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Abstract. In this paper we prove for an hl-loop @) an assertion analogous to the result
of Jakubik concerning lexicographic products of half linearly ordered groups. We found
conditions under which any two lexicographic product decompositions of an hl-loop ) with
a finite number of lexicographic factors have isomorphic refinements.
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1. INTRODUCTION

The notion of a half linearly ordered group has been introduced by Giraudet and
Lucas [6]. Lexicographic products of half linearly ordered groups were discussed by
Jakubik in [9].

In the present paper we define the ®-lexicographic product of half linearly ordered
loops. This definition includes as a particular case the lexicographic product of half
linearly ordered groups and also the lexicographic product of linearly ordered loops.
Here we will prove the following assertion analogous to [9; Theorem 4.5]: Let @ be
a half linearly ordered loop and let there exist a set of representatives R of ) such
that R is a subgroupoid of Q. Then any two lexicographic product decompositions
of ) with a finite number of lexicographic factors have isomorphic refinements.

The analogous theorem for lexicographic product decompositions of linearly or-
dered groups was proved by Maltsev [10]; this result was generalized by Fuchs [5].
Further, lexicographic product decompositions of some types of ordered algebraic
structures were dealt with in the papers [2], [3], [7], [8].
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2. PRELIMINARIES

General information concerning quasigroups can be found in [1]. Recall that a

(1)

quasigroup @ is defined as an algebra having a binary operation which satisfies
the condition that for any a,b € @ the equations ax = b and ya = b have unique
solutions z and y. A quasigroup @) having an identity element 1 (i.e., such that
l.x = 2.1 = z for each z € Q) is called a loop. If @ is a quasigroup, then we define
a/b = c if and only if a = ¢b; in this case we also put ¢\ a = b.

Let @ be a quasigroup. An equivalence relation 6 on @) is called a normal congru-
ence relation on @), if it satisfies the following conditions

abb < aclbe < cabeb.

A subquasigroup (subloop) H of a quasigroup (loop) @ is called a normal subquasi-
group (subloop) of @ if H is a class with respect to some normal congruence relation
on Q. If Q is a loop, then a subloop H is normal in @ (see [1]) if and only if t H = Hz,
xy-H=xz-yH, H -2y = Hx -y for all x,y € Q. It is routine to verify that for loops
the following assertion (analogous to that for groups) is valid.

2.1. Lemma. Let H be a normal subloop of a loop (). Then a relation 6 on )
defined by the rule
2y s x/ye H

is a normal congruence relation on Q.

Now, let @@ be a quasigroup and at the same time let < be a partial order on Q.
We denote by Q1 (or @Q|) the set of all z € @ such that whenever y,z € @, then
y < z if and only if 2y < zz (or y < z if and only if 2y > xz, respectively).

2.2. Definition. @ is said to be a half linearly ordered quasigroup (hl-
quasigroup) if the following conditions are satisfied:
(i) the partial order < on @) is nontrivial;
(i) if z,y,z € @, then y < z if and only if yx < zz;
(i) Q= QTU Ql;
(iv) Q1 is a linearly ordered set.

In particular, if ) is a loop, then @ is called a half linearly ordered loop (hl-loop).
Let (Q be an hl-quasigroup. If Q| = ), then @ is a linearly ordered quasigroup.
If @ is a group under the binary operation, then, by the definition in [6], @ is a
half linearly ordered group (hl-group). In this case, Q| # @ yields that Q7 is a
normal subgroup of @ with index 2 (see [6]). The situation is different if we consider
quasigroups instead of groups. There exists an hl-quasigroup @ such that Q7 is not
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a subquasigroup of @ (for an example see [4]). On the other hand there exist hl-
quasigroups @ such that Q7 is normal in () and the number of classes modulo Q7 is
greater than 2; moreover, their number can be infinite (see [4; Theorem 2]). We will
apply the following results which were proved in [4].

2.3. Proposition. Let Q be an hl-loop with the identity 1, Q| # (. Then
(i) p € Q1 if and only if p and 1 are comparable;
(il) if p € QT, g € Ql, then p and q are incomparable.

2.4. Proposition. Let () be an hl-loop. Then Q7 is a normal subloop of Q.

Let @ be an hl-quasigroup. For each a,b € () we put
(1) apb & a,b are comparable.

2.5. Proposition (Cf. [4]). Let @ be an hl-quasigroup such that Q1 is a sub-
quasigroup of ). Then p is a normal congruence relation on Q and Q)7 is normal

in Q.

2.6. Notation. Let ) be an hl-quasigroup. Let ¢ be a congruence relation on a
quasigroup @) defined by (1). For each a € ) we denote T, = {x € Q: xpa}. Since
0 is a normal congruence relation on @, the sets T, are elements of the quotient-
quasigroup )/o with an operation defined by Ty, - Ty, = Tap (cf. [1]). The cardinal
card /o will be called the index of an hl-quasigroup Q.

If Q is an hl-loop, then, by 2.3, T1 = Q1. For the quotient-loop Q/o we will use
the notation Q/Q1.

2.7. Definition. Let @)1 and Q2 be hl-quasigroups and p; be a normal congru-
ence relation on Q;, i = 1,2, defined by (1). We say that hl-quasigroups @1 and Qs
are h-equivalent, written Q1 ~p Q2, if Q1/01 and Q2/ 02 are isomorphic quasigroups.

2.8. Remark. The relation ~y, is obviously reflexive, symmetric and transitive.

2.9. Remark. All hl-quasigroups @ with Q| = 0 are h-equivalent and their
index is 1. All hl-groups G with G| # ) are h-equivalent and they have index 2.
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3. THE LEXICOGRAPHIC PRODUCT OF hl-LOOPS

Let I = {1,2,...,n}. Let Q; be an hl-loop for each i € I. We denote by Q)
the direct product of the loops Q;. The elements of Q) will be expressed as § =
(91,92, ---,9n); gi is the component of g in @;. For the components of an identity
1€ QW we will use the unit notation 1. By A™ (or BM)) we denote the set of all
elements § € Q) such that for each i € I g; € Q;1 (or g; € Q;l, respectively).

Let H be a subset of Q(1). We say that a relation < on H is a lexicographic order
on H if for arbitrary elements §,7 € H we have g < 7 if and only if g =7 or g; < r;
for the least i € I with g; # r;. It is easy to verify that < is a partial order on H.

Finally, let us denote by £ ) the set of all H such that

(ip) H is a subloop of Q);

(iig) AM C H;

(ilip) under the lexicographic order <, H is an hl-loop.

3.1. Lemma. Let H € L o). Then HT = AW and H| C BW.

Proof. Assume that g € H has components g; € @;1 and g € Q] for some
j,k € I. There exist elements 7,5 € A1) such that r; < s;j and r; = s; = 1 for each
iel,i#j. By (i) 7,5€ H. Clearly T <5and g-7 < g-5. Thus g € H]. Now,
let 77, s’ be the elements of A() such that rj < s, and 7} = s} = 1 for each i € I,
i # k (such elements exist and belong to H). Since ' < s’ and g, € Qx/|, we have
G- >7-s. Hence g € H|, which contradicts the fact that § € HT. So, either
g€ AM or ge BM and this yields that HT = A® and H| € BMW, O

In view of 2.6 we will use the notations Ty = {Z € H: Z,g are comparable} (or
T,, = {r € Qi: z,g; are comparable}) for elements of H/H1 (or Q;/Q;T, respec-
tively).

3.2. Lemma. Let H € L 4a), g,7 € H. Let there exist an index j € I such
that T,, = T,.,. Then Ty, =T, for eachi € I.

Proof. Assume that g,7 € H, Ty, =T,,, Ty, # T},. There exists j € H such
that #- ¢ = 1. Denote § =g - 4. Obviously 5 € H and

T,

;=

T

9iY;

=T,T, =TTy, =Ty, =T1 = Q;T.
Thus s; € @;T. At the same time
Ty, = Tg Ty, # 11, Ty, = Qil,

therefore si € Q /], which contradicts 3.1. O

610



3.3. Lemma. Let H € L gu),g,7 € H. Then Ty =T5 if and only if Ty, =T,
for each i € 1.

Proof. From Ty = T5 it follows that g, 7 are comparable. Therefore there exists
k € I such that g, and r, are comparable, i.e., Ty, = T;,. Then, by 3.2, T, =T,
for each ¢ € I. Conversely, T,, = T}, yields that g;,r; are comparable. Thus g and 7
are comparable, i.e., Ty = TF. O

In the remaining part of the present section we assume that for each 7,5 € I, Q;
and @); are h-equivalent hl-loops. This means that for each ¢ € I there exists an

isomorphism (with respect to the loop operation)

(1) eit Q1/Q11 — Qi/Qil.

Let ® = (p;,4 € I) be a system of isomorphisms (1) such that ¢y = id, where id is
the identity transformation of Q1/@Q17. We denote by Q) the subset of Q) such
that

7€ QY if and only if T, = ¢;(Ty,) for each i € I.

3.4. Lemma. Q) is a subloop of Q).

Proof. Obviously 1 € Q). Let 5,7 € Q) and 5 = g- 7. Since ¢; € ® is an
isomorphism with respect to the loop operation, we have (for each i € I)

Pi (Tsl) = ¥i (T91T1) = ¥i (Tgl TT1) = ¥i (Tgl)%‘ (TT1) = TgiTTi = TSi'
Thus 5 € Q). Analogously §/7 € Q(® and 7\ g€ Q. O

3.5. Lemma. Under the lexicographic order <, Q\®) is an hl-loop.

Proof. By 3.4, Q© is a loop. Clearly, under <, Q¥ is a partially ordered
set. Since Q; is an hl-loop, there exists p € @11, p > 1. Let 7 be an element of Q)
such that r; = p and 7; = 1 for each i € I, i # 1. It is obvious that 7 € Q(®) and
1 < 7. Thus < is a nontrivial partial order on Q(?). Likewise, it is trivial to see that
if §,7,5 € QO then g < 7 if and only if §- 5 < 7- 5. We are going to show that
QY =Q®ruU QO|. Evidently QTU Q| C Q. Assume that g € Q. If
g1 € Q17, then for each i € I we have Ty, = p;(T,,) = vi(@Q17) = Q7. This yields
that g; € Q;7 for each i € I and therefore g € Q(©1. Similarly, if g1 € Q1], then
7 € Q) |. Therefore Q = Q©1U Q©|. Further, it is easy to see that Q7 is a
linearly ordered set, thus we can conclude that Q(©) is an hl-loop. O
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3.6. Theorem. Let Q) be as above. Then Q) € L o and QO Q, are
h-equivalent hl-loops for each i € I.

Proof. By3.4and3.5 (ip) and (iiip) hold. Also, it is easy to verify that p € A}
implies p € Q(®), thus (iig) is valid. We have that Q(®) € £ o and we are going to
show that Q© ~, Q,. Define

¥ QU/QOT = Q1/Q1T; W(Ty) =T,
In view of 3.2 and 3.3 we have
T3 =1Tr ifand only if T, =1T,,.

Hence ¢ is an injective map. To prove that v is a surjection take T} € Q1/Q17.
For each i € I, i # 1 there exists r; € Q; such that T, = ¢;(T,), where p; € .
Let § be an element of Q) such that g = r and ¢; = r; for each i € I, i # 1.
Clearly 5 € Q© and (Tg) = T,. Thus v is a surjection. Evidently 1) preserves the
loop operation, therefore 1 is an isomorphism of Q(®) /Q(®7 onto Q1/Q171. We have
shown that Q(©) ~;, Q1. Now, since Q; ~p, Q; for all i € I, we can conclude, by 2.8,
that Q) ~j, Q; for each i € I. O

3.7. Definition. Let Q; (¢ € I) and Q© be as above. Then Q(©) is said to be
the ®-lexicographic product of hl-loops @; and we express this fact by writing

Q=) I Q

or
QY = (®)(Q10Q20...0Qn).
The hl-loops Q; are called lexicographic factors of Q(©).

3.8. Remark. The ®-lexicographic product of hl-loops @; depends on the system
®. There exist hl-loops @; and systems of isomorphisms ® and ¥ such that ® # ¥
and hl-loops (®) T' Q; and (¥) T' Q; are not isomorphic (see Example 3.9). If Q;

i=1 i=1

are hl-groups, then there exists exactly one system of isomorphisms (1) and QO is
the lexicographic product of hl-groups Q; (cf. [9]). If Q; are linearly ordered loops (or
groups), then Q(® = QM and Q) is the lexicographic product of linearly ordered
loops (or groups, respectively) Q;.

3.9. Example. Let (Z4,®) be the additive group of residues modulo 4. Let
Q = Z4x R (R is the set of all real numbers) and let < be the relation on @) defined
by

(i,2) < (J,y) & i=jand x < y.
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(i@jg,x+y) if i=0,
(iv‘r) : (]a y) =
(t@j,x—iy) if ¢#£0.
It is routine to verify that (@, -, <) is an hl-loop and
1. Q1 ={(0,2); z € R} and Q| = {(i,x); i € Z4,i # 0,2 € R};
2. Q1 is normal in Q and Q/QT = {T(0,0): T(1,0): T(2,0)> L(3,0) }-
We take a map ¢: Q/QT — Q/Q7 such that

¥ Tio,0) = Li0,00; T(1,0) = T(3,00; Li2,0) — T(2,00; L(3,0) — T(1,0)-
It is trivial to see that 1) is an isomorphism of Q/QT onto Q/QT with respect to the
loop operation. Let us put
= (?)(Q 0 Q), where & = {id,id},
G(O (9)(Q o Q), where ¥ = {id, v }.
(

Clearly Q) = {((0,), (0,). (1,), (1,1)), (2, ), (2,9)), (3,), (3.1)): @,y € R}
and GO = {((0,2), (0,)), (1, 2), (3.9)), (2,2), (2.9), (3,2), (Ly)): .y € R},

Now we consider the following condition for hl-loops.
(C)  There exists Ty, such that for each b € T, the assertion a - a = b - b holds.

Since Q¥ satisfies (C) (taking a = ((1,), (1,y)) for any =,y € R) and for G(® (C)
fails to hold, the hl-loops Q(®) and G(®) are not isomorphic.
Let @ be an hl-loop. The isomorphism

0 Q— (@) I @

with respect to the loop operation and the partial order is said to be a ®-lexicographic
product decomposition of Q.

3.10. Remark. Let ag: Q — ()1 be an isomorphism of the hl-loop @) onto the
hl-loop Q1. We regard «g as a lexicographic product decomposition of ) and Q1
as a P-lexicographic product with one factor @1, where ® contains only the identity
transformation of Q1/Q17.

Let
B: Q— (V) ElGi
be a W-lexicographic product decomposition of an hl-loop ). We say that «, 5 are

isomorphic decompositions if m = n and @;, G; are isomorphic hl-loops for each
i=1,2,....n
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4. TWO-FACTOR ®-LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

The lexicographic product decompositions of a partially ordered quasigroup with
an idempotent element h were discussed in [3]. Putting h = 1 we can apply these
results to the linearly ordered loops, especially for QT, where ) is an hl-loop. We
start this section by recalling some notions from [3], formulated for the case of @ a
linearly ordered loop.

Let @ be a linearly ordered loop and let A be a subloop of (). A linear order on
@ induces a linear order on A under which A is again a linearly ordered loop; A will
be called a linearly ordered subloop of Q.

Let A, B be the linearly ordered subloops of @ such that (cf. [3, Section 4], where
we put h = 1):

(C1) for each p € @ there exists exactly one pair (a,b) such that a € A,b € B and
p = ab;
(C2) if p1,p2 € Q, p1 = a1b1, p2 = asba, a1, a9 € A, by, by € B, then

pip2 = (a1az) - (bibe);

(C3) under the notation as in (C2), the relation p; < py is valid if and only if
either a1 < a9 or a1 = as and b; < bs.

Then we write

Q= AoB.

From [3, Section 4] we have that if @ = A o B, then @ is isomorphic to the
lexicographic product of A and B (with respect to the loop operation and the linear
order). Conversely, if () is a lexicographic product of linearly ordered loops Q1, Q2,
then there exist linearly ordered subloops A, B of @ such that ) = A o B. We say
that Q = A o B defines the lexicographic product decomposition of Q.

Now, let @ be an hl-loop. We take one element from every class T, € Q/ Q1; from
T1 = Q7 we choose an identity element 1. We denote by R the set of all elements
chosen from the respective T;.; R will be called the set of representatives of an hl-loop
Q. In what follows we assume that R is any fixed set of representatives of Q).

4.1. Lemma. If Q7 = Ao B, then each element x € () can be uniquely written
in the form x = ab - r, where a € A,b € B and r € R.

Proof. For each element x € @ there exists exactly one element r € R such
that » € T,. Since x/r € QT, by (C1) there exists exactly one pair of elements
a € A,b € B such that x = ab - r. a

In view of 4.1 we employ the following notation.
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4.2. Notation. Let QT = Ao B and let R be a set of representatives of Q.
For each x € @ we denote a, € A, b, € B and r, € R the elements which fulfil
= agzby - 5. By 4.1 these elements are uniquely determined (for a fixed set R).

Obviously r, = r, if and only if T, = T, (i.e., x and y are comparable).

4.3. Lemma.
each x,y, z € ) the following conditions are satisfied:

(1) T2z =1y S 1o =Ty;
(ii) ifry =7y, then by < by < by, < by,

Proof.
subloops of @, there exist ag), ag), a§f’) € A and b(zl), b(f) € B such that:

22 = (agby - 1)z = (alV) - ber)z = al? - (byr - 2) = alD (B - 12)

= a(wZ) [b(l) : (arzbrz . Trz)] = a;2)[(b;(g2) : arzbrz) : Trz]-

x

Hence, applying (C2), we obtain

2z = P [(ars - bPby2) - rrz] = [0 (arz - 500 lrrs = (@Par - 0Pb,2)r.
Analogously
2) . (byr-z) = ay(f)(bél) 1rZ)

= ag(f) [b;l) . (arzbrz . Trz)] = (1;2)[(1);2) . arzbrz) . Trz]
= a{P[(ars - bPb,2) - ro2] = [0l (ars - 6P b )]s = (0P ars - 6Pby2 ).

By 4.1, we have
b:vz = b;(;)brzw byz = b:(f)brz

Using 2.2 (ii) and the above equations we can conclude:
by Kby & byr-2<byr-2
e bV .rz g b;l) rz e (0P - apbe)r. < (by(f) by )Tz
< b <P < bPb,. <bPby. o by < by

Using similar methods as in the proof of 4.3 we obtain

Let Q1 = Ao B, where A, B are normal subloops of Q. Then for

(i) This is obvious. (ii) Put » = r, = r,. Since A, B are normal
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4.4. Lemma. Let QT = Ao B, where A, B are normal subloops of (). Then for
each x,y, z € ) the following conditions are satisfied:

(1) Tog =Toy S Ty =Ty;

(i) if z€ QT and ry, =7y, then by < b
(iii) if z € Q| and ry =1y, then by < b
Let QT = Ao B. For & = a,b, and y = ayb, from QT we put

(2) TTLY S Ay = Ay, TT2Y < by =by.

It is routine to verify that 71, 7 are normal congruence relations on Q1. Fori = 1,2
and z € QT we set 7;[x] = {y € QT: y 7 x}. Clearly m1[1] = B and 72[1] = A.
Now, for i = 1,2 we define a relation ©; on Q:

(3) r0,yex/yeQland z/y 7 1.

If A and B (i.e., 72[1] and 71[1]) are normal subloops of @, then, by 2.1, O, O,
are normal congruence relations on ). Analogously as above, for each i = 1,2 and
xeQ weset O;[z] ={y€Q: y O, z}.

4.5. Lemma. Let QT = Ao B, where A, B are normal subloops of Q. Let
z,y € Q. Then

Oy ry, =ry and a; = ay,

Oy & ry, =ry and by = by.

Proof. Assume that z ©; y. Then z/y 71 1, i.e., x = by,b € B. Using the
notations from 4.2 and the assumption that B is a normal subloop of ) we can write:

a:vb:v Ty = b(ayby ! Ty) = (b/ : ayby)ryv

where ' € B. By (C2) we obtain azb, - r, = (ay - V'by)r, and hence, in view of
4.1, we get r, = ry and a, = a,. Conversely, let x,y be elements of () such that
Qg = Ay, T3 = Ty. From r; = r, we have z/y € Q1. Therefore z = py, where p € Q1.
Thus azby - vz = p(azby - r5). Since QT is a normal subloop of @), there exists z € QT
such that

(4) Azby - 5 = plazby - rz) = (2 - azby)rs.

Hence azb, = 2z - azby. From z € QT we have z = ab, where a € A,b € B. Then
agzby = ab - azb, and hence, in view of (C2) and (C1), we get a; = aa,. Thus a =1,
and therefore z € B. Since B is a normal subloop of @ and z € B, we have, by (4),
p € B (=7[1]). Hence z/y 1 1, i.e., x ©1 y. The proof for ©, is analogous. O
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4.6. Lemma.
(i) fA={1}, then (x ©1y < T, =T,) and (x O y & z =y).
(ii) If B={1}, then (x Oy = T, =Ty) and (x ©1 y &z =y).
Proof. This is a consequence of 4.5. O

In what follows we assume that QT = Ao B, A, B are normal subloops of ) and
A, B # {1}. For each i = 1,2 we denote

Q; =1{0;[z]: z € Q}.

Since ©; is a normal congruence relation on @, ); with the operation ©;[z] - ©;[y] =

O;[xy] is a loop. Put

(5) O1[z] < O1ly] & rp = ry and a, < ay,
and
(6) Os)z] < O2ly] © ry =1y and by < by,.

It is easy to verify that the relation < is correctly defined on Q, (i = 1,2), i.e., it
does not depend on the choice of the elements from ©;[x]. Further, we immediately

obtain
4.7. Lemma. The relation < is a partial order on Q,, i = 1,2.

4.8. Lemma.
(i) ©1]z] and ©1[y] are comparable (by the relation <) if and only if ©3[z] and

©.[y] are comparable;
(ii) @ =y if and only if ©;[z] = ©;[y] fori =1, 2.

Proof. Since arbitrary two elements of Q1 are comparable, (i) follows from (5)
and (6). The assertion (ii) is an immediate consequence of 4.5. O

4.9. Lemma.

(i) If ©1]x] < O4[y], then z < y.
(if) If x <y, then O1[x] < O1[y].

Proof. (i) From 4.5 and (5) it follows that ©1[z] < ©1[y] implies r, = ry,
az < ay. Thus, by (C3), z < y. (ii) * < y = rp = 1y, Gzby < ayby = 1y = 1y,
ay < ay = O1[z] < O1[y]. O

617



Now, for each i = 1,2 we denote
H] ={0,[z]; € Q1}, H}={6[x]; z€Ql}.
Clearly Q, = H] U H}.
4.10. Lemma. For each i = 1,2, the loop Q; under the relation (5) (or (6),
respectively) is an hl-loop with Q,7 = H) and Q,| = Hll

Proof. We are going to prove that @, fulfills the conditions (i)-(iv) from 2.2.
By 4.7, under the relation <, Q, is a partially ordered set. Since A # {1}, there
exists € A such that < 1. Then ©,[z] < ©;[1], thus < is a nontrivial partial
order on Q;; hence (i) is valid. Let z,y,z € Q. Clearly

©1[z] = O1[y] & O1z2] = O1[y7]
and, in view of 4.9,

O1z] <O1fy] & 2 <y, O1[z] # O1[y] &
& xz <yz, O1]zz] # O1yz] & O1[z2] < O1]y2]
< O1[z] - ©1[2] < O1y] - O1[2],
thus (ii) is valid. Using a similar method as above we can prove that Q,] =
HlT and Q| = Hll Hence @, = Q,T U Q,l; thus (iii) holds. Finally, since Q7
is obviously a linearly ordered set, we have that @, is an hl-loop.

The proof that (6) is a nontrivial partial order on @, is analogous to that for Q.
Let 2,9,z € Q. From (6) and 4.3 we obtain

O2[z] < Ozlyl & 1y =1y, by
= @2[:17]@2[2’]

by & Toz = Tyz, bwz < byz
O2[y|O2[z],

thus 2.2(ii) is valid. We are going to show that Q,] = Hi. Let ©sz] € Q,|. By
way of contradiction, suppose that z € 7. Since < is a nontrivial partial order on
Q,, there exist z,y € Q such that Oz[z] < O2[y]. Then Oz[zx] > O2[zy], and thus
bz > by, 7.0 = 7,y Hence, by 4.4, b, > by, 7, = ry, which contradicts the fact that
O2[z] < O3[y]. Therefore z € Q|, i.e., O3]z] € Hi. To prove the converse inclusion
take Oy[z] € H} (this means that z € Q|). Then

<
<

92[37] < 62[y] & Ty = Ty, by < by

< Tzz = Tzy, b.r > bzy < 92[21'] = 92[2y]

Thus O3[2] € Q,]. We have Q,| = H2l To prove that Q,T = H2T we proceed
similarly. Now it is easy to see that Q, = Q5T U @], and since Q,7 is a linearly
ordered set, we can conclude that @2 is an hl-loop. Il
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The hl-loops Q;, Q5 are h-equivalent. Indeed, let

P @1/@1T - @2/@2T% T®1[w] = T®z[w]'

By 4.8 (1), T@g[m] = T@z[y] if and only if T@h[m] = T®1[y]7
mapping. Moreover, it is easy to see that ¢ is a surjection and ¢ preserves the loop

thus ¢ is an injective

operation. Thus Q; ~, Q.
Since ¢ is an isomorphism (with respect to the loop operation), we can construct
®-lexicographic product

G = (9)(Q, 0 Q,), where ® = {id, ¢}.

4.11. Lemma. (01[z],0:[y]) € G if and only if T,, = T,,.

Proof. (@1[x],®2[y]) € G & (,D(T@l[z]) = T@g[y] = T@g[x] = T@2[y] =
Os[z], O2y| are comparable < T, = T,. O

Let us put
¥ Q — G Y(x) = (O1]z], ©:2[x]).

4.12. Lemma. 1 is an isomorphism of the hl-loop Q onto the hl-loop G.

Proof. By 4.11, (©1[z],02[z]) € G for each z € Q. Using 4.8 (ii) it is easy
to see that 1 is an injective mapping. We are going to show that ¢ is a surjection.
Let (©1[z],02[y]) € G. By 4.11, T, = T,,, and thus there exists r € R (R is the set
of representatives of Q) such that © = azb, - r and y = ayb, - r. Put z = azb, - r.
Since O4[z] = O1[z] and O3[z] = O3y], we have 1(z) = (O1[z], O2[y]). Thus ¢ is a
surjection. It is routine to verify that 1) preserves the loop operation. Finally,

¥(z) <Y(y) & O1fz] < O1fy] or (O1]z] = O1[y], O2[z] < O2[y])
& (rg =Ty, Gz < ay) OF (T =Ty, Gz = Gy, by < by)

& Azby Ty < ayby -y &Ly,

Thus %) is an isomorphism with respect to the loop operation and the partial order.
O

Summarizing, we have
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4.13. Theorem. LetQ be an hl-loop and let A, B be nontrivial normal subloops
of Q) such that QT = Ao B. Then v is a ®-lexicographic product decomposition of Q).

5. FINITE-FACTOR ®P-LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

The finite-factor lexicographic product decomposition of a partially ordered quasi-
group @ with an idempotent element h has been studied by author in [3]. Analogously
as in Section 4, putting h = 1, we can apply these results to a linearly ordered loop
Q@1 in case @ is an hl-loop.

Firstly, assume that @ is a linearly ordered loop. Let Ay, Ao, A3 be linearly ordered
subloops of @. Then (cf. [3, Lemma 4.5]) Q@ = (A; 0 A3) o Az if and only if @ = Ay o
(A2 0 A3). Hence, by induction, we can conclude that the finite-factor lexicographic
product decomposition of ) does not depend on the setting of parentheses. Moreover,
putting A = 1 in [3; (4.4)] we immediately obtain

5.1. Lemma. Let Q = A; 0 Ay o As. Then aV - (a® - a®)) = (aV) . a?)) . a®
for arbitrary elements o) € A;,i=1,2,3.

For the lexicographic product decomposition of the linearly ordered loop @ with
lexicographic factors Ay, As, ..., A, we use the notation

Q=A10A50...04,.

By 5.1, provided Q@ = A;0Ajo0...0A, the parentheses in the product aMa® ... ..a(™
of elements a(? € A; can be omitted. Moreover, by (C1), arbitrary elements z,y € Q
can be uniquely written in the form z = aMa® ... ™ y = bMWp@ p(") where
a® b € A; and, by (C2), zy = (aWbdM) - (aPbP)) . ... (a™p(™).

Now, let @ be an hl-loop, R be a set of representatives of (). Suppose that

(1) QT =A10A450...04,

is a lexicographic product decomposition of the linearly ordered loop Q7. It is easy

to verify that the generalization of 4.1 is valid, i.e., each element z € @ can be

uniquely written in the form (a(Ma® ...a(™) .7, where a'Y) € A; and € R. In view

of this fact we will employ the notations = = ag)a(f) ... a(z") ST, a(zi) € A;, r. €R,
(1) (2) ;n) (1) (2) (n)

Y = Gy Gy ...Gy - Ty, agf) € Ai, ry € R, xy = auyayy ... Qzy - Tay, a% € A,
rzy € R, etc. (we recall that the relations a&@} = ag)agf), Tgy = TzTy don’t hold in

general).
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5.2. Lemma. Let Q be an hl-loop. Let A;, i =1,2,...,n, be normal subloops
of Q) such that QT = Ajo0Ayo...0A,. Then B=A; o A;, o...0A,;, Isa normal
subloop of Q for arbitrary i1,iz,...,ik € {1,2,...,n}, i1 <i2 < ... < ig.

Proof. The assertion of the lemma is trivial for k = 1. Let k € N, 1 < k < n.
We are going to show that if B* = A;, 0 A;,0...0A
a normal subloop of @. It is routine to verify that B is a subloop of Q). Let = € Q,

in_, 15 normal in @), then B is
b € B. Clearly b = ca, where c € B* and a € A;, . Since A;,, B* are normal subloops
of @, there exist a’ € A;,, ¢ € B* such that b = z-ca = ¢’a’ - x. Therefore xb € Bx.
Analogously we obtain bx € xB, thus we have B = Bz for each x € ). Similarly, if
z,y € Q, then xy- B=x-yB and B-xy = Bz -y. Therefore B is a normal subloop

of Q. O
Suppose that (1) is valid and A; is normal in Q for each i = 1,2,...,n. We define

a relation 7; (1 =1,2,...,n) on QT:

(2) zryeal) =all).

It is easy to see that 7; is a normal congruence relation on Q1. By 5.2, 7;[1] = {z €
Q1: x 7; 1} is a normal subloop of Q. Now, for z,y € Q and for each i =1,2,...,n
we put

(3) 20,y < x/y € Q and x/y 7; 1.

In view of 2.1 ©; is a normal congruence relation on @. Analogously as in Section 4
we denote ©;[z] = {z € Q: 20,2} and Q, = {©;[z]: = € Q}. Recall that under the
operation ©;[z] - ©;[y] = ©;[ry], Q, is a loop.

5.3. Lemma. Foreachi=1,2,...,n the following holds

0,y < ag) = az(f) and ry; = Ty.

Proof. In view of 5.2 it suffices to apply the same method as in the proof of
4.5. O

Let us denote (for each i =1,2,...,n)
H! = {6:[z]; =€ Q1}, H} ={0z]; z<€Ql}.
Clearly Q, = H] U H}. For ©,[z], ©,[y] € Q; we set
(4) 0,[z] < Oi[y] & rp =7, and a) < ay(j).

It is easy to see that the relation < is a partial order on Q,.
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5.4. Lemma. Let Q be an hl-loop. Let QT = A1 o As o A3, where Ay, Ay, A3
are nontrivial normal subloops of Q. Then for each i = 1,2,3 Q, is an hl-loop and

@iT = HiTa @zl = Hzl

Proof. Denote B = A; o A;. By 5.2, B is normal in Q. Clearly QT = B o Ag,
thus each element x € @ can be uniquely written in the form = = ba-r, where b € B,
a € Az and r € R. Let n be a relation defined on @ by the rule

(ba-r)n (ad -r)yesa=d, r=1

and let

nlba-r] < pp'd -r'] s a<d, r=r"

Denote G = {n[z]: = € Q}. By 4.10, under the relation <’, G is an hl-loop. But it
is easy to see that G = 63 and

nlz] <’ nly] < O3] < Oafy],

where < is the relation defined by (4). Therefore we can conclude that Q5 is an
hl-loop and §3T = Hg, §3l = Hé Analogously @, is an hl-loop and Q1 = HlT,
Q] = Hll We are going to show that Q, is an hl-loop. As in the proof of 4.10 it
can be seen that < is a nontrivial partial order on @,. For completing the proof we
verify (ii)—(iv) from 2.2. Denote B = As o As. Then Q7 = A; o B. Any elements

z,y € @ can be uniquely expressed as x = a;(El)bz -y and y = aél)by -1y, where by, by

are elements of B, which are uniquely determined by b, = ag)af) and b, = az(f)al(ls).

Let z € Q. The elements zz, yz can be uniquely written in the form

vz = af)alal?) ro. = allbo 1o,
where aSZQ €A, 1, €ER, by, = a(zi)ag) € B, and

Yz = aélz)aéi)aé? Ty = aélz)byz “Tyz,
where ag(,iz) €Ay, ry: €ER, by, = aé?aéi) € B. Clearly

Ozz] = O2fy] & Oafzz] = O2fy2]

and
(5) Ogfz] < Oay] & rp =1y, al? < ay(f) Sy =1y, al? # ay(f), by < by.
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Since QT = A; 0B, where Ay, B are normal subloops of @, from (5) and 4.3 it follows
that

62[37] < 92[y] < a(z2z) 7é az(fz), Tez = Tyz, bxz < byz
2 < az(fz), Tpz = Tyz < O2[2]O2[2] < O2[y]O2[z],

rz

= a

thus (ii) from 2.2 holds. Using similar methods as above we obtain (cf. also the proof
of 4.10)

Q.1 = H) and Q,| = H3,

which yields Q, = Q51 U @,]. Now, since Q,1 is a linearly ordered set, we can
conclude that @, is an hl-loop. ]

5.5. Lemma. Let @ be an hl-loop. Let QT = Aj0Aso...0A,, n # 1, where A;
(i = 1,2,...,n) are nontrivial normal subloops of Q. Then for eachi = 1,2,...,n
Q, is an hl-loop and Q;1 = H], Q;| = H}.

Proof. In view of 4.10 and 5.4 it suffices to consider the case n > 4. Let
i#1and i #n. We denote By = AjoAso...0A4; 1, Bo = A;;10...0A,. Then
Q1 = BioA;o0 By, thus, by 5.4, Q, is an hl-loop. For i = 1 and i = n the assertion of
the lemma follows from 5.4, where we set Q1 = AjoBoA,, B=As0...04,_1. O

Let @ be an hl-loop. We assume that (1) holds, n # 1 and A;,7=1,2,...,n, are
the nontrivial normal subloops of Q. For each i =1,2,...,n we set

(6) Vi Q1) Q11 — Qi) Qil; To,[2) = To,[a]-

Analogously as in Section 4 it can be shown that ); is a loop isomorphism. Denote
U = (¢;;1 =1,2,...,n) the system of isomorphisms from (6) (it is obvious that
is the identity permutation of Q,/ @;1). Let

ar: Q — (D) _Elai; a1(z) = (01[z], O2[z], ..., Onlz]).
Then «; is a U-lexicographic product decomposition of @) (the proof is analogous with
that of 4.12). Also, it is easy to see that the linearly ordered loops @, and A; are
isomorphic. The decomposition o will be called an extension of the decomposition
(1).

Now, for each ¢ =1,2,...,n, n > 2, let G; be an hl-loop and let

n

(7) 7 Q@—(®) T Gi

i=1
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be a ®-lexicographic product decomposition of an hl-loop . The component of y(x)
in G; will be denoted by y(z);. Fori=1,2,...,n we consider the relation ©} defined

on () by
207y < y(2)i = v(y)i-

Clearly, ©F is a normal congruence relation on ). Under the relation
O7lx] < Oily] = v(z): < (v,

Q/©7 is an hl-loop, Q/O;T = {O][z]; = € QT}, Q/O7] ={O[z]; z € Q}. Tt is
routine to verify that G;, Q/O7 are isomorphic hl-loops. For each i = 1,2,...n let

Bi={reQl: v(z); =1 for each j # i}.

Obviously B; are normal, nontrivial subloops of ¢ and

(8) Q1 =B10oByo...0B,.
Denote
(9) 1 Q= (V) I Qs nie) = (O1fa], Oaa], .., O4[x)

an extension of (8).

5.6. Lemma. ~ and 7, are isomorphic decompositions.

Proof. From (8) it follows that elements z,y € @ can be uniquely written in
the form z = (V0 b)) vy, y = BB b)Y - vy, where b)) € B,
Tz, Ty € R.If ©f[z] < OF[y], then r, = ry,. Indeed, from ©}[z] < Of[y] it follows
that T’Y(w)z = T’Y
with respect to the partial order, we have T), = T, i.e., 7, = r,. Thus we can write

(y):» thus, by 3.2 and 3.3, T’ () = T (,) and since 7 is an isomorphism

At the same time

Hence Q/OF = Q;, and since the hl-loops Q/©F and G; are isomorphic, we can
conclude that Q; and G; are isomorphic hl-loops. ([
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5.7. Lemma. Let Q be an hl-loop. Let there exist a set of representatives R of
Q such that R is a subgroupoid of Q). Then any two decompositions QT = Ao B and
Q1 = C o B, where A, B, C are normal nontrivial subloops of (), have isomorphic

extensions.

Proof. Each element x € Q) can be uniquely written in the form = = a;b, - 74,
where a, € A, b, € B, r, € R and at the same time in the form x = ¢,d, - r,, where
c. € C,d; € B. Let

(10) ar: @ = (2)(Q/010Q/62)

be an extension of the decomposition QT = A o B and

(11) Br: Q@ = (2)(Q/m 0 Q/1m2)

be an extension of the decomposition @T = C' o B. We are going to show that

Y Q)01 — Q/n1; Y(O1]z]) = mi[7]

is an isomorphism of the hl-loop Q/©: onto Q/mi. Let & = azby - o, y = ayby - 1y
If ©1]z] = ©1]y], then, by 5.3, r, = ry, a; = a,. There are unique ¢ € C, d € B such
that a; = cd. Hence © = (cd - by)ry = (¢~ dby)ry and y = (ed - by)ry = (¢ - dby)ry.
Thus 1 [z] = 1 [y]. Analogously, if n;[x] = n1[y], then ©1[z] = O4[y]. We see that ¢
is an injective map. Obviously, ¢ is a surjection which preserves the loop operation.

Since 1 is an injection, we have that r, = r, implies

Gy # Ay & Cz F Cy.
Thus, provided r, = r, we obtain
O1[z] < O1y] © ax < ay &z <y, az # ay
© e < ¢y < mlz] <mlyl.

Hence ) is an isomorphism of the hl-loop Q/©; onto Q/n;.
Now, we are going to show that /02 and Q) /n are isomorphic hl-loops. Consider

£: Q)02 — Q/n2; £(O2x]) = n2[bars].

It is routine to verify that £ is a bijection which preserves the partial order. Since B
is a normal subloop of @ and R is a subgroupoid of @, for each b,d € B and r,s € R
we obtain br - ds = bgrg, where by € B, ro = rs € R. Using this fact we get that &
preserves the operation. Thus Q/©2 and @Q/n2 are isomorphic hl-loops. O
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6. ISOMORPHIC REFINEMENTS

Let @ be an hl-loop and let

(1) a: Q@ — (P) _gIGi, I={1,2,...n},
(2) 8: Q—(¥) T' Hy, K={1,2,...m}
keK

be two lexicographic product decompositions of Q.

6.1. Definition (Cf. [11]). The lexicographic product decomposition 3 is said
to be a refinement of « if for each ¢ € I there exists a subset K (i) of K and a

lexicographic product decomposition

a;: G; — ((I)z) I Hg
kEK (i)

such that, whenever z € @, i € I and k € K (i), then
B@)r = ai(a(z))k-
We obviously have

6.2. Lemma. Let « and (8 be isomorphic lexicographic product decompositions
of Q and let o/ be a refinement of a. Then there exists a refinement (3’ of 3 such
that o/ and (3 are isomorphic.

Let
3) Ql =A10450...04,,

where A1, As, ... A, are normal subloops of (). Suppose that for eachi=1,2,...,n
there exists a lexicographic product decomposition

Ai = Ail OAi2 0...0 Azk(1)7
where A;; are normal subloops of Q. Then (cf. [3])
(4) QT:A110A12O---OAijO---OAnk(n)'

Now, let
ar: @ = (2)(Q0Qz0...0Q,)

be an extension of (3) and

fr: Q@ — (‘I’)(an o@12 °-~-O§12~-~°@nk(n))

be an extension of (4). From the construction of the extensions a; and 3; we obtain
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6.3. Lemma. (3 is a refinement of a.

6.4. Theorem. Let (Q be an hl-loop and let there exist a set of representatives
R of @ such that R is a subgroupoid of (). Then any two lexicographic product
decompositions of () have isomorphic refinements.

Proof. 1If Q| = 0, then the assertion is valid in view of [3]. Suppose that
Q| #0. Let

o}
O
!
s
i
Q

=
O
!
=
=3
&

=
—

be two lexicographic product decompositions of (). We prove the theorem by induc-
tion on n+m, n+m > 2. It is clear for n+m = 2. Let n+m > 2. The case m =1
or n =1 is trivial. Assume that m,n # 1. In the same way as we have constructed
the decomposition (8) in Section 5 for v and the extension 7, of v, we can construct

(5) Ql =A10450...0A4A, fora,
(6) Ql =B1oByo...0B,, forp

and the extensions «; of (5) and 31 of (6)

By 5.6, o, a; are isomorphic decompositions and also 3, #; are isomorphic decom-
positions. According to [3; Lemma 4.7(i)] we can suppose without loss of generality
that A, C B,,. Hence, by (6) and [3; Lemma 4.7 (ii)], we have

(7) QT:BloB2o---oBm—loBmloBm27

where B,,,1 = ByN(Aj0Az0...04,,_1) and B2 = A,. From the construction of (5)
and (6) it follows that the subloops A; and B, are normal in @ for eachi =1,2,...n,
j=1,2,...m. Since, according to 5.2, B,,; is an intersection of normal subloops of
Q, By is normal in Q. Thus there exists an extension S of (7)

Bo: Q@ — (U2)(G10Gz0...0Gn—_10Gm1 0Gpa).
In view of 6.3 (35 is a refinement of 3;. Denote
A=A10Ay0...0A,_1
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and
B:BloBQO...OBm—loBml

(by 5.2, A, B are normal subloops of @)). Then
(8) Q1 =AoA,
and at the same time

9) Q1 =BoA,.

Let @ — (9')(Q4 ©Q,,) be an extension of (8) and @ — (V')(Gp o Ga,) be an
extension of (9). According to 5.7, Q4, Gp and also @An, G4, are isomorphic
hl-loops. Moreover, it can be verified that

(10) @An =Q, and G4, = Gpo.

We denote by @1, @a,...,®, the isomorphisms from the system ®; and by 1, ¥,
.+ y¥mo the isomorphisms from Uy, Put & = &1 — {p,} and U5 = Uy — {h0}.
There exist decompositions
I QA - (q)’f)(gl ng 0. ogn—l); o
(II) G — (¥3)(G10Gz20...0Gm_10Gm1).
By the induction hypothesis there exist lexicographic product decompositions o/, 31

such that

— o} is a refinement of (I), 31 is a refinement of (II)
— of, B} are isomorphic decompositions.

Hence according to (10), @7 and (B2 have isomorphic refinements. Therefore, by 6.2,
the lexicographic product decompositions a and 3 have isomorphic refinements. [
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