Czechoslovak Mathematical Journal

Meng Xiao Yin; Sian Ha Yin
On potentially H-graphic sequences

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 2, 705-724
Persistent URL: http://dml.cz/dmlcz/128200

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON POTENTIALLY H-GRAPHIC SEQUENCES

Meng-Xiao Yin, Nanning, Jian-Hua Yin, Haikou

(Received April 17, 2005)

Abstract. For given a graph H, a graphic sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is said to be potentially H-graphic if there is a realization of π containing H as a subgraph. In this paper, we characterize the potentially ($K_{5}-e$)-positive graphic sequences and give two simple necessary and sufficient conditions for a positive graphic sequence π to be potentially K_{5}-graphic, where K_{r} is a complete graph on r vertices and $K_{r}-e$ is a graph obtained from K_{r} by deleting one edge. Moreover, we also give a simple necessary and sufficient condition for a positive graphic sequence π to be potentially K_{6}-graphic.

Keywords: graph, degree sequence, potentially H-graphic sequence
MSC 2000: 05C07

1. Introduction

The set of all non-increasing nonnegative integer sequences $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \leqslant n-1$ for each i is denoted by NS_{n}. A sequence $\pi \in \mathrm{NS}_{n}$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic sequences in NS_{n} is denoted by GS_{n}. If each term of a graphic sequence $\pi \in \mathrm{GS}_{n}$ is nonzero, then π is said to be positive graphic. For a sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$, define $\sigma(\pi)=d_{1}+d_{2}+\ldots+d_{n}$. For given a graph H, a sequence $\pi \in \mathrm{GS}_{n}$ is said to be potentially H-graphic, if there is a realization of π containing H as a subgraph. If π has a realization in which the $r+1$ vertices of largest degree induce a clique, then π is said to be potentially A_{r+1}-graphic. Erdős, Jacobson and Lehel [1] in 1991 considered an extremal problem on potentially K_{r+1}-graphic sequences: determine the smallest even integer $\sigma\left(K_{r+1}, n\right)$ such that every sequence $\pi \in \mathrm{GS}_{n}$ with $\sigma(\pi) \geqslant \sigma\left(K_{r+1}, n\right)$ is potentially K_{r+1}-graphic. They proved that $\sigma\left(K_{3}, n\right)=2 n$ for $n \geqslant 6$ and conjectured

[^0]that $\sigma\left(K_{r+1}, n\right)=(r-1)(2 n-r)+2$ for sufficiently large n. Gould et al. [3] and Li and Song [6] independently proved it for $r=3$. Recently, Li et al. [7], [8] proved that the conjecture is true for $r=4$ and $n \geqslant 10$ and for $r \geqslant 5$ and $n \geqslant\binom{ r}{2}+3$. Although the Erdős-Jacobson-Lehel conjecture was confirmed, it leaves a natural open question: given a graphic sequence π, how to tell whether it is potentially K_{r+1}-graphic? In [12], Rao considered the problem of characterizing potentially K_{r+1}-graphic sequences, proved that a sequence $\pi \in \mathrm{GS}_{n}$ is potentially A_{r+1}-graphic if and only if it is potentially K_{r+1}-graphic, and developed a "Havel-Hakimi" type procedure as follows to determine the maximum clique number of a graph with a given degree sequence.

Let $n \geqslant r+1$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ with $d_{r+1} \geqslant r$. We define sequences $\pi_{0}, \ldots, \pi_{r+1}$ as follows. Let $\pi_{0}=\pi$. Let

$$
\pi_{1}=\left(d_{2}-1, \ldots, d_{r+1}-1, d_{r+2}^{(1)}, \ldots, d_{n}^{(1)}\right),
$$

where $d_{r+2}^{(1)} \geqslant \ldots \geqslant d_{n}^{(1)}$ is the rearrangement of $d_{r+2}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}$. For $2 \leqslant i \leqslant r+1$, given $\pi_{i-1}=\left(d_{i}-i+1, \ldots, d_{r+1}-i+1, d_{r+2}^{(i-1)}, \ldots, d_{n}^{(i-1)}\right)$, let

$$
\pi_{i}=\left(d_{i+1}-i, \ldots, d_{r+1}-i, d_{r+2}^{(i)}, \ldots, d_{n}^{(i)}\right)
$$

where $d_{r+2}^{(i)} \geqslant \ldots \geqslant d_{n}^{(i)}$ is the rearrangement of $d_{r+2}^{(i-1)}-1, \ldots, d_{d_{i}+1}^{(i-1)}-1, d_{d_{i}+2}^{(i-1)}, \ldots$, $d_{n}^{(i-1)}$.

Theorem 1.1 [12]. Let $n \geqslant r+1$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ with $d_{r+1} \geqslant r$. Then π is potentially A_{r+1}-graphic if and only if π_{r+1} is graphic.

Theorem 1.2 [12]. Let $n \geqslant r+2, \pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{r+2} \geqslant d_{r+3} \geqslant \ldots \geqslant$ d_{n}. If there exists a graph G on the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$ and $\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ forms a complete subgraph of G, then there is one such graph in which v_{1} is joined to $v_{r+2}, v_{r+3}, \ldots, v_{d_{1}+1}$.

From the proof of Theorem 1.2, it is easy to obtain the following
Remark 1.1. Let $n \geqslant r+2$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{r+2} \geqslant d_{r+3} \geqslant \ldots \geqslant$ d_{n}. If there exists a graph G on the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$ and the subgraph of G induced by $\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ contains $K_{r+1}-e$ as a subgraph, where $e=v_{r} v_{r+1}$, then there is one such graph in which v_{1} is joined to $v_{r+2}, v_{r+3}, \ldots, v_{d_{1}+1}$.

In [13], Rao gave the following characterization for a sequence $\pi \in \mathrm{GS}_{n}$ to be potentially A_{r+1}-graphic.

Theorem 1.3 [13]. Let $n \geqslant r+1$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$. Then π is potentially A_{r+1}-graphic if and only if the following conditions hold:
(i) $d_{r+1} \geqslant r$,
(ii) $\sigma(\pi)$ is even,
(iii) for any s and $t, 0 \leqslant s \leqslant r+1$ and $0 \leqslant t \leqslant n-r-1$,

$$
L(s, t) \leqslant R(s, t)
$$

$$
\begin{aligned}
& \text { where } L(s, t)=\sum_{i=1}^{s} d_{i}+\sum_{i=1}^{t} d_{r+1+i} \text { and } R(s, t)=(s+t)(s+t-1)+\sum_{i=s+1}^{r+1} \min \{s+t, \\
& \left.d_{i}-r+s\right\}+\sum_{i=r+t+2}^{n} \min \left\{s+t, d_{i}\right\}
\end{aligned}
$$

The original proof of Theorem 1.3 remains unpublished, but recently Kézdy and Lehel [4] have given a different proof using network flows. Unfortunately, the conditions in Theorem 1.3 are not easy to check, but Luo et al. [10], [11] gave simple characterizations for a positive graphic sequence π to be potentially K_{r}-graphic for $r=3$ and 4 , and Yin and Li [15] also obtained two sufficient conditions for a graphic sequence π to be potentially K_{r}-graphic. The following are their results.

Theorem 1.4 [10]. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ be a positive graphic sequence with $n \geqslant 3$. Then π is potentially K_{3}-graphic if and only if $d_{3} \geqslant 2$ except for two cases: $\pi=\left(2^{4}\right)$ and $\pi=\left(2^{5}\right)$, where the symbol x^{y} in a sequence stands for y consecutive terms, each equal to x.

Theorem 1.5 [11]. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ be a positive graphic sequence with $n \geqslant 4$ and $d_{4} \geqslant 3$. Then π is potentially K_{4}-graphic if and only if $\pi \neq$ ($n-1,3^{s}, 1^{n-s-1}$) for $s=4,5$, and π is not one the following sequences:

```
\(n=5:\left(4,3^{4}\right),\left(3^{4}, 2\right)\);
    \(n=6:\left(4^{6}\right),\left(4^{2}, 3^{4}\right),\left(4,3^{4}, 2\right),\left(3^{6}\right),\left(3^{5}, 1\right),\left(3^{4}, 2^{2}\right)\);
    \(n=7:\left(4^{7}\right),\left(4,3^{6}\right),\left(4,3^{5}, 1\right),\left(3^{6}, 2\right),\left(3^{5}, 2,1\right)\);
    \(n=8:\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)\).
```

Theorem 1.6 [15]. Let $n \geqslant r+1$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in$ GS $_{n}$ with $d_{r+1} \geqslant r$. If $d_{i} \geqslant 2 r-i$ for $i=1,2, \ldots, r-1$, then π is potentially A_{r+1}-graphic.

Theorem 1.7 [15]. Let $n \geqslant 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ with $d_{r+1} \geqslant r$. If $d_{2 r+2} \geqslant r-1$, then π is potentially A_{r+1}-graphic.

Recently, Eschen and Niu [2] characterized potentially $K_{4}-e$-graphic sequences, and Yin and Li [15] gave two sufficient conditions for a graphic sequence π to be potentially $K_{r}-e$-graphic. In other words, they proved the following

Theorem 1.8 [2]. Let $n \geqslant 4$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ be a positive graphic sequence. Then π is potentially $K_{4}-e$-graphic if and only if the following conditions hold:
(1) $d_{1} \geqslant d_{2} \geqslant 3, d_{4} \geqslant 2$;
(2) $\pi \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$.

Theorem 1.9 [15]. Let $n \geqslant r+1$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ with $d_{r+1} \geqslant r-1$. If $d_{i} \geqslant 2 r-i$ for $i=1,2, \ldots, r-1$, then π is potentially $K_{r+1}-e$-graphic.

Theorem 1.10 [15]. Let $n \geqslant 2 r+2$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ with $d_{r-1} \geqslant r$. If $d_{2 r+2} \geqslant r-1$, then π is potentially $K_{r+1}-e$-graphic.

In this paper, we characterize potentially $K_{5}-e$-positive graphic sequences, give two simple necessary and sufficient conditions for a positive graphic sequence π to be potentially K_{5}-graphic, and also present a simple necessary and sufficient condition for a positive graphic sequence π to be potentially K_{6}-graphic, which are the following four theorems.

Theorem 1.11. Let $n \geqslant 5$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{3} \geqslant 4$ and $d_{5} \geqslant 3$. Then π is potentially $K_{5}-e$-graphic if and only if π is not one of the following sequences:

$$
\begin{aligned}
&\left(n-1,4^{6}, 1^{n-7}\right),\left(n-1,4^{2}, 3^{4}, 1^{n-7}\right),\left(n-1,4^{2}, 3^{3}, 1^{n-6}\right) ; \\
& n=6:\left(4^{6}\right),\left(4^{4}, 3^{2}\right),\left(4^{3}, 3^{2}, 2\right) ; \\
& n=7:\left(4^{3}, 3^{4}\right),\left(5^{2}, 4,3^{4}\right),\left(4^{7}\right),\left(4^{5}, 3^{2}\right),\left(5,4^{3}, 3^{3}\right),\left(5^{2}, 4^{5}\right),\left(5,4^{5}, 3\right),\left(4^{3}, 3^{2}, 2^{2}\right), \\
&\left(4^{4}, 3^{2}, 2\right),\left(5,4^{2}, 3^{3}, 2\right),\left(4^{6}, 2\right),\left(4^{3}, 3^{3}, 1\right) ; \\
& n=8:\left(5^{8}\right),\left(4^{8}\right),\left(5^{2}, 4^{6}\right),\left(6,4^{7}\right),\left(4^{4}, 3^{4}\right),\left(5,4^{2}, 3^{5}\right),\left(4^{6}, 3^{2}\right),\left(5,4^{6}, 3\right),\left(4^{3}, 3^{4}, 2\right), \\
&\left(4^{7}, 2\right),\left(4^{4}, 3^{3}, 1\right),\left(5,4^{2}, 3^{4}, 1\right),\left(4^{3}, 3^{3}, 2,1\right),\left(4^{6}, 3,1\right),\left(5,4^{6}, 1\right) ; \\
& n=9:\left(4^{9}\right),\left(4^{3}, 3^{5}, 1\right),\left(4^{8}, 2\right),\left(4^{7}, 3,1\right),\left(5,4^{7}, 1\right),\left(4^{3}, 3^{4}, 1^{2}\right),\left(4^{7}, 1^{2}\right) ; \\
& n=10:\left(4^{8}, 1^{2}\right)
\end{aligned}
$$

Theorem 1.12. Let $n \geqslant 14$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{5} \geqslant 4$. Then π is potentially A_{5}-graphic if and only if $\pi_{5} \notin S$, where $S=\left\{(2),\left(2^{2}\right),(3,1),\left(3^{2}\right),(3,2,1),\left(3^{2}, 2\right),\left(3^{3}, 1\right),\left(3^{2}, 1^{2}\right)\right\}$.

Theorem 1.13. Let $n \geqslant 18$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{6} \geqslant 5$. Then π is potentially A_{6}-graphic if and only if $\pi_{6} \notin S$.

Theorem 1.14. Let n be sufficiently large and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{5} \geqslant 4$. Then π is potentially A_{5}-graphic if and only if $\left(d_{1}-4, d_{2}-4, d_{3}-4, d_{4}-4, d_{5}-4, d_{6}, \ldots, d_{n}\right)$ is graphic, $\pi \neq$ $\left(n-a, n-b, 4^{4}, 2^{n-(a+b+4)}, 1^{a+b-2}\right)$ for $1 \leqslant a \leqslant b \leqslant n-6$ and $a+b \leqslant n-4$, and $\pi \neq\left(n-a, n-b, 4^{5}, 2^{n-(a+b+5)}, 1^{a+b-2}\right)$ for $1 \leqslant a \leqslant b \leqslant n-6$ and $a+b \leqslant n-5$.

2. Preparations

In order to prove our main results, we need the following notations and known results.

Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ and $1 \leqslant k \leqslant n$. Let

$$
\pi_{k}^{\prime \prime}= \begin{cases}\left(d_{1}-1, \ldots, d_{k-1}-1, d_{k+1}-1, \ldots, d_{d_{k}+1}-1, d_{d_{k}+2}, \ldots, d_{n}\right), & \text { if } d_{k} \geqslant k \\ \left(d_{1}-1, \ldots, d_{d_{k}}-1, d_{d_{k}+1}, \ldots, d_{k-1}, d_{k+1}, \ldots, d_{n}\right), & \text { if } d_{k}<k\end{cases}
$$

Let $\pi_{k}^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$, where $d_{1}^{\prime} \geqslant d_{2}^{\prime} \geqslant \ldots \geqslant d_{n-1}^{\prime}$ is the rearrangement of the $n-1$ terms of $\pi_{k}^{\prime \prime}$. π_{k}^{\prime} is called the residual sequence obtained by laying off d_{k} from π. It is easy to see that if π_{k}^{\prime} is graphic then so is π, since a realization G of π can be obtained from a realization G^{\prime} of π_{k}^{\prime} by adding a new vertex of degree d_{k} and joining it to the vertices whose degrees are reduced by one in going from π to π_{k}^{\prime}. In fact more is true:

Theorem 2.1 [5]. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ and $1 \leqslant k \leqslant n$. Then $\pi \in \mathrm{GS}_{n}$ if and only if $\pi_{k}^{\prime} \in \mathrm{GS}_{n-1}$.

Theorem 2.2 [14]. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}, d_{1}=m$ and $\sigma(\pi)$ be even. If there exists an integer $n_{1}, n_{1} \leqslant n$ such that $d_{n_{1}} \geqslant h \geqslant 1$ and $n_{1} \geqslant\left[\frac{1}{4}(m+h+1)^{2}\right] / h$, then $\pi \in \mathrm{GS}_{n}$.

Theorem 2.3 [9]. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ and $\sigma(\pi)$ be even. If $d_{1}-d_{n} \leqslant 1$, then $\pi \in \mathrm{GS}_{n}$.

Theorem 2.4 [3]. If $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{GS}_{n}$ has a realization G containing H as a subgraph, then there exists a realization G^{\prime} of π containing H as a subgraph so that the vertices of H have the largest degrees of π.

Lemma 2.1. If $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ is potentially $K_{r+1}-e$-graphic, then there is a realization G of π containing $K_{r+1}-e$ such that the $r+1$ vertices $v_{1}, v_{2}, \ldots, v_{r+1}$ of $K_{r+1}-e$ satisfy $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, r+1$ and $e=v_{r} v_{r+1}$.

Proof. According to Theorem 2.4, there is a graph G^{\prime} with vertex set $V\left(G^{\prime}\right)=$ $\left\{v_{1}, v_{2}, \ldots, d_{n}\right\}$ and $d_{G^{\prime}}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$ such that the subgraph of G^{\prime} induced by $\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ contains a $K_{r+1}-e$. If $e=v_{r} v_{r+1}$, then the lemma holds. We now assume $e=v_{i} v_{j}$.

If $v_{i}, v_{j} \in\left\{v_{1}, \ldots, v_{r-1}\right\}$, then for v_{i}, there exists a vertex $v_{i}^{\prime} \in G^{\prime} \backslash\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{r+1}\right\}$ such that $v_{i}^{\prime} v_{i} \in E\left(G^{\prime}\right)$ and $v_{i}^{\prime} v_{r} \notin E\left(G^{\prime}\right)$. Otherwise $d_{r} \geqslant d_{i}+1$, which is a contradiction. Similarly, for v_{j}, there is a vertex $v_{j}^{\prime} \in G^{\prime} \backslash\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ such that $v_{j} v_{j}^{\prime} \in E\left(G^{\prime}\right)$ and $v_{j}^{\prime} v_{r+1} \notin E\left(G^{\prime}\right)$. Then

$$
G=G^{\prime}-v_{i} v_{i}^{\prime}-v_{r} v_{r+1}-v_{j} v_{j}^{\prime}+v_{i} v_{j}+v_{r} v_{i}^{\prime}+v_{r+1} v_{j}^{\prime}
$$

is also a realization of π and G satisfies the conditions of the lemma.
If $v_{i} \in\left\{v_{1}, \ldots, v_{r-1}\right\}$, without loss of generality, let $v_{j}=v_{r}$, then there exists a vertex $v_{i}^{\prime} \in G^{\prime} \backslash\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ such that $v_{i}^{\prime} v_{i} \in E\left(G^{\prime}\right)$ and $v_{i}^{\prime} v_{r+1} \notin E\left(G^{\prime}\right)$ since $d_{i} \geqslant d_{r+1}$. Hence,

$$
G=G^{\prime}-v_{i} v_{i}^{\prime}-v_{r} v_{r+1}+v_{i} v_{r}+v_{r+1} v_{i}^{\prime}
$$

is also a realization of π satisfying the conditions of the lemma.
For $v_{j} \in\left\{v_{1}, \ldots, v_{r-1}\right\}$, the proof is similar to the above and is omitted here.
Lemma 2.2. Let $\pi=\left(3^{x}, 2^{y}, 1^{z}\right)$ with even $\sigma(\pi)$ and $x+y+z=n \geqslant 1$, then $\pi \in \mathrm{GS}_{n}$ if and only if $\pi \notin S$.

Proof. For $n=1$, since $\sigma(\pi)$ is even, π must be (2), which belongs to S. For $n \geqslant 2$, we consider the following cases.

Case 1: $n=2$. Then π is one of the following sequences: $(3,1),\left(2^{2}\right),\left(3^{2}\right),\left(1^{2}\right)$. It is easy to check that only one sequence $\left(1^{2}\right)$ is graphic.

Case 2: $n=3$. Since $\sigma(\pi)$ is even, π may be $(3,2,1),\left(3^{2}, 2\right),\left(2^{3}\right)$ or $\left(2,1^{2}\right)$. We can see that $\left(2^{3}\right)$ and $\left(2,1^{2}\right)$ are graphic.

Case 3: $n=4$. Then π is one of the following:

$$
\left(3^{3}, 1\right),\left(3,1^{3}\right),\left(3^{4}\right),\left(2^{4}\right),\left(3,2^{2}, 1\right),\left(2^{2}, 1^{2}\right),\left(3^{2}, 2^{2}\right),\left(1^{4}\right),\left(3^{2}, 1^{2}\right)
$$

which are all graphic except $\left(3^{2}, 1^{2}\right)$ and $\left(3^{3}, 1\right)$.
Case 4: $n=5$. It is easy to see that π must be one of the following graphic sequences:

$$
\left(2,1^{4}\right),\left(3,2,1^{3}\right),\left(3^{2}, 2,1^{2}\right),\left(3^{3}, 2,1\right),\left(3,2^{3}, 1\right),\left(2^{5}\right),\left(3^{2}, 2^{3}\right),\left(2^{3}, 1^{2}\right),\left(3^{4}, 2\right)
$$

Case 5: $n \geqslant 6$. If $x>0$ and $z>0$, then $n \geqslant\left[\frac{(3+1+1)^{2}}{4}\right]$. Hence, π is graphic from Theorem 2.2. Otherwise, π is graphic by Theorem 2.3.

Lemma 2.3. Let $\pi=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ with $d_{n} \geqslant 1$ and even $\sigma(\pi)$. (1) If $n \geqslant 9$ and $d_{1} \leqslant 4$, then $\pi \in \mathrm{GS}_{n}$. (2) If $n \geqslant 12$ and $d_{1} \leqslant 5$, then $\pi \in \mathrm{GS}_{n}$.

Proof. (1) If $d_{1}=4$ and $d_{n} \leqslant 2$, then $n \geqslant 9=\max \left\{\left[\frac{(4+1+1)^{2}}{4}\right], \frac{1}{2}\left[\frac{(4+2+1)^{2}}{4}\right]\right\}$. Therefore, π is graphic by Theorem 2.2. If $d_{1}=4$ and $d_{n} \geqslant 3$, then by Theorem 2.3, π is graphic. If $d_{1} \leqslant 3$, then $\pi \in \mathrm{GS}_{n}$ by Lemma 2.2.
(2) If $d_{1} \leqslant 4$, then $\pi \in \mathrm{GS}_{n}$ from (1). For $d_{1}=5$ and $d_{n} \leqslant 3$, we have $n \geqslant 12=$ $\max \left\{\frac{1}{2}\left[\frac{(5+2+1)^{2}}{4}\right],\left[\frac{(5+1+1)^{2}}{4}\right], \frac{1}{3}\left[\frac{(5+3+1)^{2}}{4}\right]\right\}$. By Theorem 2.2, π is graphic. If $d_{1}=5$ and $d_{n} \geqslant 4$, then $\pi \in \mathrm{GS}_{n}$ by Theorem 2.3.

Lemma 2.4. Let $n \geqslant 5$ and $\pi=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{3} \geqslant 4$ and $d_{5} \geqslant 3$. If π is not potentially $K_{5}-e$-graphic and $\pi_{1}^{\prime} \neq$ $\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$, then $n-2 \geqslant d_{1} \geqslant \ldots \geqslant d_{4} \geqslant d_{5}=d_{6}=\ldots=d_{d_{1}+2} \geqslant$ $d_{d_{1}+3} \geqslant \ldots \geqslant d_{n}$.

Proof. By way of contradiction, we assume that there exists an integer $t, 5 \leqslant$ $t \leqslant d_{1}+1$ such that $d_{t}>d_{t+1}$. Since $d_{3} \geqslant 4, d_{5} \geqslant 3$ and $\pi_{1}^{\prime} \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$, the residual sequence $\pi_{1}^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ satisfies the conditions in Theorem 1.8. Notice that $d_{i}^{\prime}=d_{i+1}-1$ for $i=1, \ldots, t-1$. Therefore, π_{1}^{\prime} has a realization G containing $K_{4}-e$ such that the degrees of the vertices of $K_{4}-e$ in G are $d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}$. Thus π is potentially $K_{5}-e$-graphic by $\left\{d_{2}-1, d_{3}-1, d_{4}-1, d_{5}-1\right\}=\left\{d_{1}^{\prime}, \ldots, d_{4}^{\prime}\right\}$.

For convenience, we need the following definitions.
Let $n \geqslant 5$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ with $d_{3} \geqslant 4$ and $d_{5} \geqslant 3$. We define sequences $\pi_{0}^{*}, \pi_{1}^{*}, \pi_{2}^{*}$ and π_{3}^{*} as follows. Let $\pi_{0}^{*}=\pi$. Let

$$
\pi_{1}^{*}=\left(d_{2}-1, \ldots, d_{5}-1, d_{6}^{(1)}, \ldots, d_{n}^{(1)}\right)
$$

where $d_{6}^{(1)} \geqslant \ldots \geqslant d_{n}^{(1)}$ is a rearrangement of $d_{6}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}$. Let

$$
\pi_{2}^{*}=\left(d_{3}-2, \ldots, d_{5}-2, d_{6}^{(2)}, \ldots, d_{n}^{(2)}\right)
$$

where $d_{6}^{(2)} \geqslant \ldots \geqslant d_{n}^{(2)}$ is the rearrangement of $d_{6}^{(1)}-1, \ldots, d_{d_{2}+1}^{(1)}-1, d_{d_{2}+2}^{(1)}, \ldots, d_{n}^{(1)}$. Let

$$
\pi_{3}^{*}=\left(d_{4}-3, d_{5}-3, d_{6}^{(3)}, \ldots, d_{n}^{(3)}\right),
$$

where $d_{6}^{(3)} \geqslant \ldots \geqslant d_{n}^{(3)}$ is the rearrangement of $d_{6}^{(2)}-1, \ldots, d_{d_{3}+1}^{(2)}-1, d_{d_{3}+2}^{(2)}, \ldots, d_{n}^{(2)}$.

Lemma 2.5. Let $n \geqslant 5$ and $\pi=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{3} \geqslant 4$ and $d_{5} \geqslant 3$. Then π is potentially $K_{5}-e$-graphic if and only if π_{3}^{*} is graphic.

Proof. The sufficient condition is obvious from the definition of π_{3}^{*}. Now we show the necessary condition. By Lemma 2.1 and Remark 1.1, π has a realization G_{0} on the vertex set $V\left(G_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G_{0}}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$, the subgraph of G_{0} induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ contains $K_{5}-e$ as a subgraph, where $e=v_{4} v_{5}$, and v_{1} is joined to $v_{6}, v_{7}, \ldots, v_{d_{1}+1}$. Let G_{1}^{\prime} be the graph obtained from G_{0} by deleting v_{1}. Then G_{1}^{\prime} is a realization of π_{1}^{*}. By Remark 1.1, there exists a graph G_{1} on the vertex set $V\left(G_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ having the following properties. First, $d_{G_{1}}\left(v_{i}\right)=d_{i}-1$ for $i=2,3,4,5$ and $d_{G_{1}}\left(v_{i}\right)=d_{i}^{(1)}$ for $i=6, \ldots, n$. Additionally, the subgraph of G_{1} induced by $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ contains a $K_{4}-e$ as a subgraph and $e=v_{4} v_{5}$. Finally, v_{2} is joined to $v_{6}, v_{7}, \ldots, v_{d_{2}+1}$. Denote the graph obtained from G_{1} by deleting v_{2} by G_{2}^{\prime}. Then G_{2}^{\prime} is a realization of π_{2}^{*}. By Remark 1.1, π_{2}^{*} has a realization G_{2} on the vertex set $V\left(G_{2}\right)=\left\{v_{3}, v_{4}, \ldots, v_{n}\right\}$ satisfying: (1) $d_{G_{2}}\left(v_{i}\right)=$ $d_{i}-2$ for $i=3,4,5$ and $d_{G_{2}}\left(v_{i}\right)=d_{i}^{(2)}$ for $i=6, \ldots, n$, (2) the subgraph of G_{2} induced by $\left\{v_{3}, v_{4}, v_{5}\right\}$ contains a $K_{3}-e$ as a subgraph, where $e=v_{4} v_{5}$, and (3) v_{3} is joined to $v_{6}, v_{7}, \ldots, v_{d_{3}+1}$. Deleting the vertex v_{3} from G_{2}, we get a realization of π_{3}^{*}.

Lemma 2.6. Let $n \geqslant 9$ and $\pi=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{1} \leqslant n-2, d_{3} \geqslant 4$ and $d_{5} \geqslant 3$. If the residual sequence $\pi_{5}^{\prime} \neq\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)$ and $d_{3}>d_{5}$, then π is potentially $K_{5}-e$-graphic.

Proof. As $d_{1} \leqslant n-2$ and $\pi_{5}^{\prime} \neq\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)$, there is a realization G^{\prime} of π_{5}^{\prime} containing a K_{4} such that the degrees of vertices of K_{4} in G^{\prime} are $d_{1}^{\prime}, \ldots, d_{4}^{\prime}$ by Theorem 1.5 and Theorem 2.4. Since $d_{3}>d_{5}$, we have $\left\{d_{1}-1, d_{2}-1, d_{3}-1,\right\} \subseteq$ $\left\{d_{1}^{\prime}, \ldots, d_{4}^{\prime}\right\}$. Hence, π is potentially $K_{5}-e$-graphic.

Lemma 2.7. Let $n \geqslant 14$ and $\pi=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $d_{5} \geqslant 4$ and $n-2 \geqslant d_{1} \geqslant \ldots \geqslant d_{5}=d_{6}=\ldots=d_{d_{1}+2} \geqslant \ldots \geqslant d_{n}$. Then π is potentially A_{5}-graphic.

Proof. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a graphic sequence satisfying the conditions of the Lemma. Here, $|\pi|$ means the positive term number of π. By Theorem 1.1 , we only need to verify that $\pi_{5}=\left(d_{6}^{(5)}, d_{7}^{(5)}, \ldots, d_{n}^{(5)}\right)$ is graphic. According to Theorem 1.6 and Theorem 1.7, it is sufficient to consider the following three cases:

Case 1. $d_{1} \leqslant 6$ and $d_{10} \leqslant 2$. Then $d_{1}=4,5$ or 6 . We consider the following three subcases.

Subcase 1.1. $d_{1}=4$. Then $d_{5}=d_{6}=4$. We may assume that $\pi=\left(4^{6}, d_{7}, d_{8}, d_{9}\right.$, $2^{x}, 1^{y}$) with $x+y \geqslant 5$ and even $\sigma(\pi)$. It is easy to compute that the corresponding π_{5} is $\left(4, d_{7}, d_{8}, d_{9}, 2^{x}, 1^{y}\right)$. It follows from Lemma 2.3 that π_{5} is graphic.

Subcase 1.2. $d_{1}=5$. Then $d_{5}=d_{6}=d_{7} \geqslant 4$.
If $d_{5}=d_{6}=d_{7}=4$, then we may assume that $\pi=\left(5, d_{2}, d_{3}, d_{4}, 4^{3}, d_{8}, d_{9}, 2^{x}, 1^{y}\right)$ with $x+y \geqslant 5$ and even $\sigma(\pi)$. Since $1 \leqslant \sum_{i=1}^{5}\left(d_{i}-4\right) \leqslant 4$, we have $d_{6}^{(5)} \leqslant 4$ and $\left|\pi_{5}\right| \geqslant 9$. So π_{5} is graphic by Lemma 2.3.

If $d_{5}=d_{6}=d_{7}=5$, then we assume that $\pi=\left(5^{7}, d_{8}, d_{9}, 2^{x}, 1^{y}\right)$. Notice that $\sum_{i=1}^{5}\left(d_{i}-4\right)=5$, we have $d_{6}^{(5)} \leqslant 4$ and $\left|\pi_{5}\right| \geqslant 9$. It follows from Lemma 2.3 that π_{5} is graphic.

Subcase 1.3. $d_{1}=6$. Then $d_{5}=d_{6}=d_{7}=d_{8} \geqslant 4$. The general form for π is $\left(6, d_{2}, \ldots, d_{9}, 2^{x}, 1^{y}\right)$ with $x+y \geqslant 5$ and even $\sigma(\pi)$.

If $d_{5}=4$, then $d_{6}^{(5)} \leqslant 4$ and $\sum_{i=1}^{5}\left(d_{i}-4\right) \leqslant 8$. Therefore, $\left|\pi_{5}\right| \geqslant 9$, and so π_{5} is graphic by Lemma 2.3.

If $d_{5}=5$, then $6 \leqslant \sum_{i=1}^{5}\left(d_{i}-4\right) \leqslant 9$. Thus, $d_{6}^{(5)} \leqslant 4$ and $\left|\pi_{5}\right| \geqslant 9$. By Lemma 2.3, π_{5} is graphic.

If $d_{5}=6$, then $\sum_{i=1}^{5}\left(d_{i}-4\right)=10$ and $d_{6}=d_{7}=d_{8}=6$. Therefore, $d_{6}^{(5)} \leqslant 4$ and $\left|\pi_{5}\right| \geqslant 9$. It follows from Lemma 2.3 that π_{5} is graphic.

Case $2 . d_{2} \leqslant 5, d_{1} \geqslant 7$ and $d_{10} \leqslant 2$.
Then $d_{2}=4$ or 5 . Since $d_{10} \leqslant 2$, we have $d_{1}=7$. Thus $d_{5}=d_{6}=d_{7}=d_{8}=d_{9} \geqslant 4$.
If $d_{2}=4$, then we may assume that $\pi=\left(7,4^{8}, 2^{x}, 1^{y}\right)$ with $x+y \geqslant 5$ and even $\sigma(\pi)$. It is easy to compute that the corresponding π_{5} is $\left(4,3^{3}, 2^{x}, 1^{y}\right)$, which is graphic by Lemma 2.3.

If $d_{2}=5$ and $d_{5}=4$, then we may assume $\pi=\left(7,5, d_{3}, d_{4}, 4^{5}, 2^{x}, 1^{y}\right)$ with $x+y \geqslant 5$ and even $\sigma(\pi)$. Since $\sum_{i=1}^{5}\left(d_{i}-4\right) \leqslant 6$, we have $d_{6}^{(5)} \leqslant 4$ and $\left|\pi_{5}\right| \geqslant 9$. It follows from Lemma 2.3 that π_{5} is graphic.

If $d_{2}=5$ and $d_{5}=5$, then we assume $\pi=\left(7,5^{8}, 2^{x}, 1^{y}\right)$ with $x+y \geqslant 5$ and even $\sigma(\pi)$. Since $\sum_{i=1}^{5}\left(d_{i}-4\right)=7$ and $d_{6}=d_{7}=d_{8}=d_{9}=5$, we have $d_{6}^{(5)} \leqslant 4$ and $\left|\pi_{5}\right| \geqslant 9$. Thus π_{5} is graphic by Lemma 2.3.

Case $3 . d_{3}=4, d_{1} \geqslant 7, d_{2} \geqslant 6$ and $d_{10} \leqslant 2$. Then $d_{1}=7$ and $d_{2}=6$ or 7 . The general form for π is either $\left(7,6,4^{7}, 2^{x}, 1^{y}\right)$ or $\left(7^{2}, 4^{7}, 2^{x}, 1^{y}\right)$ with $x+y \geqslant 5$ and even $\sigma(\pi)$. It is easy to compute that the corresponding π_{5} is $\left(3^{3}, 2,2^{x}, 1^{y}\right)$ or $\left(3^{2}, 2^{2}, 2^{x}, 1^{y}\right)$. From Lemma 2.2, both of them are graphic.

Lemma 2.8. Let $n \geqslant 18$ and $\pi=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a positive graphic sequence with $n-2 \geqslant d_{1} \geqslant \ldots \geqslant d_{6}=d_{7}=\ldots=d_{d_{1}+2} \geqslant d_{d_{1}+3} \geqslant \ldots \geqslant d_{n}$ and $d_{6} \geqslant 5$. Then π is potentially A_{6}-graphic.

Proof. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{NS}_{n}$ be a graphic sequence satisfying the conditions of the Lemma. By Theorem 1.1, it is sufficient to show that $\pi_{6}=$ $\left(d_{7}^{(6)}, d_{8}^{(6)}, \ldots, d_{n}^{(6)}\right)$ is graphic. According to Theorem 1.6 and Theorem 1.7, we only need to consider the following four cases:

C ase $1 . d_{1} \leqslant 8$ and $d_{12} \leqslant 3$. Then the general form for π is $\left(d_{1}, d_{2}, \ldots, d_{11}, 3^{x}\right.$, $2^{y}, 1^{z}$) with $x+y+z \geqslant 7$ and even $\sigma(\pi)$. Consider the following four subcases.

Subcase 1.1. $d_{1}=5$. Then $d_{6}=d_{7}=5$. We may assume that $\pi=$ $\left(5^{7}, d_{8}, d_{9}, d_{10}, d_{11}, 3^{x}, 2^{y}, 1^{z}\right)$. It is easy to compute that π_{6} is $\left(5, d_{8}, \ldots, d_{11}, 3^{x}\right.$, $2^{y}, 1^{z}$). By Lemma 2.3, π_{6} is graphic.

Subcase 1.2. $d_{1}=6$. Then $d_{6}=d_{7}=d_{8} \geqslant 5$.
If $d_{6}=d_{7}=d_{8}=5$, then $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$ by $1 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 5$. Thus by Lemma 2.3, π_{6} is graphic.

If $d_{6}=d_{7}=d_{8}=6$, then $\pi=\left(6^{8}, d_{9}, d_{10}, d_{11}, 3^{x}, 2^{y}, 1^{z}\right)$. Since $\sum_{i=1}^{6}\left(d_{i}-5\right)=6$, we have $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$. Therefore, π_{6} is graphic from Lemma 2.3.

Subcase 1.3. $d_{1}=7$. Then $d_{6}=d_{7}=d_{8}=d_{9} \geqslant 5$.
If $d_{6}=5$, then $\sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 10$. Thus $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 5$. It follows from Lemma 2.3 that π_{6} is graphic.

If $d_{6}=6$, then $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$ by $7 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 11$. Therefore, π_{6} is graphic by Lemma 2.3.

If $d_{6}=7$, then we assume that $\pi=\left(7^{9}, d_{10}, d_{11}, 3^{x}, 2^{y}, 1^{z}\right)$. Since $\sum_{i=1}^{6}\left(d_{i}-5\right)=12$, we know that $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$. By Lemma 2.3, π_{6} is graphic.

Subcase 1.4. $d_{1}=8$. Then $d_{6}=d_{7}=d_{8}=d_{9}=d_{10} \geqslant 5$.
If $d_{6}=5$, then $\left|\pi_{6}\right| \geqslant 12$ by $\sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 15$. Thus π_{6} is graphic by Lemma 2.3.
If $d_{6}=6$, then $8 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 16$. Hence $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$, and so π_{6} is graphic by Lemma 2.3.

If $d_{6}=7$, then $13 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 17$. Therefore, $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$. By Lemma 2.3, π_{6} is graphic.

If $d_{6}=8$, then $d_{7}^{(6)} \leqslant 5$ and $\left|\pi_{6}\right| \geqslant 12$ by $\sum_{i=1}^{6}\left(d_{i}-5\right)=18$. It follows from Lemma 2.3 that π_{6} is graphic.

Case $2 . d_{2} \leqslant 7, d_{1} \geqslant 9$ and $d_{12} \leqslant 3$. Then $d_{1}=9$ and $d_{6}=d_{7}=d_{8}=d_{9}=$ $d_{10}=d_{11} \geqslant 5$. The general form for π is $\left(9, d_{2}, \ldots, d_{11}, 3^{x}, 2^{y}, 1^{z}\right)$ with $x+y+z \geqslant 7$ and even $\sigma(\pi)$. Consider the following three subcases.

Subcase 2.1. $d_{2}=5$. Then $d_{6}=d_{7}=\ldots=d_{11}=5$ and $\pi=\left(9,5^{10}, 3^{x}, 2^{y}, 1^{z}\right)$. The corresponding sequence π_{6} is $\left(5,4^{4}, 3^{x}, 2^{y}, 1^{z}\right)$, which is graphic by Lemma 2.3.

Subcase 2.2. $d_{2}=6$. Then $d_{6}=d_{7}=\ldots=d_{11}=5$ or 6 .
If $d_{6}=5$, then $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 5$ by $5 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 8$. From Lemma 2.3, π_{6} is graphic.

If $d_{6}=6$, then $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 5$ by $\sum_{i=1}^{6}\left(d_{i}-5\right)=9$. Therefore, π_{6} is graphic by Lemma 2.3.

Subcase 2.3. $d_{2}=7$. Then $d_{6}=d_{7}=\ldots=d_{11}=5,6$ or 7 .
If $d_{6}=5$, then $6 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 12$. Therefore, $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 5$. By Lemma 2.3, π_{6} is graphic.

If $d_{6}=6$, then $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 4$ by $10 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 12$. It follows from Lemma 2.3 that π_{6} is graphic.

If $d_{6}=7$, then $\pi=\left(9,7^{10}, 3^{x}, 2^{y}, 1^{z}\right)$. The corresponding sequence is $\pi_{6}=$ $\left(5,4^{4}, 3^{x}, 2^{y}, 1^{z}\right)$, which is graphic by Lemma 2.3.

C ase 3. $d_{3} \leqslant 6, d_{2} \geqslant 8, d_{1} \geqslant 9$ and $d_{12} \leqslant 3$. Then $d_{1}=9$ and $d_{6}=\ldots=d_{11} \geqslant 5$. We may assume that $\pi=\left(9, d_{2}, \ldots, d_{11}, 3^{x}, 2^{y}, 1^{z}\right)$ with $x+y+z \geqslant 7$ and even $\sigma(\pi)$.

If $d_{6}=5$, then $\left|\pi_{6}\right| \geqslant 12$ by $\sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 11$. By Lemma 2.3, π_{6} is graphic.
If $d_{6}=6$, then $11 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 12$. Therefore, $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 4$. From Lemma 2.3, π_{6} is graphic.

Case 4. $d_{4}=5, d_{3} \geqslant 7, d_{2} \geqslant 8, d_{1} \geqslant 9$ and $d_{12} \leqslant 3$. Then $d_{1}=9$ and $d_{5}=$ $d_{6}=\ldots=d_{11}=5$. Since $9 \leqslant \sum_{i=1}^{6}\left(d_{i}-5\right) \leqslant 12$, we have $\left|\pi_{6}\right| \geqslant 12$ and $d_{7}^{(6)} \leqslant 4$. It follows Lemma 2.3 that π_{6} is graphic.

3. Proofs of Theorems

Proof of Theorem 1.11. Assume that π is one of the following sequences: $\left(n-1,4^{6}, 1^{n-7}\right),\left(n-1,4^{2}, 3^{4}, 1^{n-7}\right),\left(n-1,4^{2}, 3^{3}, 1^{n-6}\right)$; $n=6:\left(4^{6}\right),\left(4^{4}, 3^{2}\right),\left(4^{3}, 3^{2}, 2\right)$;
$n=7:\left(4^{3}, 3^{4}\right),\left(5^{2}, 4,3^{4}\right),\left(4^{7}\right),\left(4^{5}, 3^{2}\right),\left(5,4^{3}, 3^{3}\right),\left(5^{2}, 4^{5}\right),\left(5,4^{5}, 3\right),\left(4^{3}, 3^{2}, 2^{2}\right)$, $\left(4^{4}, 3^{2}, 2\right),\left(5,4^{2}, 3^{3}, 2\right),\left(4^{6}, 2\right),\left(4^{3}, 3^{3}, 1\right) ;$

$$
\begin{aligned}
n=8: & \left(5^{8}\right),\left(4^{8}\right),\left(5^{2}, 4^{6}\right),\left(6,4^{7}\right),\left(4^{4}, 3^{4}\right),\left(5,4^{2}, 3^{5}\right),\left(4^{6}, 3^{2}\right),\left(5,4^{6}, 3\right),\left(4^{3}, 3^{4}, 2\right), \\
& \left(4^{7}, 2\right),\left(4^{4}, 3^{3}, 1\right),\left(5,4^{2}, 3^{4}, 1\right),\left(4^{3}, 3^{3}, 2,1\right),\left(4^{6}, 3,1\right),\left(5,4^{6}, 1\right) \\
n=9: & \left(4^{9}\right),\left(4^{3}, 3^{5}, 1\right),\left(4^{8}, 2\right),\left(4^{7}, 3,1\right),\left(5,4^{7}, 1\right),\left(4^{3}, 3^{4}, 1^{2}\right),\left(4^{7}, 1^{2}\right) \\
n=10: & \left(4^{8}, 1^{2}\right)
\end{aligned}
$$

Then, it is easy to compute that the corresponding π_{3}^{*} of π is one of the following sequences: $\left(1^{2}, 3^{2}, 0^{n-7}\right),\left(0^{2}, 2^{2}, 0^{n-7}\right),\left(0^{2}, 2,0^{n-6}\right),\left(1^{2}, 4\right),(1,0,3),\left(0^{2}, 2\right),\left(0^{2}, 3^{2}\right)$, $\left(0^{2}, 2^{2}\right),\left(1^{2}, 4^{2}\right),\left(1^{2}, 3^{2}\right),(1,0,3,2),\left(1^{2}, 4,2\right),\left(0^{2}, 3,1\right),\left(2^{2}, 4^{3}\right),\left(1^{2}, 4^{3}\right),\left(1^{2}, 4,3^{2}\right)$, $\left(1,0,3^{3}\right),\left(0^{2}, 3^{2}, 2\right),\left(1^{2}, 4^{2}, 2\right),\left(1,0,3^{2}, 1\right),\left(0^{2}, 3,2,1\right),\left(1^{2}, 4,3,1\right),\left(1^{2}, 4^{4}\right),\left(0^{2}, 3^{3}, 1\right)$, $\left(1^{2}, 4^{3}, 2\right),\left(1^{2}, 4^{2}, 3,1\right),\left(0^{2}, 3^{2}, 1^{2}\right),\left(1^{2}, 4^{2}, 1^{2}\right),\left(1^{2}, 4^{3}, 1^{2}\right)$. It is easy to check that all of the above sequences are not graphic. By Lemma 2.5, π is not potentially $K_{5}-e$-graphic. Now, we show the sufficient condition.

If $d_{1}=n-1$, then π is potentially $K_{5}-e$-graphic by Lemma 2.4. If $n=5$, then π is either $\left(4^{3}, 3^{2}\right)$ or $\left(4^{5}\right)$, and it is easy to see that they both have realizations containing $K_{5}-e$. Assume that $d_{1} \leqslant n-2$ and $n \geqslant 6$. According to Lemma 2.5, it is enough to prove that π_{3}^{*} is graphic. We consider the following cases:

Case 1. $n=6$. Then $d_{1}=d_{2}=d_{3}=4$. As $\pi \neq\left(4^{6}\right),\left(4^{4}, 3^{2}\right),\left(4^{3}, 3^{2}, 2\right), \pi$ must be either $\left(4^{5}, 2\right)$ or $\left(4^{4}, 3,1\right)$, each of which is potentially $K_{5}-e$-graphic.

Case 2. $n=7$. Then $d_{1} \leqslant 5$. We consider the following two subcases.
Subcase 2.1. $d_{1}=4$. Then $d_{1}=d_{2}=d_{3}=4$. If $\pi_{1}^{\prime}=\left(3^{6}\right)$ or $\left(3^{2}, 2^{4}\right)$, then $\pi=\left(4^{5}, 3^{2}\right)$ or $\left(4^{3}, 3^{2}, 2^{2}\right)$, which is impossible. Since π_{1}^{\prime} has six positive terms, $\pi_{1}^{\prime} \neq$ $\left(3^{2}, 2^{3}\right)$. By Lemma 2.4, we may assume that $d_{5}=d_{6} \geqslant 3$. Notice that $d_{4}+d_{5}+d_{6}+d_{7}$ is even. If $d_{5}=d_{6}=3$, then $\left(d_{4}, d_{7}\right)$ is one of the following: $(4,2),\left(3^{2}\right),(3,1)$; if $d_{5}=d_{6}=4$, then $\left(d_{4}, d_{7}\right)$ is either $(4,2)$ or $\left(4^{2}\right)$. Thus π is one of the following sequences:

$$
\left(4^{4}, 3^{2}, 2\right),\left(4^{3}, 3^{4}\right),\left(4^{3}, 3^{3}, 1\right),\left(4^{6}, 2\right),\left(4^{7}\right)
$$

which is impossible.
Subcase 2.2. $d_{1}=5$. If $\pi_{1}^{\prime}=\left(3^{2}, 2^{3}\right)$, then the residual sequence π_{1}^{\prime} must contain 1 as a term. Therefore, $\pi_{1}^{\prime} \neq\left(3^{2}, 2^{3}\right)$. If $\pi_{1}^{\prime}=\left(3^{6}\right)$ or $\left(3^{2}, 2^{4}\right)$, then π is either $\left(5,4^{5}, 3\right)$ or $\left(5,4^{2}, 3^{3}, 2\right)$, which is impossible. By Lemma 2.4, we may assume that $d_{5}=d_{6}=d_{7} \geqslant 3$. Since $\sigma(\pi)$ is even, we have $d_{5} \neq 5$.

If $d_{5}=d_{6}=d_{7}=3$, then $d_{2}+d_{3}+d_{4}$ is even. Thus $\left(d_{2}, d_{3}, d_{4}\right)=\left(4^{3}\right)$ or $\left(5^{2}, 4\right)$ or $(5,4,3)$. If $d_{5}=d_{6}=d_{7}=4$, then $\left(d_{2}, d_{3}, d_{4}\right)$ is either $\left(5,4^{2}\right)$ or $\left(5^{3}\right)$ by $d_{2}+d_{3}+d_{4}$ being odd. As $\pi \neq\left(5^{2}, 4^{5}\right),\left(5,4^{3}, 3^{3}\right),\left(5^{2}, 4,3^{4}\right), \pi$ is either $\left(5^{4}, 4^{3}\right)$ or $\left(5^{3}, 4,3^{3}\right)$. The corresponding π_{3}^{*} is $(2,1,3,2)$ or $(1,0,2,1)$, which are both graphic. Hence π is potentially $K_{5}-e$-graphic from Lemma 2.5.

C ase 3. $n=8$. Then $d_{1} \leqslant 6$. We consider the following three subcases.

Subcase 3.1. $d_{1}=4$. Then $d_{1}=d_{2}=d_{3}=4$. As $d_{8} \geqslant 1$ and $d_{5} \geqslant 3$, the residual sequence $\pi_{1}^{\prime} \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$. According to Lemma 2.4, we may assume that $d_{5}=d_{6} \geqslant 3$. Consider the residual sequence $\pi_{5}^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$.

If $d_{5}=3$ and $\pi_{5}^{\prime} \neq\left(4,3^{6}\right),\left(4,3^{5}, 1\right),\left(3^{6}, 2\right),\left(3^{5}, 2,1\right)$, then there is a realization G^{\prime} of π_{5}^{\prime} containing a K_{4} such that the degrees of vertices of K_{4} in G^{\prime} are $d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}$ by Theorem 1.5 and Theorem 2.4. Therefore, π is potentially $K_{5}-e$ graphic from $\left\{d_{1}-1, d_{2}-1, d_{3}-1\right\} \subseteq\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}\right\}$. If π_{5}^{\prime} is one of the following sequences: $\left(4,3^{6}\right),\left(4,3^{5}, 1\right),\left(3^{6}, 2\right),\left(3^{5}, 2,1\right)$, then π must be one of the following sequences: $\left(4^{4}, 3^{4}\right),\left(4^{4}, 3^{3}, 1\right),\left(4^{3}, 3^{4}, 2\right),\left(4^{3}, 3^{3}, 2,1\right)$, which is impossible.

Assume that $d_{5}=4$. Then $d_{1}=\ldots=d_{6}=4$. If $\pi_{5}^{\prime} \neq\left(4,3^{6}\right),\left(4,3^{5}, 1\right)$, then π_{5}^{\prime} is potentially A_{4}-graphic by Theorem 1.5 and Theorem 2.4. If $d_{7} \leqslant 3$, then π is potentially $K_{5}-e$-graphic by $\left\{d_{1}-1, d_{2}-1, d_{3}-1\right\} \subseteq\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}\right\}$. If $d_{7}=4$, then π is either $\left(4^{7}, 2\right)$ or $\left(4^{8}\right)$, which is impossible. If $\pi_{5}^{\prime}=\left(4,3^{6}\right)$ or $\left(4,3^{5}, 1\right)$, then $\pi=\left(4^{6}, 3^{2}\right)$ or $\left(4^{6}, 3,1\right)$, which is also impossible.

Subcase 3.2. $\quad d_{1}=5$. Then π_{1}^{\prime} has at most seven positive terms. If π_{1}^{\prime} has at most six positive terms, then it must contain 1 as a term. Thus, $\pi_{1}^{\prime} \neq$ $\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$. By Lemma 2.4, we assume that $d_{5}=d_{6}=d_{7} \geqslant 3$. Consider the residual sequence π_{5}^{\prime}.

If $d_{5}=d_{6}=d_{7}=3$, then $d_{1}-1, d_{2}-1, d_{3}-1, d_{4}$ are the four largest degrees in π_{5}^{\prime}. If $\pi_{5}^{\prime} \neq\left(4,3^{6}\right),\left(4,3^{5}, 1\right)$, then π_{5}^{\prime} is potentially A_{4}-graphic by Theorem 1.5 and Theorem 2.4. Thus π is potentially $K_{5}-e$-graphic. If $\pi_{5}^{\prime}=\left(4,3^{6}\right)$ or $\left(4,3^{5}, 1\right)$, then π is either $\left(5,4^{2}, 3^{5}\right)$ or $\left(5,4^{2}, 3^{4}, 1\right)$, which is impossible.

If $d_{5}=d_{6}=d_{7}=4$ and $\pi_{5}^{\prime} \neq\left(4^{7}\right)$, then π_{5}^{\prime} is potentially A_{4}-graphic by Theorem 1.5 and Theorem 2.4. If $d_{3} \geqslant 5$, then π is potentially $K_{5}-e$-graphic by $\left\{d_{1}-1, d_{2}-1, d_{3}-1\right\} \subseteq\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}\right\}$. If $d_{3}=4$, then $\pi=\left(5^{2}, 4^{5}, 2\right)$ since $\pi \neq\left(5,4^{6}, 1\right),\left(5,4^{6}, 3\right),\left(5^{2}, 4^{6}\right)$. The corresponding π_{3}^{*} is graphic sequence $\left(1^{2}, 3^{2}, 2\right)$. If $d_{5}=d_{6}=d_{7}=4$ and $\pi_{5}^{\prime}=\left(4^{7}\right)$, then $\pi=\left(5^{4}, 4^{4}\right)$. The corresponding sequence $\pi_{3}^{*}=\left(2,1,3^{3}\right)$, which is graphic.

If $d_{5}=d_{6}=d_{7}=5$, then $\pi=\left(5^{7}, 1\right)$ or $\left(5^{7}, 3\right)$ by $\pi \neq\left(5^{8}\right)$. The corresponding π_{3}^{*} is $\left(2^{2}, 4,3,1\right)$ or $\left(2^{2}, 4,3^{2}\right)$, which are both graphic.

Subcase 3.3. $d_{1}=6$. Then the residual sequence π_{1}^{\prime} has at most seven positive terms. If π_{1}^{\prime} has at most six positive terms, then it should contain 1 as a term. Therefore, $\pi_{1}^{\prime} \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$. We may assume that $d_{5}=d_{6}=d_{7}=d_{8} \geqslant 3$ by Lemma 2.4. Consider the residual sequence $\pi_{5}^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$.

If $d_{5}=d_{6}=d_{7}=d_{8}=3$, then $d_{1}-1, d_{2}-1, d_{3}-1, d_{4}$ are the four largest degrees in π_{5}^{\prime}. Since $d_{1}-1=5, \pi_{5}^{\prime}$ is potentially A_{4}-graphic by Theorem 1.5 and Theorem 2.4. Therefore, π is potentially $K_{5}-e$-graphic.

If $d_{5}=d_{6}=d_{7}=d_{8}=4$ and $d_{4} \geqslant 5$, then π is potentially $K_{5}-e$-graphic by $\left\{d_{1}-1, d_{2}-1, d_{3}-1, d_{4}-1\right\}=\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}\right\}$ and Theorem 1.5. If $d_{4}=d_{5}=d_{6}=$ $d_{7}=d_{8}=4$, then $\pi=\left(6,5^{2}, 4^{5}\right)$ or $\left(6^{3}, 4^{5}\right)$ since $\pi \neq\left(6,4^{7}\right)$. It is easy to see that $\left(6,5^{2}, 4^{5}\right)$ and $\left(6^{3}, 4^{5}\right)$ are both potentially $K_{5}-e$-graphic.

If $d_{5}=d_{6}=d_{7}=d_{8}=5$, then $\left(d_{2}, d_{3}, d_{4}\right)$ is either $\left(6^{3}\right)$ or $\left(6,5^{2}\right)$ since $d_{2}+d_{3}+d_{4}$ is even. That is, $\pi=\left(6^{4}, 5^{4}\right)$ or $\left(6^{2}, 5^{6}\right)$. The corresponding π_{3}^{*} is $\left(3,2,3^{3}\right)$ or $\left(2^{2}, 4,3^{2}\right)$, which are both graphic.

If $d_{5}=d_{6}=d_{7}=d_{8}=6$, then $\pi=\left(6^{8}\right)$ and π_{3}^{*} is graphic sequence $\left(3^{2}, 4^{3}\right)$.
C ase 4. $n=9$. Then the residual sequence π_{1}^{\prime} has at most eight positive terms. If π_{1}^{\prime} has at most seven positive terms, then it must contain 1 as a term. Therefore $\pi_{1}^{\prime} \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$. Assume that $d_{5}=d_{6}=\ldots=d_{d_{1}+2} \geqslant 3$ by Lemma 2.4. We consider the following four subcases.

Subcase 4.1. $d_{1}=4$. Then $d_{5}=d_{6} \geqslant 3$. Consider the residual sequence π_{5}^{\prime}.
If $d_{5}=d_{6}=3$ and $\pi_{5}^{\prime} \neq\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)$, then π is potentially $K_{5}-e$-graphic according to Lemma 2.6. If $d_{5}=d_{6}=3$ and $\pi_{5}^{\prime}=\left(3^{7}, 1\right)$ or $\left(3^{6}, 1^{2}\right)$, then $\pi=$ $\left(4^{3}, 3^{5}, 1\right)$ or $\left(4^{3}, 3^{4}, 1^{2}\right)$, which is impossible.

If $d_{5}=d_{6}=4$, then $\pi_{5}^{\prime} \neq\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)$. Thus there is a realization G of π_{5}^{\prime} containing a K_{4} such that the degrees of vertices of K_{4} in G are $d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}$ by Theorem 1.5 and Theorem 2.4. If $d_{7} \leqslant 3$, then π is potentially $K_{5}-e$-graphic by $\left\{d_{6}, d_{1}-1, d_{2}-1, d_{3}-1\right\}=\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}, d_{4}^{\prime}\right\}$. If $d_{7}=4$, then $d_{8}+d_{9}$ is even, and $\left(d_{8}, d_{9}\right)$ is one of the following: $\left(1^{2}\right),\left(2^{2}\right),\left(3^{2}\right),\left(4^{2}\right),(3,1),(4,2)$. Therefore, $\pi=\left(4^{7}, 2^{2}\right)$ or $\left(4^{7}, 3^{2}\right)$ by $\pi \neq\left(4^{7}, 3,1\right),\left(4^{8}, 2\right),\left(4^{9}\right),\left(4^{7}, 1^{2}\right)$. The corresponding $\pi_{3}^{*}=\left(1^{2}, 4^{2}, 2^{2}\right)$ or $\left(1^{2}, 4^{2}, 3^{2}\right)$, which are both graphic.

Subcase 4.2. $d_{1}=5$. Then $d_{5}=d_{6}=d_{7} \geqslant 3$ and the residual sequence $\pi_{5}^{\prime} \neq\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)$.

If $d_{5}=d_{6}=d_{7}=3$, then π is potentially $K_{5}-e$-graphic from Lemma 2.6.
If $d_{5}=d_{6}=d_{7}=4$ and $d_{3}=5$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6. If $d_{2}=d_{3}=4$, then $d_{4}=4$ and $d_{8}+d_{9}$ is odd. Therefore $\left(d_{8}, d_{9}\right)$ is $(2,1)$ or $(3,2)$ or $(4,1)$ or $(4,3)$. Since $\pi \neq\left(5,4^{7}, 1\right), \pi=\left(5,4^{6}, 2,1\right)$ or $\left(5,4^{6}, 3,2\right)$ or $\left(5,4^{7}, 3\right)$. The corresponding π_{3}^{*} is one of the following graphic sequences:

$$
\left(1^{2}, 4,3,2,1\right),\left(1^{2}, 4,3^{2}, 2\right),\left(1^{2}, 4^{2}, 3^{2}\right)
$$

In this case, if $d_{3}=4$ and $d_{2}=5$, then $d_{8}+d_{9}$ is even, and $\left(d_{8}, d_{9}\right)$ is one of the following:

$$
\left(1^{2}\right),\left(2^{2}\right),\left(3^{2}\right),\left(4^{2}\right),(3,1),(4,2)
$$

Therefore, π must be one of the following sequences:

$$
\left(5^{2}, 4^{5}, 1^{2}\right),\left(5^{2}, 4^{5}, 2^{2}\right),\left(5^{2}, 4^{5}, 3^{2}\right),\left(5^{2}, 4^{7}\right),\left(5^{2}, 4^{5}, 3,1\right),\left(5^{2}, 4^{6}, 2\right)
$$

and the corresponding π_{3}^{*} is one of the following graphic sequences:

$$
\left(1^{2}, 3^{2}, 1^{2}\right),\left(1^{2}, 3^{2}, 2^{2}\right),\left(1^{2}, 3^{4}\right),\left(1^{2}, 4^{2}, 3^{2}\right),\left(1^{2}, 3^{3}, 1\right),\left(1^{2}, 4,3^{2}, 2\right)
$$

If $d_{5}=d_{6}=d_{7}=5$, then π is one of the following sequences:

$$
\left(5^{7}, 2,1\right),\left(5^{7}, 4,1\right),\left(5^{7}, 3,2\right),\left(5^{8}, 2\right),\left(5^{8}, 4\right),\left(5^{7}, 4,3\right)
$$

and it is easy to compute that the corresponding π_{3}^{*} is one of the following graphic sequences:

$$
\left(2^{2}, 4,3,2,1\right),\left(2^{2}, 4^{2}, 3,1\right),\left(2^{2}, 4,3^{2}, 2\right),\left(2^{2}, 4^{3}, 2\right),\left(2^{2}, 4^{4}\right),\left(2^{2}, 4^{2}, 3^{2}\right)
$$

Subcase 4.3. $d_{1}=6$. Then $d_{5}=d_{6}=d_{7}=d_{8} \geqslant 3$ and $\pi_{5}^{\prime} \neq\left(3^{7}, 1\right),\left(3^{6}, 1^{2}\right)$.
If $d_{5}=d_{6}=d_{7}=d_{8}=3$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6.
If $d_{5}=d_{6}=d_{7}=d_{8}=4$ and $d_{3} \geqslant 5$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6. If $d_{3}=4$, then π is one of the following sequences:

$$
\left(6^{2}, 4^{6}, 2\right),\left(6^{2}, 4^{7}\right),\left(6,5,4^{6}, 3\right),\left(6,5,4^{6}, 1\right),\left(6,4^{7}, 2\right),\left(6,4^{8}\right)
$$

and it is easy to compute that the corresponding π_{3}^{*} is one of the following graphic sequences:

$$
\left(1^{2}, 3^{2}, 2^{2}\right),\left(1^{2}, 3^{4}\right),\left(1^{2}, 3^{3}, 1\right),\left(1^{2}, 4,3^{2}, 2\right),\left(1^{2}, 4^{2}, 3^{2}\right)
$$

If $d_{5}=d_{6}=d_{7}=d_{8}=5$ and $d_{3}=6$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6. If $d_{3}=d_{5}=d_{6}=d_{7}=d_{8}=5$, then π is one of the following sequences:

$$
\left(6^{2}, 5^{6}, 2\right),\left(6^{2}, 5^{6}, 4\right),\left(6,5^{7}, 1\right),\left(6,5^{7}, 3\right),\left(6,5^{8}\right)
$$

and the corresponding π_{3}^{*} is one of the following graphic sequences:

$$
\left(2^{2}, 4,3^{2}, 2\right),\left(2^{2}, 4^{2}, 3^{2}\right),\left(2^{2}, 4^{2}, 3,1\right),\left(2^{2}, 4^{4}\right)
$$

If $d_{5}=d_{6}=d_{7}=d_{8}=6$, then π is $\left(6^{8}, 2\right)$ or $\left(6^{8}, 4\right)$ or $\left(6^{9}\right)$. The corresponding π_{3}^{*} are $\left(3^{2}, 4^{3}, 2\right),\left(3^{2}, 4^{4}\right)$ and $\left(3^{2}, 5^{2}, 4^{2}\right)$, respectively, all of which are graphic.

Subcase 4.4. $d_{1}=7$. Then $d_{5}=d_{6}=d_{7}=d_{8}=d_{9} \geqslant 3$.
If $d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=3$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6.
If $d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=4$ and $d_{3} \geqslant 5$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6. If $d_{3}=d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=4$, then $\pi=\left(7,5,4^{7}\right)$ or $\left(7^{2}, 4^{7}\right)$. The corresponding $\pi_{3}^{*}=\left(1^{2}, 3^{4}\right)$ or $\left(1^{2}, 3^{2}, 2^{2}\right)$, both of which are graphic.

If $d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=5$ and $d_{3} \geqslant 6$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6. If $d_{3}=d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=5$, then $\pi=\left(7,6,5^{7}\right)$. The corresponding sequence π_{3}^{*} is $\left(2^{2}, 4^{2}, 3^{2}\right)$, which is graphic.

If $d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=6$ and $d_{3} \geqslant 7$, then π is potentially $K_{5}-e$-graphic by Lemma 2.6. If $d_{3}=d_{5}=d_{6}=d_{7}=d_{8}=d_{9}=6$, then $\pi=\left(7^{2}, 6^{7}\right), \pi_{3}^{*}=\left(3^{2}, 4^{4}\right)$ is graphic.

Case 5. $n=10$. Then $d_{1} \leqslant 8$. The residual sequence π_{1}^{\prime} has at most nine positive terms. If π_{1}^{\prime} has at most eight positive terms, then it must contains 1 as a term. Therefore, $\pi_{1}^{\prime} \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$. We may assume that $d_{5}=d_{6}=\ldots=d_{d_{1}+2} \geqslant$ 3 by Lemma 2.4. We consider the following two subcases.

Subcase 5.1. $d_{3}^{\prime} \geqslant 4$ in the residual sequence π_{10}^{\prime}.
If $\pi_{10}^{\prime} \neq\left(4^{9}\right),\left(4^{3}, 3^{5}, 1\right),\left(4^{8}, 2\right),\left(4^{7}, 3,1\right),\left(5,4^{7}, 1\right),\left(4^{3}, 3^{4}, 1^{2}\right),\left(4^{7}, 1^{2}\right)$, then π_{10}^{\prime} is potentially $K_{5}-e$-graphic by Case 4 , and so is π.

If $\pi_{10}^{\prime}=\left(4^{9}\right)$, then $d_{10} \leqslant 4$. Thus π is one of the following sequences:

$$
\left(5,4^{8}, 1\right),\left(5^{2}, 4^{7}, 2\right),\left(5^{3}, 4^{6}, 3\right),\left(5^{4}, 4^{6}\right)
$$

and it is easy to compute that the corresponding π_{3}^{*} is one of the following graphic sequences:

$$
\left(1^{2}, 4^{3}, 3,1\right),\left(1^{2}, 4^{2}, 3^{2}, 2\right),\left(1^{2}, 4,3^{4}\right),\left(2,1,4^{2}, 3^{3}\right)
$$

If $\pi_{10}^{\prime}=\left(4^{8}, 2\right)$, then $d_{10} \leqslant 2$. Therefore π is either $\left(5,4^{7}, 2,1\right)$ or $\left(5^{2}, 4^{6}, 2^{2}\right)$. The corresponding sequence π_{3}^{*} is $\left(1^{2}, 4^{2}, 3,2,1\right)$ or $\left(1^{2}, 4,3^{2}, 2^{2}\right)$, both of which are graphic.

If $\pi_{10}^{\prime}=\left(4^{3}, 3^{5}, 1\right)$, then $d_{10}=1$. Hence, $\pi=\left(5,4^{2}, 3^{5}, 1^{2}\right)$ or $\left(4^{4}, 3^{4}, 1^{2}\right)$. The corresponding $\pi_{3}^{*}=\left(0^{2}, 3^{2}, 2,1^{2}\right)$ or $\left(1,0,3^{3}, 1^{2}\right)$, which are both graphic.

If $\pi_{10}^{\prime}=\left(4^{7}, 3,1\right)$, then $d_{10}=1$. Since $\pi \neq\left(4^{8}, 1^{2}\right), \pi=\left(5,4^{6}, 3,1^{2}\right)$. The sequence $\pi_{3}^{*}=\left(1^{2}, 4,3^{2}, 1^{2}\right)$, which is graphic.

If $\pi_{10}^{\prime}=\left(5,4^{7}, 1\right)$, then $d_{10}=1$. Thus $\pi=\left(6,4^{7}, 1^{2}\right)$ or $\pi=\left(5^{2}, 4^{6}, 1^{2}\right)$. The sequences π_{3}^{*} are both $\left(1^{2}, 4,3^{2}, 1^{2}\right)$, which is graphic.

If $\pi_{10}^{\prime}=\left(4^{3}, 3^{4}, 1^{2}\right)$, then $d_{10}=1$. Therefore, $\pi=\left(5,4^{2}, 3^{4}, 1^{3}\right)$ or $\pi=\left(4^{4}, 3^{3}, 1^{3}\right)$. The corresponding sequence π_{3}^{*} is $\left(0^{2}, 3,2,1^{3}\right)$ or $\left(1,0,3^{2}, 1^{3}\right)$, which are both graphic.

If $\pi_{10}^{\prime}=\left(4^{7}, 1^{2}\right)$, then $\pi=\left(5,4^{6}, 1^{3}\right)$ by $d_{10}=1$. The sequence $\pi_{3}^{*}=\left(1^{2}, 4,3,1^{3}\right)$, which is graphic.
$\mathrm{Subc} \mathrm{ase} 5.2 . d_{3}^{\prime} \leqslant 3$ in the residual sequence π_{10}^{\prime}. Then $d_{3}^{\prime}=d_{4}^{\prime}=d_{5}^{\prime}=3$ by $d_{5}^{\prime} \geqslant 3$. Since $d_{3}^{\prime}=3$, we have $d_{10} \leqslant 3$ and $d_{5}=d_{6}=3$. It follows from Lemma 2.6 that π is potentially $K_{5}-e$-graphic.

Case 6. $n \geqslant 11$. Then $\pi_{1}^{\prime} \neq\left(3^{6}\right),\left(3^{2}, 2^{4}\right),\left(3^{2}, 2^{3}\right)$. Otherwise, each of the three sequences should contain 1 as a term, which is a contradiction. Assume that $d_{5}=$
$d_{6}=\ldots=d_{d_{1}+2} \geqslant 3$. Consider the residual sequence π_{n}^{\prime}. Obviously, $d_{5}^{\prime} \geqslant 3$ in π_{n}^{\prime}. We use induction on n to prove this case. We first prove the case $n=11$.

If $d_{3}^{\prime} \geqslant 4$ in the residual sequence π_{11}^{\prime} and $\pi_{11}^{\prime} \neq\left(4^{8}, 1^{2}\right)$, then π_{11}^{\prime} is potentially $K_{5}-e$-graphic by Case 5 and so is π. If $\pi_{11}^{\prime}=\left(4^{8}, 1^{2}\right)$, then $\pi=\left(5,4^{7}, 1^{3}\right), \pi_{3}^{*}=$ $\left(1^{2}, 4^{2}, 3,1^{3}\right)$, which is graphic.

If $d_{3}^{\prime}=3$ in π_{11}^{\prime}, then $d_{5}=3$. From Lemma $2.6, \pi$ is potentially $K_{5}-e$-graphic.
Now we assume that for $n-1 \geqslant 11$ the result is true. If $d_{3}^{\prime} \geqslant 4$ in the residual sequence π_{n}^{\prime}, then π_{n}^{\prime} is potentially $K_{5}-e$-graphic by the induction hypothesis, and so is π. If $d_{3}^{\prime}=3$ in π_{n}^{\prime}, then $d_{5}=3$. We consider the residual sequence π_{5}^{\prime}. According to Lemma $2.6, \pi$ is potentially $K_{5}-e$-graphic.

Proof of Theorem 1.12. If $d_{1}=n-1$ or there exists an integer $t, 5 \leqslant t \leqslant$ $d_{1}+1$ such that $d_{t}>d_{t+1}$, then π is potentially A_{5}-graphic if and only if $\pi_{5} \notin S$ by Theorem 1.5 and Theorem 2.4. If $n-2 \geqslant d_{1} \geqslant \ldots \geqslant d_{4} \geqslant d_{5}=\ldots=d_{d_{1}+2} \geqslant$ $d_{d_{1}+3} \geqslant \ldots \geqslant d_{n}$, then π is potentially A_{5}-graphic by Lemma 2.7. Therefore, π is potentially A_{5}-graphic if and only if $\pi_{5} \notin S$.

Proof of Theorem 1.13. If $d_{1}=n-1$ or there exists an integer $t, 6 \leqslant t \leqslant$ $d_{1}+1$ such that $d_{t}>d_{t+1}$, then π is potentially A_{6}-graphic if and only if $\pi_{6} \notin S$ from Theorem 1.12 and Theorem 2.4. If $n-2 \geqslant d_{1} \geqslant \ldots \geqslant d_{5} \geqslant d_{6}=\ldots=$ $d_{d_{1}+2} \geqslant d_{d_{1}+3} \geqslant \ldots \geqslant d_{n}$, then π is potentially A_{6}-graphic by Lemma 2.8. Hence π is potentially A_{6}-graphic if and only if $\pi_{6} \notin S$.

Proof of Theorem 1.14. If π is potentially A_{5}-graphic, then it is obvious that $\left(d_{1}-4, d_{2}-4, \ldots, d_{5}-4, d_{6}, \ldots, d_{n}\right)$ is graphic. If π is $(n-a, n-$ $\left.b, 4^{4}, 2^{n-(a+b+4)}, 1^{a+b-2}\right)$ or $\left(n-a, n-b, 4^{5}, 2^{n-(a+b+5)}, 1^{a+b-2}\right)$, then the corresponding π_{5} is $\left(2,0^{n-6}\right)$ or $\left(2^{2}, 0^{n-7}\right)$, neither of which is graphic. Thus π is not potentially A_{5}-graphic by Theorem 1.1. Now we verify the sufficient condition. According to Theorem 1.6 and Theorem 1.7, we only need to consider the following three cases:

Case 1. $d_{1} \leqslant 6$ and $d_{10} \leqslant 2$. Let G be a realization of the sequence $\left(d_{1}-4\right.$, $\left.d_{2}-4, \ldots, d_{5}-4, d_{6}, \ldots, d_{n}\right)$ with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}, d\left(v_{i}\right)=d_{i}-4$ for $i=$ $1, \ldots, 5$ and $d\left(v_{i}\right)=d_{i}$ for $i=6, \ldots, n$. Let $A=\left\{v_{1}, \ldots, v_{5}\right\}$ and $B=V(G) \backslash A$. Moreover, G minimizes the edge number $|E(G[A])|$ of the induced subgraph $G[A]$. If $|E(G[A])|=0$, then π is potentially A_{5}-graphic. Otherwise, there exists at least one edge $e=u v$ in $G[A]$. Without loss of generality, we may assume that $d_{G}(u) \geqslant d_{G}(v)$. Then u and v are respectively adjacent to at most one vertex $u^{\prime \prime}$ and $v^{\prime \prime}$ of B. Since n is sufficiently large and π is positive graphic, we may find an edge $e^{\prime}=u^{\prime} v^{\prime}$ with $u^{\prime}, v^{\prime} \in B$ and $u^{\prime}, v^{\prime} \neq u^{\prime \prime}, v^{\prime \prime}$. Since $d_{1} \leqslant 6, u$ and v are not adjacent to u^{\prime} and v^{\prime}. We may obtain another realization G^{\prime} of $\left(d_{1}-4, d_{2}-4, \ldots, d_{5}-4, d_{6}, \ldots, d_{n}\right)$ by
swapping the edges e and e^{\prime} with the non-edges $u u^{\prime}$ and $v v^{\prime}$. Clearly, $\left|E\left(G^{\prime}[A]\right)\right|$ is less than $|E(G[A])|$.

Case $2 . d_{2} \leqslant 5, d_{1} \geqslant 7$ and $d_{10} \leqslant 2$. If $d_{2}=4$, then π is potentially A_{5}-graphic since $\left(d_{1}-4, d_{2}-4, \ldots, d_{5}-4, d_{6}, \ldots, d_{n}\right)$ is graphic. If $d_{2}=5$ and $|E(G[A])|=0$, then π is potentially A_{5}-graphic, where the definition of G is the same as that in Case 1 . If $d_{2}=5$ and $|E(G[A])| \neq 0$, we assume that $e=u v$ in $G[A]$ and $d_{G}(u) \geqslant d_{G}(v)$. Then u is not adjacent to at least one vertex u^{\prime} of B. Since π is positive graphic, there exists a vertex $v^{\prime} \in N\left(u^{\prime}\right)$, where $N\left(u^{\prime}\right)$ is the neighbor set of the vertex u^{\prime}. As the vertex v has degree at most one in G, v is not adjacent to u^{\prime} and v^{\prime}. Thus $G^{\prime}=G-u v-u^{\prime} v^{\prime}+u u^{\prime}+v v^{\prime}$ is also a realization of $\left(d_{1}-4, d_{2}-4, \ldots, d_{5}-4, d_{6}, \ldots, d_{n}\right)$ with $\left|E\left(G^{\prime}[A]\right)\right|<|E(G[A])|$.

Case 3. $d_{3}=4, d_{2} \geqslant 6, d_{1} \geqslant 7$ and $d_{10} \leqslant 2$. Then we assume that $\pi=$ $\left(d_{1}, d_{2}, 4^{3}, d_{6}, d_{7}, d_{8}, d_{9}, 2^{x}, 1^{y}\right)$ with $x+y=n-9$. By Theorem 1.1, it is enough to prove that $\pi_{5}=\left(d_{6}^{(5)}, d_{7}^{(5)}, \ldots, d_{n}^{(5)}\right)$ is graphic. If $d_{6} \leqslant 2$, then π_{5} is graphic by Theorem 2.3. If $d_{6}=3$, then $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 5$. Thus $d_{6}^{(5)} \leqslant 2$ and $h\left(\pi_{5}\right)=1$, where $h\left(\pi_{5}\right)$ means the smallest positive term of π_{5}. It follows from Theorem 2.3 that π_{5} is graphic. For $d_{6}=4$, we consider the following three subcases.

Subcase 3.1. $d_{7} \leqslant 2$. Assume $\pi=\left(d_{1}, d_{2}, 4^{4}, 2^{x}, 1^{y}\right)$ with $x+y=n-6$. Since π is graphic, we have $\left(d_{1}-4\right)+\left(d_{2}-4\right) \leqslant 2+2 x+y$, that is, $d_{1}+d_{2} \leqslant n+4+x$.

If $d_{1}+d_{2}=n+4+x$, then $\pi_{5}=\left(2,0^{n-6}\right)$, which is not graphic. Hence π is not potentially A_{5}-graphic. Let $d_{1}=n-a$ and $d_{2}=n-b$. Then $x=n-(a+b+4)$ and $y=a+b-2$. Since $x \geqslant 0$ and $d_{2} \geqslant 6$, we have $a+b \leqslant n-4$ and $b \leqslant n-6$. That is, $\pi=\left(n-a, n-b, 4^{4}, 2^{n-(a+b+4)}, 1^{a+b-2}\right)$, which is impossible.

If $d_{1}+d_{2}<n+4+x$, then $h\left(\pi_{5}\right)=1$ and $d_{6}^{(5)}=2$ by $\sum_{i=1}^{5}\left(d_{i}-4\right) \geqslant 5$. Thus π_{5} is graphic by Theorem 2.3.

Subcase 3.2. $d_{7}=3$. Assume $\pi=\left(d_{1}, d_{2}, 4^{4}, 3, d_{8}, d_{9}, 2^{x}, 1^{y}\right)$ with $x+y=n-9$. Since $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 5$, we have $d_{6}^{(5)}=2$. If $d_{1} \geqslant 8$, then $h\left(\pi_{5}\right)=1$ by $d_{7}=3$. Thus by Theorem 2.3, π_{5} is graphic. If $d_{1}=7$ and $d_{8}=3$, then π_{5} has at least three positive terms. If $d_{1}=7$ and $d_{8} \leqslant 2$, then $h\left(\pi_{5}\right)=1$. Therefore, π_{5} is graphic by Lemma 2.2.

Subcase 3.3. $d_{7}=4$.
(1) If $d_{8} \leqslant 2$, then we assume that $\pi=\left(d_{1}, d_{2}, 4^{5}, 2^{x}, 1^{y}\right)$ with $x+y=n-7$. Since π is graphic, we know that $\left(d_{1}-4\right)+\left(d_{2}-4\right) \leqslant 2+2+2 x+y=n-3+x$, that is, $d_{1}+d_{2} \leqslant n+5+x$.

If $d_{1}+d_{2}=n+5+x$, then $\pi_{5}=\left(2^{2}, 0^{n-7}\right)$, which is not graphic. Since $x \geqslant$ $0, d_{2} \geqslant 6, x=n-(a+b+5)$ and $y=a+b-2$, we have $a+b \leqslant n-5$ and $b \leqslant n-6$. Therefore, $\pi=\left(n-a, n-b, 4^{5}, 2^{n-(a+b+5)}, 1^{a+b-2}\right)$, which is a contradiction.

If $d_{1}+d_{2}<n+5+x$, then $h\left(\pi_{5}\right)=1$. As $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 5$, we have $d_{6}^{(5)}=2$. It follows from Theorem 2.3 that π_{5} is graphic.
(2) If $d_{8} \geqslant 3$ and $d_{9} \leqslant 2$, then we assume that $\pi=\left(d_{1}, d_{2}, 4^{5}, d_{8}, 2^{x}, 1^{y}\right)$ with $x+y=n-8$.

If $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 6$ and $d_{2} \geqslant 7$, then $d_{6}^{(5)}=2$ and π_{5} has at least three positive terms; if $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 6, d_{2}=6$ and $d_{8}=4$, then $\pi_{5}=\left(3,2^{2}, 2^{x^{\prime}}, 1^{y^{\prime}}, 0^{z^{\prime}}\right)$ with $x^{\prime}+y^{\prime}+z^{\prime}=n-8$; if $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 6, d_{2}=6$ and $d_{8}=3$, then $d_{6}^{(5)}=2$ and π_{5} has at least three positive terms. By Lemma 2.2, π_{5} is graphic.

If $\left(d_{1}-4\right)+\left(d_{2}-4\right)=5$, then $d_{1}=7$ and $d_{2}=6$. If $d_{8}=3$, then $\pi_{5}=\left(2^{3}, 2^{x}, 1^{y}\right)$. If $d_{8}=4$, then $\pi_{5}=\left(3,2^{2}, 2^{x}, 1^{y}\right)$. By Lemma $2.2, \pi_{5}$ is graphic.
(3) If $d_{8} \geqslant 3$ and $d_{9} \geqslant 3$, then $\pi=\left(d_{1}, d_{2}, 4^{5}, d_{8}, d_{9}, 2^{x}, 1^{y}\right)$ with $x+y=n-9$. Since $\left(d_{1}-4\right)+\left(d_{2}-4\right) \geqslant 5, \pi_{5}$ has at least four positive terms and $d_{6}^{(5)} \leqslant 3$. If π_{5} has at least five positive terms, then π_{5} is graphic by Lemma 2.2 . If π_{5} has exact four positive terms, then $d_{6}^{(5)}=2$, and π_{5} is also graphic by Lemma 2.2.

References

[1] P. Erdös, M. S. Jacobson and J. Lehel: Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.). Graph Theory, Combinatorics and Applications, Vol. 1, John Wiley \& Sons, New York, 1991, pp. 439-449.
[2] Elaine Eschen and J. B. Niu: On potentially $K_{4}-e$-graphic. Australasian J. Combinatorics 29 (2004), 59-65.
[3] R. J. Gould, M.S. Jacobson and J. Lehel: Potentially G-graphical degree sequences, in: Y. Alavi et al., (Eds.). Combinatorics, Graph Theory, and Algorithms, Vol. 1, New Issues Press, Kalamazoo Michigan, 1999, pp. 451-460.
[4] A. E. Kézdy and J. Lehel: Degree sequences of graphs with prescribed clique size, in: Y. Alavi et al., (Eds.). Combinatorics, Graph Theory, and Algorithms, Vol. 2, New Issues Press, Kalamazoo Michigan, 1999, pp. 535-544.
[5] D. J. Kleitman and D. L. Wang: Algorithm for constructing graphs and digraphs with given valences and factors. Discrete Math. 6 (1973), 79-88.
[6] J. S. Li and Z. X. Song: An extremal problem on the potentially P_{k}-graphic sequences. Discrete Math. 212 (2000), 223-231.
[7] J. S. Li and Z. X. Song: The smallest degree sum that yields potentially P_{k}-graphic sequences. J. Graph Theory 29 (1998), 63-72.
[8] J.S.Li, Z. X. Song and R. Luo: The Erdős-Jacobson-Lehel conjecture on potentially P_{k}-graphic sequences is true. Science in China, Ser. A 41 (1998), 510-520.
[9] J.S.Li and J. H. Yin: A variation of an extremal theorem due to Woodall. Southeast Asian Bulletin of Mathematics 25 (2001), 427-434.
[10] R. Luo: On potentially C_{k}-graphic sequences. Ars Combinatoria 64 (2002), 301-318. zbl
[11] R. Luo and Morgan Warner: On potentially K_{k}-graphic sequences. Ars Combinatoria 75 (2005), 233-239.
[12] A. R. Rao: The clique number of a graph with given degree sequence. Proc. Symposium on Graph Theory, A.R.Rao ed., MacMillan and Co.India Ltd., I.S.I. Lecture Notes Series 4 (1979), 251-267.
[13] A. R. Rao: An Erdős-Gallai type result on the clique number of a realization of a degree sequence, unpublished.
[14] J. H. Yin and J. S. Li: An extremal problem on potentially $K_{r, s}$-graphic sequences. Discrete Math. 260 (2003), 295-305.
[15] J. H. Yin and J.S. Li: Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size. Discrete Math. 301 (2005), 218-227.

Author's address: Meng-Xiao Yin, College of Computer and Electronics Information, Guangxi University, Nanning, Guangxi 530004, China; Jian-Hua Yin, Department of Applied Mathematics, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China, e-mail: yinjh@ustc.edu.

[^0]: Project supported by National Natural Science Foundation of China (No. 10401010).

