, (i) follows from (5)

and (6). The assertion (ii) is an immediate consequence of 4.5. �

4.9. Lemma.

(i) If Θ1[x] < Θ1[y], then x < y.

(ii) If x 6 y, then Θ1[x] 6 Θ1[y].

���������
. (i) From 4.5 and (5) it follows that Θ1[x] < Θ1[y] implies rx = ry,

ax < ay. Thus, by (C3), x < y. (ii) x 6 y ⇒ rx = ry , axbx 6 ayby ⇒ rx = ry,
ax 6 ay ⇒ Θ1[x] 6 Θ1[y]. �
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Now, for each i = 1, 2 we denote

H↑
i = {Θi[x] ; x ∈ Q↑}, H↓

i = {Θi[x] ; x ∈ Q↓}.

Clearly Qi = H↑
i ∪H↓

i .

4.10. Lemma. For each i = 1, 2, the loop Qi under the relation (5) (or (6),
respectively) is an hl-loop with Qi↑ = H↑

i and Qi↓ = H↓
i .

���������
. We are going to prove that Q1 fulfills the conditions (i)–(iv) from 2.2.

By 4.7, under the relation 6, Q1 is a partially ordered set. Since A 6= {1}, there
exists x ∈ A such that x < 1. Then Θ1[x] < Θ1[1], thus 6 is a nontrivial partial
order on Q1; hence (i) is valid. Let x, y, z ∈ Q. Clearly

Θ1[x] = Θ1[y] ⇔ Θ1[xz] = Θ1[yz]

and, in view of 4.9,

Θ1[x] < Θ1[y] ⇔ x < y, Θ1[x] 6= Θ1[y] ⇔
⇔ xz < yz, Θ1[xz] 6= Θ1[yz] ⇔ Θ1[xz] < Θ1[yz]

⇔ Θ1[x] ·Θ1[z] < Θ1[y] ·Θ1[z],

thus (ii) is valid. Using a similar method as above we can prove that Q1↑ =
H↑

1 and Q1↓ = H↓
1 . Hence Q1 = Q1↑ ∪ Q1↓; thus (iii) holds. Finally, since Q1↑

is obviously a linearly ordered set, we have that Q1 is an hl-loop.
The proof that (6) is a nontrivial partial order on Q2 is analogous to that for Q1.

Let x, y, z ∈ Q. From (6) and 4.3 we obtain

Θ2[x] 6 Θ2[y] ⇔ rx = ry, bx 6 by ⇔ rxz = ryz, bxz 6 byz

⇔ Θ2[x]Θ2[z] 6 Θ2[y]Θ2[z],

thus 2.2(ii) is valid. We are going to show that Q2↓ = H↓
2 . Let Θ2[z] ∈ Q2↓. By

way of contradiction, suppose that z ∈ Q↑. Since 6 is a nontrivial partial order on
Q2, there exist x, y ∈ Q such that Θ2[x] < Θ2[y]. Then Θ2[zx] > Θ2[zy], and thus
bzx > bzy, rzx = rzy Hence, by 4.4, bx > by, rx = ry, which contradicts the fact that
Θ2[x] < Θ2[y]. Therefore z ∈ Q↓, i.e., Θ2[z] ∈ H↓

2 . To prove the converse inclusion

take Θ2[z] ∈ H↓
2 (this means that z ∈ Q↓). Then

Θ2[x] 6 Θ2[y] ⇔ rx = ry , bx 6 by

⇔ rzx = rzy , bzx > bzy ⇔ Θ2[zx] > Θ2[zy].

Thus Θ2[z] ∈ Q2↓. We have Q2↓ = H↓
2 . To prove that Q2↑ = H↑

2 we proceed

similarly. Now it is easy to see that Q2 = Q2↑ ∪ Q2↓, and since Q2↑ is a linearly
ordered set, we can conclude that Q2 is an hl-loop. �
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The hl-loops Q1, Q2 are h-equivalent. Indeed, let

ϕ : Q1/Q1↑ → Q2/Q2↑; TΘ1[x] 7→ TΘ2[x].

By 4.8 (i), TΘ2[x] = TΘ2[y] if and only if TΘ1[x] = TΘ1[y], thus ϕ is an injective
mapping. Moreover, it is easy to see that ϕ is a surjection and ϕ preserves the loop

operation. Thus Q1 ∼h Q2.

Since ϕ is an isomorphism (with respect to the loop operation), we can construct

Φ-lexicographic product

G = (Φ)(Q1 ◦Q2), where Φ = {id, ϕ}.

4.11. Lemma. (Θ1[x],Θ2[y]) ∈ G if and only if Tx = Ty.

���������
. (Θ1[x],Θ2[y]) ∈ G ⇔ ϕ(TΘ1[x]) = TΘ2[y] ⇔ TΘ2[x] = TΘ2[y] ⇔

Θ2[x],Θ2[y] are comparable ⇔ Tx = Ty. �

Let us put

ψ : Q→ G; ψ(x) = (Θ1[x],Θ2[x]).

4.12. Lemma. ψ is an isomorphism of the hl-loop Q onto the hl-loop G.

���������
. By 4.11, (Θ1[x],Θ2[x]) ∈ G for each x ∈ Q. Using 4.8 (ii) it is easy

to see that ψ is an injective mapping. We are going to show that ψ is a surjection.
Let (Θ1[x],Θ2[y]) ∈ G. By 4.11, Tx = Ty, and thus there exists r ∈ R (R is the set
of representatives of Q) such that x = axbx · r and y = ayby · r. Put z = axby · r.
Since Θ1[z] = Θ1[x] and Θ2[z] = Θ2[y], we have ψ(z) = (Θ1[x],Θ2[y]). Thus ψ is a
surjection. It is routine to verify that ψ preserves the loop operation. Finally,

ψ(x) 6 ψ(y) ⇔ Θ1[x] < Θ1[y] or (Θ1[x] = Θ1[y], Θ2[x] 6 Θ2[y])

⇔ (rx = ry, ax < ay) or (rx = ry, ax = ay, bx 6 by)

⇔ axbx · rx 6 ayby · ry ⇔ x 6 y.

Thus ψ is an isomorphism with respect to the loop operation and the partial order.
�

Summarizing, we have
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4.13. Theorem. Let Q be an hl-loop and let A, B be nontrivial normal subloops
of Q such that Q↑ = A◦B. Then ψ is a Φ-lexicographic product decomposition of Q.

5. Finite-factor Φ-lexicographic product decompositions

The finite-factor lexicographic product decomposition of a partially ordered quasi-
groupQ with an idempotent element h has been studied by author in [3]. Analogously

as in Section 4, putting h = 1, we can apply these results to a linearly ordered loop
Q↑ in case Q is an hl-loop.
Firstly, assume that Q is a linearly ordered loop. Let A1, A2, A3 be linearly ordered

subloops of Q. Then (cf. [3, Lemma 4.5]) Q = (A1 ◦A2) ◦A3 if and only if Q = A1 ◦
(A2 ◦A3). Hence, by induction, we can conclude that the finite-factor lexicographic
product decomposition ofQ does not depend on the setting of parentheses. Moreover,
putting h = 1 in [3; (4.4)] we immediately obtain

5.1. Lemma. Let Q = A1 ◦ A2 ◦A3. Then a(1) · (a(2) · a(3)) = (a(1) · a(2)) · a(3)

for arbitrary elements a(i) ∈ Ai, i = 1, 2, 3.

For the lexicographic product decomposition of the linearly ordered loop Q with

lexicographic factors A1, A2, . . . , An we use the notation

Q = A1 ◦A2 ◦ . . . ◦An.

By 5.1, providedQ = A1◦A2◦. . .◦An the parentheses in the product a(1)a(2) ·. . .·a(n)

of elements a(i) ∈ Ai can be omitted. Moreover, by (C1), arbitrary elements x, y ∈ Q
can be uniquely written in the form x = a(1)a(2) . . . a(n), y = b(1)b(2) . . . b(n), where
a(i), b(i) ∈ Ai and, by (C2), xy = (a(1)b(1)) · (a(2)b(2)) · . . . · (a(n)b(n)).
Now, let Q be an hl-loop, R be a set of representatives of Q. Suppose that

(1) Q↑ = A1 ◦A2 ◦ . . . ◦An

is a lexicographic product decomposition of the linearly ordered loop Q↑. It is easy
to verify that the generalization of 4.1 is valid, i.e., each element x ∈ Q can be

uniquely written in the form (a(1)a(2) . . . a(n)) · r, where a(i) ∈ Ai and r ∈ R. In view
of this fact we will employ the notations x = a

(1)
x a

(2)
x . . . a

(n)
x · rx, a(i)

x ∈ Ai, rx ∈ R,
y = a

(1)
y a

(2)
y . . . a

(n)
y · ry, a(i)

y ∈ Ai, ry ∈ R, xy = a
(1)
xy a

(2)
xy . . . a

(n)
xy · rxy, a

(i)
xy ∈ Ai,

rxy ∈ R, etc. (we recall that the relations a(i)
xy = a

(i)
x a

(i)
y , rxy = rxry don’t hold in

general).
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5.2. Lemma. Let Q be an hl-loop. Let Ai, i = 1, 2, . . . , n, be normal subloops
of Q such that Q↑ = A1 ◦ A2 ◦ . . . ◦An. Then B = Ai1 ◦ Ai2 ◦ . . . ◦ Aik

is a normal

subloop of Q for arbitrary i1, i2, . . . , ik ∈ {1, 2, . . . , n}, i1 < i2 < . . . < ik.
���������

. The assertion of the lemma is trivial for k = 1. Let k ∈ N , 1 < k 6 n.

We are going to show that if B∗ = Ai1 ◦ Ai2 ◦ . . . ◦ Aik−1 is normal in Q, then B is
a normal subloop of Q. It is routine to verify that B is a subloop of Q. Let x ∈ Q,
b ∈ B. Clearly b = ca, where c ∈ B∗ and a ∈ Aik

. Since Aik
, B∗ are normal subloops

of Q, there exist a′ ∈ Aik
, c′ ∈ B∗ such that xb = x ·ca = c′a′ ·x. Therefore xb ∈ Bx.

Analogously we obtain bx ∈ xB, thus we have xB = Bx for each x ∈ Q. Similarly, if
x, y ∈ Q, then xy ·B = x · yB and B · xy = Bx · y. Therefore B is a normal subloop
of Q. �

Suppose that (1) is valid and Ai is normal in Q for each i = 1, 2, . . . , n. We define
a relation τi (i = 1, 2, . . . , n) on Q↑:

(2) x τi y ⇔ a(i)
x = a(i)

y .

It is easy to see that τi is a normal congruence relation on Q↑. By 5.2, τi[1] = {x ∈
Q↑ : x τi 1 } is a normal subloop of Q. Now, for x, y ∈ Q and for each i = 1, 2, . . . , n
we put

(3) xΘiy ⇔ x/y ∈ Q↑ and x/y τi 1.

In view of 2.1 Θi is a normal congruence relation on Q. Analogously as in Section 4

we denote Θi[x] = {z ∈ Q : zΘix} and Qi = {Θi[x] : x ∈ Q}. Recall that under the
operation Θi[x] ·Θi[y] = Θi[xy], Qi is a loop.

5.3. Lemma. For each i = 1, 2, . . . , n the following holds

xΘiy ⇔ a(i)
x = a(i)

y and rx = ry .

���������
. In view of 5.2 it suffices to apply the same method as in the proof of

4.5. �

Let us denote (for each i = 1, 2, . . . , n)

H↑
i = {Θi[x] ; x ∈ Q↑}, H↓

i = {Θi[x] ; x ∈ Q↓}.

Clearly Qi = H↑
i ∪H↓

i . For Θi[x], Θi[y] ∈ Qi we set

(4) Θi[x] 6 Θi[y] ⇔ rx = ry and a(i)
x 6 a(i)

y .

It is easy to see that the relation 6 is a partial order on Qi.
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5.4. Lemma. Let Q be an hl-loop. Let Q↑ = A1 ◦ A2 ◦ A3, where A1, A2, A3

are nontrivial normal subloops of Q. Then for each i = 1, 2, 3 Qi is an hl-loop and

Qi↑ = H↑
i , Qi↓ = H↓

i .

���������
. Denote B = A1 ◦A2. By 5.2, B is normal in Q. Clearly Q↑ = B ◦ A3,

thus each element x ∈ Q can be uniquely written in the form x = ba ·r, where b ∈ B,
a ∈ A3 and r ∈ R. Let η be a relation defined on Q by the rule

(ba · r) η (b′a′ · r′) ⇔ a = a′, r = r′

and let

η[ba · r] 6′ η[b′a′ · r′] ⇔ a 6 a′, r = r′.

Denote G = {η[x] : x ∈ Q}. By 4.10, under the relation 6′, G is an hl-loop. But it
is easy to see that G = Q3 and

η[x] 6′ η[y] ⇔ Θ3[x] 6 Θ3[y],

where 6 is the relation defined by (4). Therefore we can conclude that Q3 is an

hl-loop and Q3↑ = H↑
3 , Q3↓ = H↓

3 . Analogously Q1 is an hl-loop and Q1↑ = H↑
1 ,

Q1↓ = H↓
1 . We are going to show that Q2 is an hl-loop. As in the proof of 4.10 it

can be seen that 6 is a nontrivial partial order on Q2. For completing the proof we
verify (ii)–(iv) from 2.2. Denote B = A2 ◦ A3. Then Q↑ = A1 ◦ B. Any elements
x, y ∈ Q can be uniquely expressed as x = a

(1)
x bx · rx and y = a

(1)
y by · ry, where bx, by

are elements of B, which are uniquely determined by bx = a
(2)
x a

(3)
x and by = a

(2)
y a

(3)
y .

Let z ∈ Q. The elements xz, yz can be uniquely written in the form

xz = a(1)
xz a

(2)
xz a

(3)
xz · rxz = a(1)

xz bxz · rxz,

where a(i)
xz ∈ Ai, rxz ∈ R, bxz = a

(2)
xz a

(3)
xz ∈ B, and

yz = a(1)
yz a

(2)
yz a

(3)
yz · ryz = a(1)

yz byz · ryz,

where a(i)
yz ∈ Ai, ryz ∈ R, byz = a

(2)
yz a

(3)
yz ∈ B. Clearly

Θ2[x] = Θ2[y] ⇔ Θ2[xz] = Θ2[yz]

and

(5) Θ2[x] < Θ2[y] ⇔ rx = ry, a
(2)
x < a(2)

y ⇔ rx = ry , a
(2)
x 6= a(2)

y , bx < by.
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Since Q↑ = A1◦B, where A1, B are normal subloops of Q, from (5) and 4.3 it follows

that

Θ2[x] < Θ2[y] ⇔ a(2)
xz 6= a(2)

yz , rxz = ryz , bxz < byz

⇔ a(2)
xz < a(2)

yz , rxz = ryz ⇔ Θ2[x]Θ2[z] < Θ2[y]Θ2[z],

thus (ii) from 2.2 holds. Using similar methods as above we obtain (cf. also the proof

of 4.10)

Q2↑ = H↑
2 and Q2↓ = H↓

2 ,

which yields Q2 = Q2↑ ∪ Q2↓. Now, since Q2↑ is a linearly ordered set, we can
conclude that Q2 is an hl-loop. �

5.5. Lemma. Let Q be an hl-loop. Let Q↑ = A1 ◦A2 ◦ . . .◦An, n 6= 1, where Ai

(i = 1, 2, . . . , n) are nontrivial normal subloops of Q. Then for each i = 1, 2, . . . , n
Qi is an hl-loop and Qi↑ = H↑

i , Qi↓ = H↓
i .

���������
. In view of 4.10 and 5.4 it suffices to consider the case n > 4. Let

i 6= 1 and i 6= n. We denote B1 = A1 ◦ A2 ◦ . . . ◦ Ai−1, B2 = Ai+1 ◦ . . . ◦ An. Then

Q↑ = B1 ◦Ai ◦B2, thus, by 5.4, Qi is an hl-loop. For i = 1 and i = n the assertion of
the lemma follows from 5.4, where we set Q↑ = A1 ◦B ◦An, B = A2 ◦ . . .◦An−1. �

Let Q be an hl-loop. We assume that (1) holds, n 6= 1 and Ai, i = 1, 2, . . . , n, are
the nontrivial normal subloops of Q. For each i = 1, 2, . . . , n we set

(6) ψi : Q1/ Q1↑ → Qi/ Qi↑; TΘ1[x] → TΘi[x].

Analogously as in Section 4 it can be shown that ψi is a loop isomorphism. Denote
Ψ = (ψi; i = 1, 2, . . . , n) the system of isomorphisms from (6) (it is obvious that ψ1

is the identity permutation of Q1/ Q1↑). Let

α1 : Q→ (Ψ)
n

Γ
i=1

Qi; α1(x) = (Θ1[x],Θ2[x], . . . ,Θn[x]).

Then α1 is aΨ-lexicographic product decomposition ofQ (the proof is analogous with
that of 4.12). Also, it is easy to see that the linearly ordered loops Qi↑ and Ai are
isomorphic. The decomposition α1 will be called an extension of the decomposition

(1).

Now, for each i = 1, 2, . . . , n, n > 2, let Gi be an hl-loop and let

(7) γ : Q→ (Φ)
n

Γ
i=1

Gi
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be a Φ-lexicographic product decomposition of an hl-loop Q. The component of γ(x)
in Gi will be denoted by γ(x)i. For i = 1, 2, . . . , n we consider the relation Θ∗

i defined
on Q by

xΘ∗
i y ⇔ γ(x)i = γ(y)i.

Clearly, Θ∗
i is a normal congruence relation on Q. Under the relation

Θ∗
i [x] 6 Θ∗

i [y] ⇔ γ(x)i 6 γ(y)i,

Q/Θ∗
i is an hl-loop, Q/Θ

∗
i ↑ = {Θ∗

i [x] ; x ∈ Q↑}, Q/Θ∗
i ↓ = {Θ∗

i [x] ; x ∈ Q↓}. It is
routine to verify that Gi, Q/Θ∗

i are isomorphic hl-loops. For each i = 1, 2, . . . n let

Bi = {x ∈ Q↑ : γ(x)j = 1 for each j 6= i}.

Obviously Bi are normal, nontrivial subloops of Q and

(8) Q↑ = B1 ◦B2 ◦ . . . ◦Bn.

Denote

(9) γ1 : Q→ (Ψ)
n

Γ
i=1

Qi; γ1(x) = (Θ1[x],Θ2[x], . . . ,Θn[x])

an extension of (8).

5.6. Lemma. γ and γ1 are isomorphic decompositions.
���������

. From (8) it follows that elements x, y ∈ Q can be uniquely written in
the form x = (b(1)x b

(2)
x . . . b

(n)
x ) · rx, y = (b(1)y b

(2)
y . . . b

(n)
y ) · ry, where b(i)x , b

(i)
y ∈ Bi,

rx, ry ∈ R. If Θ∗
i [x] 6 Θ∗

i [y], then rx = ry. Indeed, from Θ∗
i [x] 6 Θ∗

i [y] it follows
that Tγ(x)i

= Tγ(y)i
, thus, by 3.2 and 3.3, Tγ(x) = Tγ(y) and since γ is an isomorphism

with respect to the partial order, we have Tx = Ty, i.e., rx = ry. Thus we can write

Θ∗
i [x] 6 Θ∗

i [y] ⇔ γ(x)i 6 γ(y)i

⇔ γ(b(1)x b(2)x . . . b(n)
x · rx)i 6 γ(b(1)y b(2)y . . . b(n)

y · ry)i

⇔ γ(b(i)x )i 6 γ(b(i)y )i ⇔ γ(b(i)x ) 6 γ(b(i)y )

⇔ b(i)x 6 b(i)y ⇔ Θi[x] 6 Θi[y].

At the same time
Θ∗

i [x] = Θ∗
i [y] ⇔ Θi[x] = Θi[y].

Hence Q/Θ∗
i = Qi, and since the hl-loops Q/Θ∗

i and Gi are isomorphic, we can
conclude that Qi and Gi are isomorphic hl-loops. �
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5.7. Lemma. Let Q be an hl-loop. Let there exist a set of representatives R of
Q such that R is a subgroupoid of Q. Then any two decompositions Q↑ = A◦B and
Q↑ = C ◦ B, where A, B, C are normal nontrivial subloops of Q, have isomorphic
extensions.
���������

. Each element x ∈ Q can be uniquely written in the form x = axbx · rx,
where ax ∈ A, bx ∈ B, rx ∈ R and at the same time in the form x = cxdx · rx, where
cx ∈ C, dx ∈ B. Let

(10) α1 : Q→ (Φ)(Q/Θ1 ◦Q/Θ2)

be an extension of the decomposition Q↑ = A ◦B and

(11) β1 : Q→ (Φ′)(Q/η1 ◦Q/η2)

be an extension of the decomposition Q↑ = C ◦B. We are going to show that

ψ : Q/Θ1 → Q/η1; ψ(Θ1[x]) = η1[x]

is an isomorphism of the hl-loop Q/Θ1 onto Q/η1. Let x = axbx · rx, y = ayby · ry.
If Θ1[x] = Θ1[y], then, by 5.3, rx = ry, ax = ay. There are unique c ∈ C, d ∈ B such
that ax = cd. Hence x = (cd · bx)rx = (c · dbx)rx and y = (cd · by)rx = (c · dby)rx.
Thus η1[x] = η1[y]. Analogously, if η1[x] = η1[y], then Θ1[x] = Θ1[y]. We see that ψ
is an injective map. Obviously, ψ is a surjection which preserves the loop operation.

Since ψ is an injection, we have that rx = ry implies

ax 6= ay ⇔ cx 6= cy.

Thus, provided rx = ry we obtain

Θ1[x] < Θ1[y] ⇔ ax < ay ⇔ x < y, ax 6= ay

⇔ cx < cy ⇔ η1[x] < η1[y].

Hence ψ is an isomorphism of the hl-loop Q/Θ1 onto Q/η1.
Now, we are going to show that Q/Θ2 and Q/η2 are isomorphic hl-loops. Consider

ξ : Q/Θ2 → Q/η2; ξ(Θ2[x]) = η2[bxrx].

It is routine to verify that ξ is a bijection which preserves the partial order. Since B

is a normal subloop of Q and R is a subgroupoid of Q, for each b, d ∈ B and r, s ∈ R
we obtain br · ds = b0r0, where b0 ∈ B, r0 = rs ∈ R. Using this fact we get that ξ

preserves the operation. Thus Q/Θ2 and Q/η2 are isomorphic hl-loops. �
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6. Isomorphic refinements

Let Q be an hl-loop and let

α : Q→ (Φ) Γ
i∈I

Gi, I = {1, 2, . . . n},(1)

β : Q→ (Ψ) Γ
k∈K

Hk, K = {1, 2, . . .m}(2)

be two lexicographic product decompositions of Q.

6.1. Definition (Cf. [11]). The lexicographic product decomposition β is said
to be a refinement of α if for each i ∈ I there exists a subset K(i) of K and a
lexicographic product decomposition

αi : Gi → (Φi) Γ
k∈K(i)

Hk

such that, whenever x ∈ Q, i ∈ I and k ∈ K(i), then

β(x)k = αi(α(x)i)k .

We obviously have

6.2. Lemma. Let α and β be isomorphic lexicographic product decompositions
of Q and let α′ be a refinement of α. Then there exists a refinement β′ of β such

that α′ and β′ are isomorphic.

Let

(3) Q↑ = A1 ◦A2 ◦ . . . ◦An,

where A1, A2, . . . An are normal subloops of Q. Suppose that for each i = 1, 2, . . . , n
there exists a lexicographic product decomposition

Ai = Ai1 ◦Ai2 ◦ . . . ◦Aik(i),

where Aij are normal subloops of Q. Then (cf. [3])

(4) Q↑ = A11 ◦A12 ◦ . . . ◦Aij ◦ . . . ◦Ank(n).

Now, let

α1 : Q→ (Φ)(Q1 ◦Q2 ◦ . . . ◦Qn)

be an extension of (3) and

β1 : Q→ (Ψ)(Q11 ◦Q12 ◦ . . . ◦Q12 . . . ◦Qnk(n))

be an extension of (4). From the construction of the extensions α1 and β1 we obtain
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6.3. Lemma. β1 is a refinement of α1.

6.4. Theorem. Let Q be an hl-loop and let there exist a set of representatives
R of Q such that R is a subgroupoid of Q. Then any two lexicographic product

decompositions of Q have isomorphic refinements.
���������

. If Q↓ = ∅, then the assertion is valid in view of [3]. Suppose that
Q↓ 6= ∅. Let

α : Q→ (Φ)
n

Γ
i=1

Gi,

β : Q→ (Ψ)
m

Γ
k=1

Hk

be two lexicographic product decompositions of Q. We prove the theorem by induc-
tion on n+m, n+m > 2. It is clear for n+m = 2. Let n+m > 2. The case m = 1
or n = 1 is trivial. Assume that m,n 6= 1. In the same way as we have constructed
the decomposition (8) in Section 5 for γ and the extension γ1 of γ, we can construct

Q↑ = A1 ◦A2 ◦ . . . ◦An for α,(5)

Q↑ = B1 ◦B2 ◦ . . . ◦Bm for β(6)

and the extensions α1 of (5) and β1 of (6)

α1 : Q→ (Φ1)(Q1 ◦Q2 ◦ . . . ◦Qn),

β1 : Q→ (Ψ1)(G1 ◦G2 ◦ . . . ◦Gm).

By 5.6, α, α1 are isomorphic decompositions and also β, β1 are isomorphic decom-
positions. According to [3; Lemma 4.7(i)] we can suppose without loss of generality

that An ⊆ Bm. Hence, by (6) and [3; Lemma 4.7 (ii)], we have

(7) Q↑ = B1 ◦B2 ◦ . . . ◦Bm−1 ◦Bm1 ◦Bm2,

where Bm1 = Bm∩(A1◦A2◦. . .◦An−1) and Bm2 = An. From the construction of (5)

and (6) it follows that the subloops Ai and Bj are normal in Q for each i = 1, 2, . . . n,
j = 1, 2, . . .m. Since, according to 5.2, Bm1 is an intersection of normal subloops of

Q, Bm1 is normal in Q. Thus there exists an extension β2 of (7)

β2 : Q→ (Ψ2)(G1 ◦G2 ◦ . . . ◦Gm−1 ◦Gm1 ◦Gm2).

In view of 6.3 β2 is a refinement of β1. Denote

A = A1 ◦A2 ◦ . . . ◦An−1
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and

B = B1 ◦B2 ◦ . . . ◦Bm−1 ◦Bm1

(by 5.2, A,B are normal subloops of Q). Then

(8) Q↑ = A ◦An

and at the same time

(9) Q↑ = B ◦An.

Let Q → (Φ′)(QA ◦ QAn
) be an extension of (8) and Q → (Ψ′)(GB ◦ GAn) be an

extension of (9). According to 5.7, QA, GB and also QAn
, GAn are isomorphic

hl-loops. Moreover, it can be verified that

(10) QAn
= Qn and GAn = Gm2.

We denote by ϕ1, ϕ2, . . . , ϕn the isomorphisms from the system Φ1 and by ψ1, ψ2,

. . . , ψm2 the isomorphisms from Ψ2. Put Φ∗
1 = Φ1 − {ϕn} and Ψ∗

2 = Ψ2 − {ψm2}.
There exist decompositions

(I) QA → (Φ∗
1)(Q1 ◦Q2 ◦ . . . ◦Qn−1);

(II) GB → (Ψ∗
2)(G1 ◦G2 ◦ . . . ◦Gm−1 ◦Gm1).

By the induction hypothesis there exist lexicographic product decompositions α′1, β
′
1

such that

– α′1 is a refinement of (I), β
′
1 is a refinement of (II)

– α′1, β
′
1 are isomorphic decompositions.

Hence according to (10), α1 and β2 have isomorphic refinements. Therefore, by 6.2,
the lexicographic product decompositions α and β have isomorphic refinements. �
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