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EXTENSIONAL SUBOBJECTS IN CATEGORIES OF

Ω-FUZZY SETS

Jiří Močkoř, Ostrava

(Received March 10, 2005)

Abstract. Two categories Set(Ω) and SetF(Ω) of fuzzy sets over an MV -algebra Ω
are investigated. Full subcategories of these categories are introduced consisting of objects
(sub(A, δ), σ), where sub(A, δ) is a subset of all extensional subobjects of an object (A, δ). It
is proved that all these subcategories are quasi-reflective subcategories in the corresponding
categories.
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Introduction

In a fuzzy set theory there are several categories which play an important role in
fuzzy logic interpretation. Two of these categories of fuzzy sets over an MV -algebra

Ω = (L,⊗,→) will be investigated in the paper. The first one is the category Set(Ω)
with objects (A, δ) where A is a set and δ : A ×A → Ω is a similarity relation such
that

(i) (∀x ∈ A) δ(x, x) = 1,
(ii) (∀x, y ∈ A) δ(x, y) = δ(y, x),
(iii) (∀x, y, z ∈ A) δ(x, y)⊗ δ(y, z) 6 δ(x, z).

A morphism f : (A, δ) → (B, γ) in Set(Ω) is a map f : A×B → Ω satisfying the
following conditions.

(1) (∀x, z ∈ A)(∀y ∈ B) δ(x, z)⊗ f(x, y) 6 f(z, y),
(2) (∀x ∈ A)(∀y, z ∈ B) γ(y, z)⊗ f(x, y) 6 f(x, z),
(3) (∀x ∈ A)(∀y, z ∈ B) f(x, y)⊗ f(x, z) 6 γ(y, z),
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(4) (∀x ∈ A) 1 =
∨{f(x, y) : y ∈ B}.

If f : A → B and g : B → C are two morphisms then their composition is the
function g ◦ f : A× C → Ω such that

g ◦ f(x, z) =
∨

y∈B

(f(x, y)⊗ g(y, z)).

The other category SetF(Ω) will have the same objects as the category Set(Ω). A
morphism f : (A, δ) → (B, γ) in SetF(Ω) is a map f : A → B such that (∀x, y ∈
A) γ(f(x), f(y)) > δ(x, y).
In [9] we investigated some principal properties of the category SetF(Ω) and we

proved that the extensional subobjects of objects (A, δ) in this category SetF(Ω)
can be identified with some characteristic morphism (A, δ) → (Ω∗, µ). Namely
we proved that if S : SetF(Ω) → Set is a functor such that S(A, δ) = {s :
s is an extensional subobject of (A, δ)} then there exists a natural isomorphism

ζ : S(−) → HomSetF(Ω)(−, Ω∗).

This classification property, which is one of the most important properties of a
topos category, is frequently used for interpretation of formulas of fuzzy logic in the

category SetF(Ω) in such a way that interpretation of a fuzzy logic formula is defined
as a special extensional subobject of some object (A, δ). Hence, it seems natural that
extensional subobjects of objects in the category SetF(Ω) play an important role for
further investigation of that category.

In this paper we are interested in the following problem related to extensional
subobjects. For any object (A, δ) of the category SetF(Ω) we can define a set
Ω(A,δ) of all (or some special, respectively) extensional subobjects of (A, δ). This
set can be transformed (in several different ways) into an object of the category
SetF(Ω). In that way we obtain a full subcategory ΩSetF(Ω) of the category SetF(Ω)
consisting of these special objects. We will be interested in conditions under which
that subcategory ΩSetF(Ω) is a quasi-reflective subcategory in SetF(Ω). Recall that
a subcategory L of a categoryK is a quasi-reflective subcategory in K if there exists
a functor G : K → L such that for any object a ∈ K there is a morphism a

ua−→ G(a)
such that for any object b ∈ L and any morphism f : a → b (in K) there exists
a morphism (in general non unique) f̂ : G(a) → b such that the following diagram

commutes:
a

ua //

f

��

G(a)

f̂

��
b b
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A functor G is then called a quasi-reflector. We will be interested in several subcat-

egories of the category SetF(Ω) consisting of various objects (sub(A, δ), σ), where
sub(A, δ) will be a subset of the set of all extensional subobjects of (A, δ) and σ will
be a similarity relation defined on that subset. We prove that all these subcategories

are quasi-reflective subcategories in the category SetF(Ω). We also introduce the
notion of a weak singleton extensional subobject of (A, δ) in the category Set(Ω) and
we prove that a subcategory consisting of these subobjects is also a quasi-reflective
subcategory of the category Set(Ω).

Subcategories of extensional subobjects

We show firstly a simple result which states the existence of a functor between the

categories SetF(Ω) and Set(Ω).

Lemma 1. There exists a functor F : SetF(Ω) → Set(Ω).
���������

. For (A, δ) ∈ SetF(Ω) we set F (A, δ) = (A, δ) and for a morphism
f : (A, δ) → (B, γ) in SetF(Ω) we define a map F (f) : A × B → Ω such that
F (f)(a, b) = γ(f(a), b) for any a ∈ A, b ∈ B. Then F (f) is a morphism in Set(Ω).
In fact, we have for example

F (f)(a, b)⊗ δ(a, a′) = γ(f(a), b)⊗ δ(a, a′)

6 γ(f(a), b)⊗ γ(f(a), f(a′)) 6 γ(f(a′), b) = F (f)(a′, b).

�

Recall that an extensional subobject of (A, δ) in the category SetF(Ω) is a map
s : A → Ω such that

s(x)⊗ δ(x, y) 6 s(y).

An extensional subobject can be defined in the category Set(Ω) as well. In fact,
it is clear that (Ω,↔) is an object in SetF(Ω), where α ↔ β = (α → β) ∧ (β → α).
Then s is an extensional subobject of (A, δ) in the category SetF(Ω) if s : (A, δ) →
(Ω,↔) is a morphism in SetF(Ω). Analogously s will be called an extensional
subobject of (A, δ) in Set(Ω) if s : (A, δ) → (Ω,↔) is a morphism in Set(Ω), i.e.

(1) (∀a, a′ ∈ A)(α ∈ Ω) s(a, α)⊗ δ(a, a′) 6 s(a′, α),
(2) (∀a ∈ A)(∀β, α ∈ Ω) s(a, α)⊗ (α ↔ β) 6 s(a, β),
(3) (∀a ∈ A)(α, β ∈ Ω) s(a, α)⊗ s(a, β) 6 α ↔ β,
(4) (∀x ∈ A) 1 =

∨
α∈Ω

s(x, α).
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An extensional subobject s of (A, δ) in SetF(Ω) is called normal if
∨

a∈A

s(a) = 1.

Then an extensional subobject t of (A, δ) in Set(Ω) is called normal if
∨

a∈A

t(a, 1)

= 1. Moreover, we say that t is a weak singleton of (A, δ) in Set(Ω) if t is a normal
extensional subobject of (A, δ) in Set(Ω) and t(a, 1)⊗t(b, 1) 6 δ(a, b) for all a, b ∈ A.
A special normal extensional subobject in SetF(Ω) is called a singleton. Recall that
an extensional subobject s : A → Ω of (A, δ) (in the category SetF(Ω)) is a singleton
if it satisfies the condition

(∀x, y ∈ A) s(x)⊗ s(y) 6 δ(x, y).

It is clear that the map {a} = δ(a,−) : A → Ω is an example of a singleton for any
a ∈ A. On the other hand an object (A, δ) is called complete if for any singleton s

of (A, δ) there exists a ∈ A such that s = δ(a,−).
Let (A, δ) be an object of Set(Ω) (or SetF(Ω)). We introduce the following

notation.

Ω(A,δ) = {s : s is an extensional subobject of (A, δ) in SetF(Ω)},
Ω(A,δ)

1 = {s : s is an extensional and normal subobject of (A, δ) in SetF(Ω)},
w-singl(A, δ) = {s : s is a weak singleton of (A, δ) in Set(Ω)},

singl(A, δ) = {s ∈ Ω(A,δ)
1 : s is singleton of (A, δ) in SetF(Ω)}.

All the previous sets can be transformed into objects of categories Set(Ω) and
SetF(Ω), respectively. In fact, for any object (A, δ) and for any s, t ∈ Ω(A,δ), p, q ∈
w-singl(A, δ) we set

σ(s, t) = σ(A,δ)(s, t) =
∧

x∈A

s(x) ↔ t(x),

τ(s, t) = τ(A,δ)(s, t) =

{ ∨
x∈A

s(x) ⊗ t(x), if s 6= t,

1, if s = t,

%(p, q) = %(A,δ)(p, q) =
∧

x∈A

p(x, 1) ↔ q(x, 1).

Lemma 2. For any object (A, δ) there exists a morphism :̂ singl(A, δ), σ(A,δ))
→ (w-singl(A, δ), %(A,δ)).
���������

. For s ∈ singl(A, δ) we set ŝ(a, α) = s(a) ↔ α. It is then clear that

ŝ = F (s) (see Lemma 1), since s : (A, δ) → (Ω,↔) is a morphism in SetF(Ω). It
follows that ŝ is an extensional (and clearly normal) subobject in Set(Ω). Since s is a
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singleton, ŝ is a weak singleton. Moreover according to Lemma 5 for any s, t ∈ Ω(A,δ)
1

we have

%A,δ)(ŝ, t̂) =
∧

a∈A

(s(a) ↔ 1) ↔ (t(a) ↔ 1)

=
∧

a∈A

s(a) ↔ t(a) = σ(A,δ)(s, t).

�

Lemma 3. For any object (A, δ) the pairs (Ω(A,δ), σ(A,δ)), (Ω(A,δ), τ(A,δ)),
(w-singl(A, δ), %(A,δ)) and (singl(A, δ), τ(A,δ)), respectively are objects of the cate-
gory Set(Ω) (and SetF(Ω), simultaneously).

The proof of this lemma can be done by a simple computation.

Lemma 4. Let Ω be an MV -algebra. Let {ai}i∈I and {bi}i∈I be two sets of

elements of Ω and let p : I → I be a bijection map.

(1)
∨
i∈I

ai ↔
∨
i∈I

bi∈I >
∧

j∈I

(aj ↔ bp(j)),

(2)
∧
i∈I

ai ↔
∧
i∈I

bi >
∧

j∈I

(aj ↔ bp(j)).

The proof can be done by a simple computation and will be omitted.

Lemma 5. Let Ω be an MV -algebra.

(1) (∀a, b, x ∈ Ω) (x ↔ a) ↔ (x ↔ b) > a ↔ b.

(2) (∀a, b, c, d ∈ Ω) (a ↔ c) ↔ (b ↔ d) > (a ↔ b)⊗ (c ↔ d).
���������

. (1) We have

(x → a) ↔ (x → b) > (x ↔ x)⊗ (a ↔ b) = a ↔ b,

(a → x) ↔ (b → x) > (a ↔ b)⊗ (x ↔ x) = a ↔ b,

and it follows that

(x ↔ a) ↔ (x ↔ b) = ((x → a) ∧ (a → x)) ↔ ((x → b) ∧ (b → x))

> ((x → a) ↔ (x → b)) ∧ ((a → x) ↔ (b → x)) > a ↔ b.

(2) According to Lemma 4 we have

(a ↔ c) ↔ (b ↔ d) = ((a → c) ∧ (c → a)) ↔ ((b → d) ∧ (d → b))

> ((a → c) ↔ (b → d)) ∧ ((c → a) ↔ (d → b))

> ((a ↔ b)⊗ (c ↔ d)) ∧ ((c ↔ d)⊗ (a ↔ b) = (a ↔ b)⊗ (c ↔ d).

�
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We consider the following subcategories of the categories Set(Ω) and SetF(Ω),
respectively.

(1) A full subcategory SetF(Ω)comp ↪→ SetF(Ω) consisting of complete objects
of the category SetF(Ω),

(2) A full subcategory ΩSetF(Ω)
↔ ↪→ SetF(Ω) with objects (Ω(A,δ), σ(A,δ)) for any

object (A, δ),
(3) A full subcategory ΩSetF(Ω)

⊗ ↪→ SetF(Ω) with objects (Ω(A,δ), τ(A,δ)) for any
object (A, δ),

(4) A full subcategory ΩSet(Ω)
1,⊗ ↪→ Set(Ω) with objects (Ω(A,δ)

1 , τ(A,δ)) for any
object (A, δ),

(5) A full subcategory ΩSet(Ω) ↪→ Set(Ω) with objects (w-singl(A, δ), %(A,δ)) for
any object (A, δ).

Theorem 1. There is a functor C : SetF(Ω) → SetF(Ω)comp which is a quasi-

reflector.
���������

. Let (A, δ) be an object in SetF(Ω). We show first that (singl(A, δ),τ)
is a complete object. Let S be a singleton in (singl(A, δ), τ(A,δ)). Then we define a
map eS : A → Ω such that

eS(x) =
∨

t∈singl(A,δ)

t(x)⊗ S(t).

We show that eS ∈ singl(A, δ). It is easy to see that eS is a normal extensional
subobject. Moreover, we have

eS(x) ⊗ eS(y) =
∨

t,p∈singl(A,δ)

t(x) ⊗ p(y)⊗ S(t)⊗ S(p)

6
∨

t,p∈singl(A,δ)

t(x) ⊗ p(y)⊗ τ(t, p) =
∨

t,p∈singl(A,δ)

t(x)⊗
( ∨

a∈A

t(a)⊗ p(a)⊗ p(y)
)

6
∨

t,p∈singl(A,δ)

t(x) ⊗
( ∨

a∈A

t(a)⊗ δ(a, y)
)

6
∨

t∈singl(A,δ)

t(x) ⊗ t(y) 6 δ(x, y).

Then S = {eS}. In fact, let s ∈ singl(A, δ), then we have

{eS}(s) = τ(A,δ)(eS , s) =
∨

x∈A

∨

t∈singl(A,δ)

t(x)⊗ S(t)⊗ s(x)

=
∨

t∈singl(A,δ)

( ∨

x∈A

t(x)⊗ s(x)
)
⊗ S(t)

=
∨

t∈singl(A,δ)

τ(A,δ)(s, t)⊗ S(t) > τ(A,δ)(s, s)⊗ S(s) = S(s),
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and on the other hand since τ(s, t) ⊗ S(t) 6 S(s), we obtain that {eS}(s) = S(s).
We define a functor

C : SetF(Ω) → SetF(Ω)comp

such that C(A, δ) = (singl(A, δ), τ(A,δ)) and for a morphism f : (A, δ) → (B, γ)
in SetF(Ω) we set C(f) = f , where f(s)(b) =

∨
a∈A

s(a) ⊗ γ(f(a), b). Then f is

a morphism in SetF(Ω)comp. In fact it is clear that f(s) is a normal extensional
subobject in (B, γ). For any b, c ∈ B we have

f(s)(b)⊗ f(s)(c) =
∨

x,y∈A

s(x)⊗ s(y)⊗ γ(f(x), b)⊗ γ(f(y), c)

6
∨

x,y∈A

δ(x, y)⊗ γ(f(x), b)⊗ γ(f(x), c)

6
∨

x,y∈A

γ(f(x), f(y))⊗ γ(f(x), b)⊗ γ(f(y), c)

6
∨

x,y∈A

γ(b, f(y))⊗ γ(f(y), c) 6 γ(b, c).

Hence f(s) is a singleton in (B, γ). We show further that f : (singl(A, δ), τ(A,δ)) →
(singl(B, γ), τ(B,γ)) is a morphism in SetF(Ω). In fact, we have

τ(B,γ)(f(s), f(t)) =
∨

b∈B

f(s)(b)⊗ f(t)(b)

=
∨

b∈B

( ∨

x∈A

s(x)⊗ γ(f(x), b)
)
⊗

( ∨

y∈A

t(y)⊗ γ(f(y), b)
)

>
∨

b∈B

∨

x∈A

s(x) ⊗ γ(f(x), b)⊗ t(x)⊗ γ(f(x), b)

>
∨

x∈A

s(x)⊗ γ(f(x), f(x)) ⊗ t(x)⊗ γ(f(x), f(x))

=
∨

x∈A

s(x)⊗ t(x) = τ(A,δ)(s, t).

Let us now consider the singleton map

(A, δ)
{−}−→ C(A, δ) = (singl(A, δ), τ(A,δ)).

We show that C is a quasi-reflector. Since τ({x}, {y}) = δ(x, y), it is clear that
{−} is a morphism in SetF(Ω). Moreover let (B, γ) be a complete object and let
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f : (A, δ) → (B, γ) be a morphism in SetF(Ω). Then there exists a morphism
f̃ : (singl(A, δ), τ) → (B, γ) such that the following diagram commutes:

(A, δ)
{−} //

f

��

(singl(A, δ), τ(A,δ))

f̃

��
(B, γ) (B, γ)

The map f̃ is defined as follows. Let s ∈ singl(A, δ). Then C(f)(s) = f(s) : B → Ω is
a singleton in (B, γ). Since (B, γ) is complete, there exists the unique element b ∈ B

such that f(s) = {b}. We set f̃(s) = b. We show that f̃ is a morphism in SetF(Ω). In
fact, let f̃(s) = b, f̃(t) = c. Then we have γ(f̃(s), f̃(t)) = γ(b, c) = τ(B,γ)({b}, {c}) =
τ(B,γ)(f(s), f(t)) > τ(A,δ)(s, t) since f is a morphism in SetF(Ω). We show that the
above mentioned diagram commutes. In fact, let a ∈ A, then we have f̃({a}) = b,

where f({a}) = {b}. But we have f({a})(y) =
∨

x∈A

{a}(x)⊗γ(f(x), y) =
∨

x∈A

δ(a, x)⊗
γ(f(x), y) > δ(a, a) ⊗ γ(f(a), y) = γ(f(a), y) = {f(a)}(y). On the other hand we
have f({a})(y) 6

∨
x∈A

γ(f(a), f(x)) ⊗ γ(f(x), y) 6
∨

x∈A

γ(f(a), y) = γ(f(a), y) =

{f(a)}(y). Hence we have {b} = f({a}) = {f(a)} and it follows that b = f(a). �

Theorem 2. There exists a functor D : SetF(Ω) → ΩSetF(Ω)
↔ which is a quasi-

reflector.
���������

. Let (A, δ) be an object of SetF(Ω) and let f : (A, δ) → (B, γ) be a
morphism in SetF(Ω). We define a functor D : SetF(Ω) → ΩSetF(Ω)

↔ such that

D(A, δ) = (Ω(A,δ), σ(A,δ)), D(f) : D(A, δ) → D(B, γ),

(∀s ∈ Ω(A,δ))(∀b ∈ B) D(f)(s)(b) =
∨

x∈A

s(x)⊗ γ(b, f(x)).

It is clear that this definition is correct.
Now let (A, δ) be an object in SetF(Ω). We consider the map

(A, δ)
{−}−→ D(A, δ) = (Ω(A,δ), σ(A,δ)).

We show that this map is a morphism in SetF(Ω). In fact, for x, y ∈ A we have

σ(A,δ)({x}, {y}) =
∧

a∈A

δ(a, x) ↔ δ(a, y)

>
∧

a∈A

(δ(a, x) → δ(x, y)⊗ δ(a, x)) ∧ (δ(a, y) → δ(a, y)⊗ δ(x, y))

> δ(x, y).
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On the other hand we have σ({x}, {y}) 6 δ(x, y) and it follows that σ({x}, {y}) =
δ(x, y).
Finally, let f : (A, δ) → (Ω(B,γ), σ(B,γ)) be a morphism in SetF(Ω). Then there

exists a morphism f̂ such that the following diagram commutes.

(A, δ)
{−} //

f

��

D(A, δ)

f̂

��
(Ω(B,γ), σ(B,γ)) (Ω(B,γ), σ(B,γ))

The morphism f̂ : Ω(A,δ) → Ω(B,γ) is defined as follows.

(∀s ∈ Ω(A,δ))(∀b ∈ B) f̂(s)(b) =
∨

x∈A

f(x)(b) ⊗ σ(A,δ)({x}, s).

This definition is correct. In fact, we show first that f̂(s) ∈ Ω(B,γ). Let b, c ∈ B,
then we have

f̂(s)(b)⊗ γ(b, c) =
∨

x∈A

f(x)(b)⊗ σ(A,δ)({x}, s)⊗ γ(b, c)

6
∨

x∈A

f(x)(c)⊗ σ(A,δ)({x}, s) = f̂(s)(c).

Further, f̂ is a morphism in SetF(Ω). In fact, we have

σ(B,γ)(f̂(s), f̂(t)) =
∧

b∈B

f̂(s)(b) ↔ f̂(t)(b).

According to Lemma 4 and Lemma 5 we have

f̂(s)(b) ↔ f̂(t)(b) =
( ∨

a∈A

f(a)(b)⊗ σ(A,δ)({a}, s)
)
↔

( ∨

c∈A

f(c)(b)⊗ σ(A,δ)({c}, t)
)

>
∧

x∈A

(f(x)(b) ⊗ σ(A,δ)({x}, s) ↔ f(x)(b)⊗ σ(A,δ)({x}, t))

>
∧

a∈A

σ(A,δ)({a}, s) ↔ σ(A,δ)({a}, t)

=
∧

a∈A

(( ∧

x∈A

δ(a, x) ↔ s(x)
)
↔

( ∧

y∈A

δ(a, y) ↔ t(y)
))

>
∧

a∈A

∧

x∈A

(δ(a, x) ↔ s(x)) ↔ (δ(a, x) ↔ t(x))

>
∧

a∈A

∧

x∈A

(δ(a, x) ↔ δ(a, x)) ⊗ (s(x) ↔ t(x))

=
∧

x∈A

s(x) ↔ t(x) = σ(A,δ)(s, t).
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It follows that σ(B,γ)(f̂(s), f̂(t)) > σ(A,δ)(s, t). We show that the diagram commutes.
In fact, let a ∈ A, b ∈ B. Then

f̂({a})(b) =
∨

x∈A

f(x)(b)⊗ σ(A,δ)({x}, {a})

=
∨

x∈A

f(x)(b)⊗ δ(x, a) 6
∨

x∈A

f(x)(b)⊗ σ(B,γ)(f(x), f(a))

=
∨

x∈A

f(x)(b)⊗
( ∧

y∈B

f(x)(y) ↔ f(a)(y)
)

=
∨

x∈A

∧

y∈B

f(x)(b) ⊗ (f(x)(y) ↔ f(a)(y)) 6
∨

x∈A

f(x)(b) ⊗ (f(x)(b) ↔ f(a)(b))

6
∨

x∈A

f(x)(b)⊗ (f(x)(b) → f(a)(b)) 6 f(a)(b).

On the other hand we have

f̂({a})(b) =
∨

x∈A

f(x)(b)⊗ δ(x, a) > f(a)(b).

Hence the diagram commutes and D : SetF(Ω) → ΩSetF(Ω)
↔ is a quasi-reflector. �

It should be observed that f̂ is the smallest morphism for which the above diagram
commutes. In fact, let g : D(A, δ) → (Ω(B,γ), σ(B,γ)) be a morphism in SetF(Ω) such
that the diagram commutes. Then for any s ∈ Ω(A,δ), b ∈ B we have

f̂(s)(b) =
∨

a∈A

f(a)(b)⊗ σ(A,δ)({a}, s)

6
∨

a∈A

f(a)(b)⊗ σ(B,γ)(g({a}), g(s)) =
∨

a∈A

f(a)(b)⊗ σ(B,γ)(f(a), g(s))

6
∨

a∈A

f(a)(b)⊗
∧

x∈B

f(a)(x) → g(s)(x)

6
∨

a∈A

f(a)(b)⊗ (f(a)(b) → g(s)(b)) 6 g(s)(b).

Theorem 3. There exists a functor E : SetF(Ω) → ΩSetF(Ω)
⊗ which is a quasi-

reflector.
���������

. Let (A, δ) be an object in SetF(Ω) and let f : (A, δ) → (B, γ) be a
morphism in SetF(Ω). We define a functor E such that

E(A, δ) = (Ω(A,δ), τ(A,δ)), E(f) : E(A, δ) → E(B, γ),

(∀s ∈ Ω(A,δ))(∀b ∈ B) D(f)(s)(b) =
∨

x∈A

s(x)⊗ γ(b, f(x)).
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It is clear that τ(A,δ)(s, t) 6 τ(B,γ)(E(f)(s), E(f)(t)) for any s, t ∈ Ω(A,δ) and it

follows that E is defined correctly. We consider a map

(A, δ)
{−}−→ (Ω(A,δ), τ(A,δ))

such that {−}(a)(b) = τ(A,δ)({a}, {b}). Since τ(A,δ)({a}, {b}) = δ(a, b), the definition
is correct.
Finally, let f : (A, δ) → (Ω(B,γ), τ(B,γ)) be a morphism in SetF(Ω). Then there

exists a morphism f̂ such that the following diagram commutes.

(A, δ)
{−} //

f

��

E(A, δ)

f̂
��

(Ω(B,γ), τ(B,γ)) (Ω(B,γ), τ(B,γ))

The morphism f̂ : E(A, δ) → Ω(B,γ) is defined as follows.

(∀s ∈ Ω(A,δ))(∀b ∈ B) f̂(s)(b) =
∨

x∈A

f(x)(b) ⊗ τ(A,δ)({x}, s) =
∨

x∈A

f(x)(b)⊗ s(x).

We show that f̂ is a morphism in SetF(Ω). In fact, let s, t ∈ Ω(A,δ). Then we have

τ(B,γ)(f̂(s), f̂(t)) =
∨

y∈B

∨

x,z∈A

f(x)(y)⊗ f(z)(y)⊗ s(x) ⊗ t(z)

=
∨

x,z∈A

( ∨

y∈B

f(x)(y)⊗ f(z)(y)
)
⊗ s(x) ⊗ t(z)

=
∨

x,z∈A

τ(B,γ)(f(x), f(z))⊗ s(x)⊗ t(z) >
∨

x,z∈A

δ(x, z)⊗ s(x) ⊗ t(z)

>
∨

x∈A

s(x)⊗ t(x) = τ(A,δ)(s, t).

The above mentioned diagram commutes. In fact, let x ∈ A, b ∈ B. Then we have

f̂({a})(b) =
∨

x∈A

f(x)(b)⊗ {a}(x) > f(a)(b),

f̂({a})(b) =
∨

x∈A

f(x)(b)⊗ δ(a, x)

6
∨

x∈A

f(x)(b)⊗ τ(B,γ)(f(x), f(a))

6
∨

x∈A

f(x)(b)⊗ σ(B,γ)(f(x), f(a)) 6 f(a)(b).

Hence, E : SetF(Ω) → ΩSetF(Ω)
⊗ is a quasi-reflector. �
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Theorem 4. There exists a functor G : Set(Ω) → ΩSet(Ω)
1,⊗ which is a quasi-

reflector.
���������

. The functor G is defined by G(A, δ) = (Ω(A,δ)
1 , τ(A,δ)) which is con-

sidered as an object of a category Set(Ω). Let f : (A, δ) → (B, γ) be a mor-
phism in Set(Ω). The morphism G(f) will be defined later. First let us define
a morphism v(A,δ) = v : (A, δ) → G(A, δ) in Set(Ω) such that v = F ({−}), where
{−} : (A, δ) → (Ω(A,δ)

1 , τ(A,δ)) is a singleton morphism in SetF(Ω) and F is the

functor from Lemma 1. This definition is correct since for any a, b ∈ A we have
τ(A,δ)({a}, {b}) = δ(a, b) as can easily be proved. Then for any object (B, γ) and
any morphism f : (A, δ) → (Ω(B,γ)

1 , τ(B,γ)) in Set(Ω) there exists a morphism f̃ in
Set(Ω) such that the following diagram commutes.

(A, δ)
v(A,δ) //

f

��

G(A, δ)

f̃
��

(Ω(B,γ)
1 , τ(B,γ)) (Ω(B,γ)

1 , τ(B,γ))

In fact, we set

(∀s ∈ Ω(A,δ)
1 )(∀t ∈ Ω(B,γ)

1 ) f̃(s, t) =
∨

x∈A

f(x, t)⊗ v(A,δ)(x, s).

Then we have

∨

t∈Ω
(B,γ)
1

f̃(s, t) =
∨

t∈Ω
(B,γ)
1

∨

x∈A

f(x, t)⊗ v(x, s)

=
∨

x∈A

( ∨

t∈Ω
(B,γ)
1

f(x, t)
)
⊗ v(x, s) =

∨

x∈A

v(x, s) =
∨

x∈A

τ(A,δ)({x}, s)

>
∨

x∈A

s(x) = 1.

Further,

f̃(s, t)⊗ f̃(s, t′) =
∨

a,b∈A

f(a, t)⊗ f(b, t′)⊗ v(a, s)⊗ v(b, s)

6
∨

a,b∈A

f(a, t)⊗ f(b, t′)⊗ δ(a, b) 6
∨

b∈A

f(b, t)⊗ f(b, t′) 6 τ(A,δ)(t, t′).

The other properties of a morphism in Set(Ω) can be proved analogously.
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We show that the diagram commutes. In fact, let a ∈ A, t ∈ Ω(B,γ)
1 . Then we have

(f̃ ◦ v)(a, t) =
∨

s∈Ω
(A,δ)
1

v(a, s)⊗ f̃(s, t)

=
∨

s∈Ω
(A,δ)
1

v(a, s)⊗
( ∨

x∈A

f(x, t)⊗ v(x, s)
)

> v(a, {a})⊗
∨

x∈A

f(x, t)⊗ v(x, {a})

=
∨

x∈A

f(x, t)⊗ v(x, {a}) > f(a, t),

and on the other hand we have

f̃ ◦ v(a, t) =
∨

s∈Ω
(A,δ)
1

∨

x∈A

τ(A,δ)({a}, s)⊗ τ(A,δ)({x}, s)⊗ f(x, t)

6
∨

s∈Ω
(A,δ)
1

∨

x∈A

τ(A,δ)({a}, {x})⊗ f(x, t) =
∨

x∈A

δ(a, x) ⊗ f(x, t) 6 f(a, t).

The morphism G(f) : G(A, δ) → G(B, γ) will be defined by G(f) =
�

v(B,γ) ◦ f .
Hence, more explicitly, we have

G(f)(s, t) =
∨

x∈A

∨

y∈B

f(x, y)⊗ v(B,γ)(y, t)⊗ v(A,δ)(x, s).

�

Theorem 5. There exists a functor H : Set(Ω) → ΩSet(Ω) which is a quasi-

reflector.
���������

. Let (A, δ) be an object in Set(Ω). We set H(A, δ) = (w-singl(A, δ),
%(A,δ)). For an element a ∈ A we define a morphism [a] : (A, δ) → (Ω,↔) in the
category Set(Ω) such that [a](x, α) = F ({a})(x, α), for any x ∈ A, α ∈ Ω, where
F is the functor from Lemma 1 and {a} : (A, δ) → (Ω,↔) is a morphism in the
category SetF(Ω) such that {a}(x) = δ(a, x). Then [a] is a normal extensional
subobject of (A, δ) in a category Set(Ω). Since [a](x, 1) ⊗ [a](y, 1) 6 δ(x, y) we
obtain that [a] is a weak singleton. Moreover, since %(A,δ)([a], [b]) = δ(a, b) we obtain
that [−] : (A, δ) → (w-singl(A, δ), %(A,δ)) is a morphism in SetF(Ω).
We define a morphism u = u(A,δ) : (A, δ) → H(A, δ) = (w-singl(A, δ), %(A,δ)) in

Set(Ω) such that u(a, s) = F ([−])(a, s) for all a ∈ A, s ∈ w-singl(A, δ), where F is
the functor from Lemma 1.
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Let f : (A, δ) → (w-singl(B, γ), %(B,γ)) be a morphism in Set(Ω). Then we define
a morphism f̃ : (w-singl(A, δ), %(A,δ)) → (w-singl(B, γ), %(B,γ)) by

f̃(s, t) =
∨

x∈A

f(x, t)⊗ u(x, s),

for all s ∈ w-singl(A, δ), t ∈ w-singl(B, γ). Then f̃ is a morphism in Set(Ω). In fact,
we have

∨

t∈w-singl(B,γ)

f̃(s, t) =
∨

x∈A

( ∨

t∈w-singl(B,γ)

f(x, t)
)
⊗ u(x, s)

=
∨

x∈A

u(x, s) =
∨

x∈A

∧

y∈A

δ(x, y) ↔ s(y, 1) >
∨

x∈A

s(x, 1) = 1.

Moreover, the following diagram commutes.

(A, δ) u //

f

��

(w-singl(A, δ), %(A,δ))

f̃

��
(w-singl(B, γ), %(B,γ)) (w-singl(B, γ), %(B,γ))

In fact, we have

f̃ ◦ u(a, t) =
∨

s∈w-singl(A,δ)

u(a, s)⊗ f̃(s, t)

=
∨

s∈w-singl(A,δ)

u(a, s)⊗
∨

x∈A

u(x, s)⊗ f(x, t)

> u(a, [a])⊗
∨

x∈A

u(x, [a])⊗ f(x, t)

=
∨

x∈A

u(x, [a])⊗ f(x, t) > f(a, t),

and on the other hand

f̃ ◦ u(a, t) 6
∨

x∈A

%(A,δ)([a], [x])⊗ f(x, t) =
∨

x∈A

δ(x, a)⊗ f(x, t) 6 f(a, t).

Let f : (A, δ) → (B, γ) be a morphism in Set(Ω). The morphism H(f) will be
defined as

�
u(B,γ) ◦ f . �
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