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ON THE INTEGRAL REPRESENTATION

OF SUPERBIHARMONIC FUNCTIONS

Ali Abkar, Tehran

(Received June 23, 2005)

Abstract. We consider a nonnegative superbiharmonic function w satisfying some growth
condition near the boundary of the unit disk in the complex plane. We shall find an integral
representation formula for w in terms of the biharmonic Green function and a multiple of
the Poisson kernel. This generalizes a Riesz-type formula already found by the author for
superbihamonic functions w satisfying the condition 0 6 w(z) 6 C(1 − |z|) in the unit
disk. As an application we shall see that the polynomials are dense in weighted Bergman
spaces whose weights are superbiharmonic and satisfy the stated growth condition near the
boundary.

Keywords: superbiharmonic function, biharmonic Green function, weighted Bergman
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1. Introduction

We denote by C the complex plane, by D the open unit disk {z ∈ C : |z| < 1}, and

by T the unit circle {z ∈ C : |z| = 1}. The Laplace operator in the complex plane is

denoted by

∆ = ∆z =
∂2

∂z∂z
=

1

4

( ∂2

∂x2
+

∂2

∂y2

)

, z = x + iy.

We write dA(z) = π
−1 dxdy for the normalized Lebesgue area measure on the unit

disk. Similarly for z = eiθ, we write dσ(z) = (2π)−1 dθ for the normalized arc length

measure on the unit circle.

Let u be a locally integrable complex-valued function on the unit disk. We say that

u is biharmonic provided that ∆2u = 0 in the sense of distributions. We say that u
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is superbiharmonic if u is real-valued and ∆2u > 0 in the sense of distributions, or

equivalently, ∆2u is a locally finite positive Borel measure on D . As we pointed out
earlier, our representation formula involves the biharmonic Green function for the

operator ∆2 in the unit disk; that is, the function given by

Γ(z, ζ) = |z − ζ|2 log
∣

∣

∣

z − ζ

1 − ζz

∣

∣

∣

2

+
(

1 − |z|2
)(

1 − |ζ|2
)

, (z, ζ) ∈ D × D .

Let w be a superbiharmonic function which satisfies the growth condition

0 6 w(z) 6 C(1 − |z|), z ∈ D .

It was shown in [1] that w enjoys the representation

w(z) =

∫D Γ(ζ, z)∆2w(ζ) dA(ζ) +

∫TH(ζ, z)∂n(ζ)w(ζ) dσ(ζ), z ∈ D ,

where H(ζ, z) has the form

H(ζ, z) = (1 − |z|2)
1 − |ζz|2

|1 − zζ|2
, (ζ, z) ∈ D × D ,

and ∂n(ζ) stands for the normal derivative (in the sense of distributions) with respect

to ζ. It is easy to see that

H(ζ, z) = (1 − |z|2)P (z, ζ) = (1 − |z|2)
1 − |z|2

|ζ − z|2
, (ζ, z) ∈ T× D ,

where P (z, ζ) denotes the Poisson kernel for the unit disk. Note that the above

representation formula can be written as

w(z) =

∫D Γ(ζ, z) dµ(ζ) +

∫TH(ζ, z) dν(ζ), z ∈ D ,

where dµ is a positive Borel measure on D and dν is a positive Borel measure on T;
indeed, dµ is the measure induced by ∆2u and dν is understood as the weak-star

limit of a family of positive continuous functions on the unit circle.

In this paper, we replace the above growth condition on w by the following weaker

one; the superbiharmonic function w satisfies

0 6 w(z) 6 g(z)(1 − |z|), z ∈ D ,

where g is a function with the property

sup
0<r<1

∫Tg(rz) dσ(z) < +∞.
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We shall see that under above conditions, the same representation formula holds

true. Indeed, we can express the conditions on w in the following concise form; w is

a nonnegative superbiharmonic function satisfying

sup
0<r<1

1

1 − r

∫Tw(rz) dσ(z) < +∞.

A nonnegative function on the unit disk is known as a weight function. Weight

functions satisfying the growth condition above play a prominent role in the theory

of weighted Bergman spaces. It turns out that the polynomials are dense in such

weighted Bergman spaces. This fact in turn can be used for establishing Beurling’s

theorem for zero-based invariant subspaces in the Bergman spaces (see [2] for details).

2. The integral representation

We begin with the following lemma.

Lemma 2.1. Let w be a nonnegative superbiharmonic function satisfying the

condition

sup
0<r<1

1

1 − r

∫Tw(rz) dσ(z) < +∞.

Then for every z ∈ D we have
v(z) :=

∫D Γ(z, ζ)∆2w(ζ) dA(ζ) < +∞,

moreover, for every integer n,

lim
r→1−

∫T znv(rz)

1 − r2
dσ(z) = 0.

P r o o f. For 0 < r < 1, we put wr(z) = w(rz). Consider the fraction (1−|z|2)3

1−r2|z|2

which vanishes along with its normal derivative on the boundary of the unit disk.

Since ∆2wr(z) = r4(∆2w)(rz), we obtain by two successive applications of Green’s

formula

r4

∫D (1 − |z|2)3

1 − r2|z|2
(∆2w)(rz) dA(z) =

∫D ∆2
(

(

1 − |z|2
)3

1 − r2|z|2

)

w(rz) dA(z)(1)

+
6

1 − r2

∫Tw(rz) dσ(z).
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According to our assumption on w we know that the second term on the right-hand

side of (1) remains bounded as r → 1−. As for the first term on the right we see that

∆2

(

1 − |z|2
)3

1 − r2|z|2
= 4(1 − r2)3|z|2

−r8|z|8 + 5r6|z|6 − 10r4|z|4 + 9r2|z|2 + 9
(

1 − r2|z|2
)5

+ 4(r4 − 3r2 + 3).

This leads to
∣

∣

∣
∆2

z

(

1 − |z|2
)3

1 − r2|z|2

∣

∣

∣
6 36

(1 − r2)3
(

1 − r2|z|2
)5 + 12,

from which it follows that

∣

∣

∣

∣

∫D ∆2
((1 − |z|2)3

1 − r2|z|2

)

w(rz) dA(z)

∣

∣

∣

∣

(2)

6 36(1 − r2)3
∫D w(rz)

(1 − r2|z|2)5
dA(z) + 12

∫D w(rz) dA(z).

That the second term on the right-hand side of (2) remains bounded as r → 1− is

clear. As for the first term on the right, we note that

1

2π

∫ 2p
0

w(reiθ) dθ 6 C(1 − r2),

from which it follows that

(1 − r2)3
∫D w(rz)

(

1 − r2|z|2
)5 dA(z)(3)

= (1 − r2)3
1

π

∫ 1

0

s ds

(1 − r2s2)5

∫ 2p
0

w(rseiθ) dθ

6 C(1 − r2)3
∫ 1

0

2s ds

(1 − r2s2)4

=
C

3
((1 − r2) + (1 − r2)2 + 1) 6 C.

It now follows from (1), (2) and (3) that for a new constant—we denote it again by

C—

r4

∫D (1 − |z|2)3

1 − r2|z|2
(∆2w)(rz) dA(z) 6 C.

We now use Fatou’s lemma to conclude that
∫D (1 − |z|2)2∆2w(z) dA(z) 6 C.
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Finally, we know that (see [1], Lemma 2.2)

0 < Γ(z, ζ) 6
1

2
(1 + |z|)2(1 − |ζ|2)2, (z, ζ) ∈ D × D ,

from which it follows that

∫D Γ(z, ζ)∆2w(ζ) dA(ζ) 6 2

∫D (1 − |ζ|2)2∆2w(ζ) dA(ζ) < +∞.

As for the second part of the lemma, we set

C(n, r) :=

∫T znv(rz)

1 − r2
dσ(z).

It is easy to see that

0 6 |C(n, r)| 6 C(0, r).

Therefore it suffices to show that C(0, r) → 0, as r → 1−. To this end, we recall

(see [1], Lemma 2.2) that

0 < Γ(z, ζ) 6

(

1 − |z|2
)2(

1 − |ζ|2
)2

|1 − ζz|2
, (z, ζ) ∈ D × D .

It now follows from Fubini’s theorem that

0 6 C(0, r) 6

∫D ∫T (

1 − r2|z|2
)2(

1 − |ζ|2
)2

(

1 − r2
)

|1 − rzζ|2
∆2w(ζ) dσ(z) dA(ζ)

=

(
∫D (

1 − |ζ|2
)2

∆2w(ζ) dA(ζ)

)
∫T 1 − r2

|1 − rzζ|2
dσ(z)

=

∫D 1 − r2

1 − r2|ζ|2
(

1 − |ζ|2
)2

∆2w(ζ) dA(ζ).

But the last integral tends to zero as r → 1−; this follows from the dominated

convergence theorem and the first part of the lemma. �

Theorem 2.2. Let w be a nonnegative superbiharmonic function satisfying the

condition

sup
0<r<1

1

1 − r

∫Tw(rz) dσ(z) < +∞.

Then there exists a unique positive measure ν on the unit circle such that

w(z) =

∫D Γ(ζ, z)∆2w(ζ) dA(ζ) +

∫TH(ζ, z) dν(ζ), z ∈ D .
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P r o o f. We consider the function v defined in the statement of the above lemma.

Since w−v is biharmonic, it follows from the Almansi representation formula (see [3],

Lemma 3.1) that there exist two real-valued harmonic functions h and u such that

w(z) − v(z) = u(z) +
(

1 − |z|2
)

h(z), z ∈ D .

For a fixed 0 < r < 1, recall that fr(z) = f(rz), so that

w(rz) − v(rz) = ur(z) + (1 − r2)hr(z), z ∈ T.

Writing the n-th Fourier coefficient of both sides we obtain
∫Tzn

(

w(rz) − v(rz)
)

dσ(z) = ûr(n) + (1 − r2)ĥr(n)

= r|n|û(n) + (1 − r2)r|n|ĥ(n).

We now let r → 1− and use the second part of the above lemma together with our

assumption on w to conclude that û(n) = 0, for every integer n. This means that

w(z) − v(z) = (1 − |z|2)h(z), z ∈ D .

Therefore
∫T |hr(z)| dσ(z) 6

∫T w(rz)

1 − r2
dσ(z) +

∫T v(rz)

1 − r2
dσ(z).

This together with the second part of the lemma and our assumption implies that

sup
0<r<1

‖hr‖L1(T) < +∞.

Therefore we can find (see [4]) a unique real-valued Borel measure ν on T—as the
weak-star limit of the measures dνr = hr dσ—such that

h(z) =

∫T 1 − |z|2

|ζ − z|2
dν(ζ) z ∈ D .

Finally, we see that

w(z) − v(z) =
(

1 − |z|2
)

h(z) =

∫T (

1 − |z|2
)2

|ζ − z|2
dν(ζ) =

∫TH(ζ, z) dν(ζ).

The last thing to be proved is the fact that the measure ν is positive. Let p(z) be

a nonnegative trigonometric polynomial on the unit circle. According to the second

part of the lemma we have
∫Tp(z) dν(z) = lim

r→1−

∫Tp(z)hr(z) dσ(z) = lim
r→1−

∫Tp(z)
w(rz)

1 − r2
dσ(z) > 0,

from which the result follows. �
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3. An application

Let w be a weight function on the unit disk. We say that a function f , analytic

in D , belongs to the weighted Bergman space Lp
a(D , w), 0 < p < +∞, provided that

‖f‖p

L
p

a(D) =

∫D |f(z)|pw(z) dA(z) < +∞.

If 1 6 p < +∞, it is well-known that Lp
a(D ) is a Banach space, and for 0 < p < 1, it

is a quasi-Banach space. It is now time to state the main result of this section.

Theorem 3.1. Let w be a superbiharmonic weight function satisfying the condi-

tion

sup
0<r<1

1

1 − r

∫Tw(rz) dσ(z) < +∞.

Then the polynomials are dense in the weighted Bergman space Lp
a(D , w) for 0 <

p < +∞.

P r o o f. As in [1], Proposition 3.3, we first show that r 7→ rw(z/r) is an

increasing function of r for |z| < r < 1. The rest of the proof proceeds as in [1],

Theorem 3.5. �
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