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Abstract. We study the method of layer potentials for manifolds with boundary and
cylindrical ends. The fact that the boundary is non-compact prevents us from using the
standard characterization of Fredholm or compact pseudo-differential operators between
Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis [10] and Kral-Wedland
[18]. We first study the layer potentials depending on a parameter on compact manifolds.
This then yields the invertibility of the relevant boundary integral operators in the global,
non-compact setting. As an application, we prove a well-posedness result for the non-
homogeneous Dirichlet problem on manifolds with boundary and cylindrical ends. We also
prove the existence of the Dirichlet-to-Neumann map, which we show to be a pseudodiffer-
ential operator in the calculus of pseudodifferential operators that are “almost translation
invariant at infinity.”
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Introduction

Boundary value problems, mostly on compact manifolds, have long been studied

because of their numerous applications to other areas of Mathematics, Physics, and

Engineering. Arguably, some of the most important examples arise in connection

with the Laplacian and related operators.

A first, simple approach to boundary value problems for the Laplace operator is via

the Lax-Milgram theorem which amounts to proving an energy estimate (coercivity)

Mitrea was partially supported by NSF Grant DMS-0139801 and a UMC Research
Board Grant. Nistor was partially supported by NSF Grants DMS-0209497 and DMS-
0200808. Manuscripts available from http://www.math.missouri.edu/marius and
http://www.math.psu.edu/nistor/.
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for the de Rham differential of certain classes of scalar functions [36], [47]. Another

approach commonly used in the literature is via boundary layer potential integrals.

While less elementary, this has the advantage that it provides more information

about the spaces of Cauchy data, and it allows one to express the solutions via

explicit formulas. The same approach may be used to study boundary problems on

spaces with weights, on which the Laplace operator may fail to be symmetric.

The second approach, based on the method of layer potentials, became widely used

after the pioneering work of Hodge, Kodaira, Kral, Spencer, Duff, and Kohn, among

others. See, for instance, [15], [20], [17], [21], or the discussion in the introduction

of [35] for further information and references. This method, combining ideas both

from the approach based on the Lax-Milgram theorem and the approach based on

the Boutet de Monvel calculus, has been successfully employed to solve boundary

value problems on compact manifolds with smooth boundary.

More recently, the method of layer potentials has also lead to a solution of the

Dirichlet problem for the Laplace operator on compact manifolds with Lipschitz

boundaries in [33]. This, in turn, builds on the earlier work from [8], [12], [19], and

[50], in the constant coefficient, Euclidean context.

In view of possible applications to boundary value problems on polyhedral do-

mains, we would like to extend the method of layer potentials to various classes of

non-compact manifolds. There are, however, several technical problems that we need

to first overcome for such an extension to be possible—at least along the classical

lines. The main contribution of this paper is to systematically study these difficulties

in the particular case of manifolds with cylindrical ends, when a number of required

results from analysis take a simpler form. See also [14], [22], [9], [41] for earlier results

on boundary value problems on non-compact manifolds.

A crucial step in the method of layer potentials is to prove the invertibility of

−1/2I + K, where K is a suitable pseudodifferential operator. For a domain with

smooth boundary,K is compact, and one can use the fact that −1/2I+K is Fredholm

of index zero. For a non-compact or non-smooth domain, K in general will not be

compact [10], [11], [12], [18]. Nevertheless, −1/2I +K still turns out to be compact

(see also [26]). We hope that the approach that we outline in this paper will generalize

to more general elliptic Partial Differential Equations on non-compact manifolds.

In fact, in [41], Elmar Schrohe has studied boundary value problems for “asymp-

totically Euclidean manifolds” (this is a class of non-compact manifolds generalizing

the class of manifolds that are Euclidean at infinity) by generalizing to this class of

manifolds the Boutet de Monvel’s algebra. He has also pointed out the importance

and relevance of the spectral invariance of various algebras of pseudodifferential op-

erators. A main analytic difference between his class of manifolds and ours is that

while the “Fredholm relevant symbol” is commutative for asymptotically Euclidean
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manifolds, this is no longer true in the case we intend to study, i.e. that of manifolds

with cylindrical ends. Manifolds with cylindrical ends have also appeared in the

study of boundary value problems on manifolds with conical points [16], [18], [22],

[23]. Manifolds with multicylindrical ends were studied in [27].

The results of this paper were used to prove the well-posedness of the Dirichlet

problem in suitable Sobolev spaces with weights in [6]. This well-posedness result

was then used in the same paper to obtain fast algorithms for solving the Dirichlet

problem on polygonal domains in the plane. A summary of the results in this paper

and a sketch of the main ideas of the proof were published in [32].

In order to explain some of the technical difficulties encountered in the setting

of manifolds with cylindrical ends, we need to introduce some notation. Let N

be a non-compact Riemannian manifold with boundary ∂N and ∆N = d∗d be the

Laplace operator on N action on scalar functions. A first set of problems consists

of defining an elementary solution E( · , · ) for ∆N on N and proving that the asso-

ciated single and double layer potential integrals converge—issues well-understood

when ∂N is compact. A second set of problems has to do with the existence of the

non-tangential limits of the aforementioned layer potential integral operators. Even

if the non-tangential limits exist and are given by pseudodifferential operators on

∂N , these pseudodifferential operators are not expected to be properly supported.

Moreover, since ∂N is non-compact, the standard results on the boundedness and

compactness of order zero (respectively, negative order) pseudodifferential operators

do not (directly) apply. Finally, on non-compact manifolds one is lead to consider

various algebras of pseudodifferential operators with a controlled behavior at infinity.

These algebras may fail to be “spectrally invariant,” in the sense that the inverse of

an elliptic, L2-invertible operator in this algebra may fail to be again in this algebra.

(See Definition 2.7 for the definition of a spectrally invariant algebra.)

In order to make the above technical problems more tractable, it is natural to make

certain additional assumptions on the non-compact manifolds N and its boundary

∂N . In this paper, we restrict ourselves to the class of manifolds with boundary

and cylindrical ends. For the sake of this introduction, let us briefly discuss about

pseudodifferential operators in this setting and then describe our main results.

Let M be a boundaryless manifold with cylindrical ends. Such manifolds have a

product structure at infinity in a strong sense (that is, including also the metric—see

Definition 5.1). In this setting, we define two classes of pseudodifferential operators:

Ψm
inv(M) and Ψm

ai (M), whose distribution kernels form a class large enough to contain

the distribution kernels appearing in our paper as boundary layer integrals. See also

[26], where some of these issues were studied in the case of a polygon.

The first class of operators is the class of order m classical pseudodifferential oper-

ators that are “translation invariant in a neighborhood of infinity” (Definition 1.1).
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The space Ψ−∞
ai (M) consists of the closure of Ψ−∞

inv (M) with respect to a suitable

family of semi-norms, including for example the norms of linear maps between the

Sobolev spaces Hm(M) → Hm′

(M), m,m′ ∈ 2Z (see Equations (11) and (20);
Sobolev spaces on non-integral orders can also be defined, but they are not needed

to construct our algebras). Then

(1) Ψm
ai (M) := Ψm

inv(M) + Ψ−∞
ai (M).

An operator P ∈ Ψm
ai (M) is called almost invariant in a neighborhood of infinity. For

P ∈ Ψm
ai (M), we can characterize when it is Fredholm or compact (between suitable

Sobolev spaces), along the classical lines. See [22], [24], [30], [31], [40], [42], [44] and

others.

We could have also allowed a power law behavior at infinity for our operators.

However, this is technical and would have greatly increased the size of the paper,

without really making our results more general. It would have also shifted the focus

of our paper, which is on boundary value problems and not on constructing and

studying algebras of pseudodifferential operators.

The reason for introducing the algebras Ψ∞
ai (M) is that T−1 ∈ Ψ−m

ai (M), for any

elliptic operator T ∈ Ψm
ai (∂N), provided that m > 0 and T is elliptic and invertible

on L2(M). (Recall that T is invertible as an unbounded operator if T is injective

and T−1 extends to a bounded operator.) This allows us to define our integral

kernels—and implicitly also the boundary layer integrals—much as in [33], namely

as follows. First, we embed our manifold with boundary and cylindrical ends N into

a boundaryless manifold with cylindrical ends M . We then prove that for suitable

V > 0, V 6= 0, the operator ∆M + V is invertible by checking that it is Fredholm of

index zero and injective.

The single layer potential integral is defined then as

(2) S (f) = (∆M + V )−1(f ⊗ δ∂N ),

where f ∈ L2(∂N) and δ∂N the conditional measure on ∂N (so that f ⊗ δ∂N defines

the distribution 〈f ⊗ δ∂N , ϕ〉 =
∫

∂N fϕ, where ϕ is a test function on N). We shall

fix in what follows a vector field ν on M that is normal to ∂N at every point of ∂N ,

has unit length at ∂N and points outside N (recall that N is a submanifold with

boundary ofM , so ν is a smooth extension of the outer unit normal to the boundary

of N). Similarly, the double layer potential integral is defined as

(3) D(f) = (∆M + V )−1(f ⊗ δ′∂N),

where f ∈ L2(∂N), again, and δ′∂N the normal derivative of the measure δ∂N in the

sense of distributions (so that 〈f ⊗ δ′∂N , ϕ〉 =
∫

∂N
f∂νϕ, where ∂ν is the directional
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derivative in the direction of ν). Since we are dealing with non-compact manifolds

(M and ∂N), the above integrals are defined by relying on mapping properties of

the operators in Ψm
ai (M).

Next, we show that we can make sense of the restriction to ∂N of the kernel E of

(∆M + V )−1 and that the restricted kernel gives rise to an operator

(4) S := [(∆M + V )−1]∂N ∈ Ψ−1
ai (∂N).

We can then relate the non-tangential limits of the single and double layer poten-

tials of some function f using the operator S. This is proved by writing (∆M +V )−1

as a sum of an operator P ∈ Ψ−1
inv(M) and an operator R ∈ Ψ−∞

ai (M). The existence

and properties of the integrals defined by P follow as in the classical case, because P

is properly supported (and hence all our relations can be reduced to the analogous

relations on a compact manifold). The existence and properties of the integrals de-

fined by R follow from the fact that R is given by a uniformly smooth kernel, albeit

not properly supported.

Similarly, we define

(5) K := [(∆M + V )−1∂∗ν ]∂N ,

by restricting the kernel of (∆M + V )−1∂∗ν to ∂N . Let f± be the non-tangential

pointwise limits of some function f defined on M \ ∂N , provided that they exist.
More precisely, f+ is the interior non-tangential limit and f− is the exterior non-

tangential limit.

Some of the properties of the single and double layer potentials alluded to above

are summarized in the following theorem.

Theorem 0.1. Given f ∈ L2(∂N), we have

(6) S (f)+ = S (f)− = Sf , ∂νS (f)± = (± 1
2I +K∗)f , and

D(f)± = (∓ 1
2I +K)f,

where K∗ is the formal transpose of K.

These theorems are proved by reduction to the compact case [33] (using the de-

composition (∆M + V )−1 = P + R explained above). As in the classical case of a

compact manifold with smooth boundary, we obtain the following result.
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Theorem 0.2. Let N be a manifold with boundary and cylindrical ends. Then

Hs(N) ∋ u 7→ (∆Nu, u|∂N) ∈ Hs−2(N) ⊕Hs−1/2(∂N)

is a continuous bijection, for any s > 1/2.

A possible application of our results on boundary value problems on manifolds

with cylindrical ends is to Gauge theory, where manifolds with cylindrical ends are

often used. Also, our techniques and results may also be quite relevant for problem

arising in computational mathematics, more precisely for obtaining fast algorithms

on three dimensional polyhedral domains using the so called “Boundary Element

Method” (see [5], [4], [18]).

The reader is referred to [45], [47], or [48] for definitions and background material

on pseudodifferential operators. Note that in our paper we work exclusively with

manifolds of bounded geometry. Throughout the paper, a classical pseudodifferential

operator P will be called elliptic if its principal symbols is invertible outside the zero

section.

Let us now briefly review the contents of each section (recall that M is a manifold

with cylindrical ends). In Section 1, we introduce the algebra of operators Ψ∞
inv(M)

mentioned above and recall the classical characterizations of Fredholm and compact

operators in these algebras. Section 2 deals with the same issues for the algebra

Ψ∞
ai (M), which is a slight enlargement of Ψ∞

inv(M), but has the advantage that

it contains the inverses of its elliptic, L2-invertible elements. We establish several

structure theorems for these algebras. In Section 3, we introduce the double and

single layer potentials for manifolds with cylindrical ends and prove that some of their

basic properties continue to hold in this setting. In Section 4 we study boundary layer

potentials depending on a parameter on compact manifolds using a method initially

developed by G. Verchota in [50], and we obtain estimates which are uniform in the

parameter. These results then allow us to establish the Fredholmness of the operators

S and ± 1
2I + K discussed above. Finally, the last section contains a proof of the

Theorem 0.2, which is a statement about the well-posedness of the inhomogeneous

Dirichlet problem. This allows us to define and study the Dirichlet-to-Neumann map

in the same section.

0.1. Acknowledgments. We are grateful to B.Ammann, T.Christiansen, J.Gil,

and R. Lauter for useful discussions. We are also indebted to E. Schrohe who has sent

us several of his papers and answered some questions. We also thank the referee for

carefully reading our paper and for several useful comments.
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1. Operators on manifolds with cylindrical ends

We begin by introducing the class of manifolds with cylindrical ends (without

boundary) and by reviewing some of the results on the analysis on these manifolds

that are needed in this paper. Here we follow the standard approach [22], [25], [28],

[42] to manifolds with cylindrical ends. For simplicity, we shall usually drop the

subscript M in the notation for the Laplacian ∆M := d∗d on M . Note that in this

paper we use the positive Laplace operator.

1.1. Manifolds with cylindrical ends and the Laplace operator. Let M1

be a compact manifold with boundary ∂M1 6= ∅. We assume that a metric g is given
on M1 and that g1 is a product metric in a tubular neighborhood V ∼= ∂M1 × [0, 1)

of the boundary, namely

(7) g1 = g∂ + (dx)2,

where x ∈ [0, 1) is the second coordinate in ∂M1 × [0, 1) and g∂ is a metric on ∂M1.

Let

(8) M := M1 ∪ (∂M1 × (−∞, 0]), ∂M1 ≡ ∂M1 × {0},

be the union of M1 and ∂M1 × (−∞, 0] along their boundaries. The above decom-

position will be called a standard decomposition of M . The resulting manifold M is

called a manifold with cylindrical ends. Note that a manifold with cylindrical ends

is a complete, non-compact, Riemannian manifold without boundary.

Let M = M1 ∪ (∂M1 × (−∞, 0]) be a manifold with cylindrical ends. Let g be

the metric on M and assume, as above, that g = g∂ + (dx)2 on the cylindrical end

∂M1 × (−∞, 0], where x ∈ (−∞, 0] and g∂ is a metric on ∂M1, the boundary of M1.

Let d be the exterior derivative operator on M so that ∆ = ∆M = d∗d becomes the

(scalar) Laplace operator on M . Also, let ∆∂M1
be the Laplace operator on ∂M1,

defined using the metric g∂. Then

(9) ∆ = ∆M = −∂2
x + ∆∂M1

on the cylindrical end ∂M1 × (−∞, 0].

1.2. Operators that are translation invariant in a neighborhood of infin-

ity. Let M = M1 ∪ (∂M1 × (−∞, 0]) be a manifold with cylindrical ends, as above,

and let, for any s > 0,

(10) ϕs : ∂M1 × (−∞, 0] → ∂M1 × (−∞,−s]
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be the isometry given by translation with −s in the x-direction. If s < 0, then ϕs

is defined as the inverse of ϕ−s. The special form of the operator ∆ obtained at the

end of the previous subsection suggests the following definition.

Definition 1.1. A continuous linear map P : C ∞
c (M) → C ∞(M) will be called

translation invariant in a neighborhood of infinity if its Schwartz kernel has support

in

Vε := {(x, y) ∈M2, dist(x, y) < ε},

for some ε > 0, and there exists R > 0 such that Pϕs(f) = ϕsP (f), for any

f ∈ C∞
c (∂M1 × (−∞,−R)) and any s > 0.

We shall denote by Ψm
inv(M) the space of order m, classical pseudodifferential

operators on M that are translation invariant in a neighborhood of infinity.

As usual, we shall denote by Ψ−∞
inv (M) =

⋂
m

Ψm
inv(M), Ψ∞

inv(M) =
⋃
m

Ψm
inv(M),

m ∈ Z.
We have the following simple lemma.

Lemma 1.2. Every R ∈ Ψ−n−1
inv (M), where n is the dimension of M , induces a

bounded operator on L2(M).

P r o o f. The classical argument applies. Namely, R is defined by a continuous

kernel K. The support condition on K and the translation invariance at infinity

then give ∫

M

|K(x, y)| dx,
∫

M

|K(x, y)| dy 6 C

for some C > 0 that is independent of x or y. This proves that R is bounded on

L2(M), via Schur’s lemma. �

We shall denote by D(T ) the domain of a possibly unbounded operator T . Recall

that an unbounded operator T : D(T ) → X defined on a subset of a Banach space Y

and with values in another Banach spaceX is Fredholm if T is Fredholm as a bounded

operator from its domain D(T ) endowed with the graph norm. Equivalently, T is

Fredholm if it is closed and has finite dimensional kernel and cokernel. Also, T is

called invertible if T is invertible as an operator D(T ) → X . For all differential

operators considered below, we shall consider the minimal closed extension, that is,

the closure of the operators with domain compactly supported smooth functions.

For each nonnegative, even integerm ∈ 2N we shall denote by Hm(M) the domain

of the operator (I+∆)m/2 (∆ = ∆M ), regarded as an unbounded operator on L
2(M):

(11) Hm(M) := D((I + ∆)m/2).
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We endow Hm(M) with the norm

‖u‖m = ‖(I + ∆)m/2u‖L2

(Below, we shall occasionally write ‖ · ‖ instead of ‖ · ‖L2.) Note that I + ∆ > I, and

hence

‖u‖m > ‖u‖.
(Recall that m > 0.)

As usual, we shall denote by H−m(M) the dual of Hm(M), via a duality pair-

ing that extends the pairing between functions and distributions. We thus identify

H−m(M) with a space of distributions on M .

Throughout this paper, we shall denote by T ∗M the cotangent bundle ofM . Also,

for any vector bundle E → M , we shall denote by Sm(E) the space of symbols of

type (1, 0) introduced by Hörmander. Recall that, in local coordinates above an

open subset U ⊂ M , we have a ∈ Sm(U × Rn ) if, and only if, |∂α
x ∂

β
ξ a(x, ξ)| 6

CK,l(1 + |ξ|)m−|β| for all x ∈ K ⋐ U , and all multi-indices α, β with |α|, |β| 6

l. Let σm(P ) ∈ Sm(T ∗M)/Sm−1(T ∗M) be the principal symbol of an operator

P ∈ Ψm
inv(M). See [45], [47], or [48]. The following lemma is a standard result on

pseudodifferential operators. More general results can be found in [2], [28].

Lemma 1.3. Let M be a manifold with cylindrical ends and P ∈ Ψm
inv(M)

(so P is an order m pseudodifferential operator that is translation invariant in a

neighborhood of infinity).

(i) For any s, s′, we have Ψs
inv(M)Ψs′

inv(M) ⊂ Ψs+s′

inv (M) and the principal symbol

σs : Ψs
inv(M)/Ψs−1

inv (M) → Ss(T ∗M)/Ss−1(T ∗M)

induces an isomorphism onto the subspace of symbols that are translation in-

variant in a neighborhood of infinity.

(ii) Any P ∈ Ψm
inv(M) extends to a continuous map P : Hm′

(M) → Hm′−m(M), if

m,m′ ∈ 2Z.
P r o o f. We include a sketch of the proof for the benefit of the reader. See [2],

[3] or [1] for details, where more general results were proved.

(i) follows from the analogous statement for pseudodifferential operators on non-

compact manifolds.

To prove (ii) when m = 0, we use the symbolic calculus, Lemma 1.2 and Hörman-

der’s trick. For m′ > m > 0, use the fact that (I + ∆)k : H2k(M) → L2(M) is an

isomorphism and write

P = (I + ∆)iQ(I + ∆)j +R

for suitable Q,R ∈ Ψ0
inv(M) and i+ j = m/2. The other cases are similar. �
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Let us now recall a classical and well known construction, see for example [28].

Any operator P : C∞
c (M) → C∞(M) that is translation invariant in a neighborhood

of infinity will be properly supported (that is, P (C ∞
c (M)) ⊂ C∞

c (M)). Let s be a

real number and let ϕs be the translation by s on the cylinder ∂M1 × R. Then, for
any f ∈ C∞

c (∂M1 × (−∞, 0)) ⊂ C ∞
c (M), the function

(12) P̃ (f) := ϕ−sPϕs(f) ∈ C
∞
c (∂M1 × (−∞, 0))

is independent of s, provided that s is large enough. This allows us to define an

operator P̃ : C ∞
c (∂M1×R) → C∞

c (∂M1×R) by choosing for any f ∈ C∞
c (∂M1×R)

a large enough s so that

supp(Pϕs(f)), supp(ϕs(f)) ⊂ ∂M1 × (−∞, 0) ⊂M

(this is needed to make sure that ϕ−sPϕs(f) is defined) and so that ϕ−sPϕs(f) is

independent of s.

Definition 1.4. The operator P̃ will be called the indicial operator associated

with P . The resulting map

Φ: Ψ∞
inv(M) ∋ P 7→ P̃ ∈ Ψ∞(∂M1 × R)

will be called the indicial morphism.

Let us notice now that ∂M1 × R is also a manifold with cylindrical ends. The
partially defined action of R on the ends of M extends to a global action of R on
∂M1 × R. We shall denote by Ψ−∞

inv (M1 × R)R the operators in Ψ−∞
inv (M1 × R) that

are invariant with respect to the action of R by translations. Let T ∈ Ψ−∞
inv (M1×R)R

and η be a smooth function on R × ∂M1 with support in (−∞,−1)× ∂M1, equal to

1 in a neighborhood of infinity. Then

(13) s0(T ) := ηTη

defines an operator in Ψ−∞
inv (M).

Lemma 1.5. Let s0 be as in Equation (13). Then Φ(s0(T )) = T for all T ∈
Ψ∞

inv(∂M1×R)R. In particular, the range of the indicial morphism Φ of Definition 1.4

is Ψ∞
inv(∂M1 × R)R.
P r o o f. This is a direct consequence of the definition. �

In order to deal with operators acting on weighted Sobolev spaces, we shall need

the following lemma. (See also [28].) Let us denote by [A,B] := AB − BA the

commutator of two linear maps A and B.
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Lemma 1.6. Let P, P1 ∈ Ψ∞
inv(M) be arbitrary and ̺ : M → (−∞, 0) be a smooth

function such that ̺(y, x) = x on a neighborhood of infinity in ∂M1× (−∞, 0]. Then

(i) Q̃ = P̃ P̃1, if Q = PP1.

(ii) ad̺(P ) := [̺, P ] ∈ Ψ∞
inv(M).

P r o o f. Let f be a function with compact support in ∂M1 × (−∞, 0). We have

that ϕsPP1ϕ−s = ϕsPϕ−sϕsP1ϕ−s, so the relation (i) follows from the definition of

the indicial operator (Definition 1.4).

To prove (ii), we only need to check that ad̺(P ) is translation invariant in a

neighborhood of ∞. Since this is checked on a set of the form ∂M1 × (−∞, 0), we

can assume that M = X × R. Let then ϕs, s ∈ R, be translation by s along R,
namely ϕs(x, y) = (x + s, y), as before. Let ϕs(f) = f ◦ ϕs. We can assume that P

is translation invariant, in the sense that ϕ∗
s(P ) := ϕs ◦P ◦ϕ−s, for any s > 0. Then

(14) ϕ∗
s([x, P ]) = [ϕ∗

s(x), ϕ
∗
s(P )] = [x+ s, P ] = [x, P ].

Thus [x, P ] is also R-invariant.
In general, ̺ = x in a neighborhood of −∞, so the result follows. �

The properties of the indicial operators P̃ are conveniently studied in terms of

indicial families. Indeed, by considering the Fourier transform in the R variable, we
obtain by Plancherel’s theorem an isometric bijection (that is, a unitary operator)

defined, using local coordinates y on ∂M1, by

(15) F : L2(∂M1 × R) → L2(∂M1 × R), F (f)(y, τ) :=
1√
2π

∫R e−iτxf(y, x) dx.

Hereafter, i :=
√
−1.

Because P̃ is translation invariant with respect to the action of R, the result-
ing operator P1 := F P̃F−1 will commute with the multiplication operators in τ ,

and hence it is a decomposable operator, in the sense that there exist (possibly

unbounded) operators P̂ (τ) acting on C∞(∂M1) ⊂ L2(∂M1) such that

(P1f)(τ) = P̂ (τ)f(τ), f(τ) = f(·, τ) ∈ C
∞(∂M1).

In other words,

(16)
[
(F P̃F

−1f)
]
(τ) = P̂ (τ)f(τ).

Using local coordinates, it is not hard to see that the operators P̂ (τ) are clas-

sical pseudodifferential operators and that the map τ 7→ P̂ (τ)f is C∞ for any

f ∈ C∞(∂M1).
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One also has P̃ (eiτxg) = eiτxP̂ (τ)g, for any g ∈ L2(∂M1). Let KP̃ be the distri-

bution kernel of P̃ . Then

(17) KP̃ (x1, x2, y1, y2) = kP̃ (x1 − x2, y1, y2),

for some distribution kP̃ on R × (∂M1)
2. This allows us to write the distribution

kernel of P̂ (τ) as

(18) KP̂ (τ)(y1, y2) =

∫R k(x, y1, y2) e−itτ dx.

Let Q = [̺, P ]. Then

(19) kQ̃ = i
∂

∂τ
P̂ (τ).

See [25], [28] and the references therein.

2. A spectrally invariant algebra

A serious drawback of the algebra Ψ∞
inv(M) is that it is not “spectrally invariant,”

in the sense that the inverse of an elliptic operator P ∈ Ψ∞
inv(M) that is invertible

on L2 is not necessarily in this algebra (Definition 2.7 below). In this section we

slightly enlarge the algebra Ψ∞
inv(M) so that it becomes spectrally invariant. This

will lead us to an algebra of operators that are “almost translation invariant in a

neighborhood of infinity.”

2.1. Operators that are almost translation invariant in a neighborhood

of infinity. We begin by introducing another algebra of pseudodifferential operators

that will be indispensable also later on. Let ̺ : M → (−∞, 0) be a smooth function

such that ̺(y, x) = x for (y, x) ∈ ∂M1 × (−∞,−1), as in Lemma 1.6. Recall that

ad̺(T ) := [̺, T ] = ̺T − T̺. Assume T : C∞
c (M) → C ∞(M) to be a linear map

with the property that

adk
̺(T ) := [̺, [̺, . . . , [̺, T ] . . .]]

extends to a continuous map adk
̺(T ) : H−m(M) → Hm(M), for any m ∈ 2Z+. Let

‖T ‖k,m denote the norm of the resulting operator adk
̺(T ). Recall the section s0

defined in Equation (13).

We define Ψ−∞
ai (M) to be the closure of Ψ−∞

inv (M) with respect to the countable

family of semi-norms

(20) T → ‖T ‖k,m , and T → ‖̺l(T − s0(Φ(T )))̺l‖0,m.
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where k,m/2, l ∈ Z+. Then Ψ−∞
ai (M) is a Fréchet algebra (that is, a Fréchet space

endowed with an algebra structure such that the multiplication is continuous).

Finally, we define

(21) Ψm
ai (M) := Ψm

inv(M) + Ψ−∞
ai (M).

An element P ∈ Ψm
ai (M) will be called almost translation invariant in a neighborhood

of infinity.

It is interesting to observe now that we can introduce dependence on ̺ at infinity

(thus obtaining variants of Melrose’s b-calculus, see [28] and [24]). This is done by

noticing that for any P ∈ Ψm
inv(M) and any N ∈ N there exists a bounded operator

RN : H−k(M) → Hk(M), where 2k 6 m−N , such that

(22) (−̺)−aP (−̺)a −
N−1∑

j=0

(−̺)−j

(
a

j

)
adj

̺(P ) = ̺N/2RN̺
N/2.

(Above,
(
a
j

)
= a(a− 1) . . . (a− j + 1)/j! stand for the usual “binomial” coefficients.)

We now define the fractionary Sobolev spaces. Let s > 0 and choose Ps ∈ Ψs
ai(M)

to be elliptic and to satisfy Ps > 1. We shall denote by Hs(M) the domain of (the

closure of) Ps, regarded as an unbounded operator on L
2(M):

(23) Hs(M) := D(P s).

This definition is independent of our particular choice of Ps because, if P
′
s is another

such selection, we can choose Q ∈ Ψ0
ai(M) and R ∈ Ψ−∞

ai (M) such that

(24) P ′
s = QPs +R.

Thus, if ξ ∈ D(Ps), then there exists a sequence ξn ∈ C∞
c (M), ξn → ξ in L2(M),

such that Psξn converges in L
2(M). But then P ′

s(ξn) = Q(Psξn)+Rξn also converges,

because Q and R are continuous. See also [24].

We endow Hs(M) with the norm ‖f‖s := ‖Psf‖L2(M). (Using a quantization

map from symbols to pseudodifferential operators, we can assume that ‖f‖s depends

analytically on s.) For s < 0, Hs(M) is the dual of H−s(M), regarded as a space

of distributions on M . The subspace C∞
c (M) ⊂ Hs(M) is dense. See [1] for more

results on Sobolev spaces on manifolds with a Lie structure at infinity, a class of

manifolds that includes the class of manifolds with cylindrical ends. For example,

Hs(M) can be identified with the domain of (I + ∆)s/2.

We shall also consider weighted Sobolev spaces as follows. Let ̺ : M → (−∞, 0),

ε > 0, be a smooth functions such that ̺(y, x) = x, for (y, x) ∈ ∂M1 × (−∞,−R]

1163



with R large enough, as before. Then we shall denote by ̺aHs(M) the space of

distributions of the form ̺au, with u ∈ Hs(M). We endow ̺aHs(M) with the norm

‖f‖s,a := ‖̺−af‖s.

We have then the following classical results about almost translation invariant

pseudodifferential operators on the manifold with cylindrical ends M [30]. (See [22],

[24], [31], [40], [42], [44].) These results generalize the corresponding even more

classical results on pseudodifferential operators on compact manifolds.

Theorem 2.1. Let M be a manifold with cylindrical ends and P ∈ Ψm
ai (M) (so

P is an order m pseudodifferential operator that is almost translation invariant in a

neighborhood of infinity). Also, let ̺ > 0, ̺(y, x) = −x on a neighborhood of infinity
in ∂M1 × (−∞, 0]. Let s, a ∈ R be arbitrary, but fixed. Then:
(i) P extends to a continuous operator P : ̺aHs(M) → ̺aHs−m(M).

(ii) P : ̺aHs(M) → ̺a′

Hs−m′

(M) is compact for any a′ < a and m′ > m.

(iii) P : ̺aHs(M) → ̺aHs−m(M) is compact ⇔ σm(P ) = 0 and P̃ = 0.

(iv) P : ̺aHs(M) → ̺aHs−m(M) is Fredholm ⇔ σm(P ) is invertible and the oper-

ator P̃ : Hs(∂M1 × R) → Hs−m(∂M1 × R) is an isomorphism.

P r o o f. This theorem follows for example from the results in [28], or the older

preprint [30]. �

A far reaching program for generalizing the above result to other classes of non-

compact manifolds is contained in Melrose’s “small red book” [29]. See also [37].

Also, see [43] for an extension of the above results to Lp-spaces, and [7] for some

applications to non-linear evolution equations.

As a consequence, we obtain the following result. Recall [39], [38], [47] that if

T : D(T ) ⊂ H → H is an unbounded operator on a Hilbert space H , then its adjoint

T ∗ : D(T ∗) ⊂ H → H is defined by its domain D(T ∗) = {y ∈ H, ∃z ∈ H, (Tx, y) =

(x, z), ∀x ∈ D(T )} and T ∗(y) = z. An unbounded operator on a Hilbert space H

is called symmetric if (Tx, y) = (x, T y) for all x, y ∈ D(T ). It is called self-adjoint

if T ∗ = T . Note that T = i∂x : C∞
c (I) → L2(I), I = (0,∞), is an example of a

symmetric operator that has no self-adjoint extensions. The following lemma shows

that this cannot happen if T ∈ Ψm
ai (M). Recall that the closure of an operator T (if

there is one) is the operator whose graph is the closure of the graph of T
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Corollary 2.2. Let P ∈ Ψm
ai (M), m > 0, be elliptic. If P : C∞

c (M) → L2(M)

satisfies (Pf, g) = (f, Pg), for f, g ∈ C∞
c (M), then the closure of P is an unbounded

self-adjoint operator on L2(M).

P r o o f. We replace P by its closure first. It is enough [39], [38], [47] to prove

that P ± iI is invertible. Denote the inner product on L2(M) by 〈 · , · 〉. Then
〈(P ± iI)ξ, ξ〉 = ‖Pξ‖2 + ‖ξ‖2, for any ξ in the domain of P , and hence P ± iI

is injective and has closed range. We shall work in the space of continuous (i.e.,

bounded) maps L2(M) → L2(M), endowed with the topology defined by the norm.

Let us prove that the range of P ± iI is dense. We deal only with P + iI, because

the other case is completely similar. Assume the range of P ± iI is not dense, then

there exists η ∈ L2(M) such that

〈(P + iI)ξ, η〉 = 0

for all ξ ∈ C∞
c (M). Then (P − iI)η = 0 in the sense of distributions. Select

Q ∈ Ψ−m
ai (M) such that Q(P − iI) = I − R, where R ∈ Ψ−∞

ai (M). Then η = Rη.

Choose ηn ∈ C∞
c (M), ηn → η in L2(M). By the definition of Ψ−∞

ai (M), we can find

operators Rn ∈ Ψ−∞
inv (M) such that

‖R−Rn‖0,m′ := ‖(I + ∆)m′/2(R −Rn)(I + ∆)m′/2‖ → 0,

for m′ > m. Then ξn := Rnηn → η, as well, and ξn ∈ C ∞
c (M). Moreover,

(P − iI)ξn = (P − iI)Rnηn → (P − iI)Rη,

because the operators (P − iI)Rn are continuous on L
2(M) and converge in norm

to (P − iI)R ∈ Ψ−∞
ai (M). This proves that η is in the domain of the closure of P ,

which is a contradiction, since we have already seen that P − iI is injective. �

We now investigate the structure of the ideals of the algebras Ψ−∞
inv (M) and, most

importantly, Ψ−∞
ai (M). For any compact manifold X , we shall denote by S (Rk ×X)

the space of Schwartz functions on Rk ×X .

Lemma 2.3. The range of the map

(25) Φ: Ψ−∞
ai (M) ∋ P 7→ P̃ ∈ Ψ−∞(∂M1 × R)

identifies with S (R×(∂M1)2), via the map χ that sends the kernelK(t1, t2, y1, y2) ∈
C∞(R2 ×(∂M1)

2) of P̃ to the function k(t, y1, y2) = K(t, 0, y1, y2) ∈ S (R×(∂M1)2).

In particular, Φ(Ψ−∞
ai (M)) = Ψ−∞

ai (∂M1 × R)R.
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P r o o f. The indicial map

Φ: Ψ−∞
inv (M) → Ψ−∞

inv (∂M1 × R)

of Definition 1.4 is by definition continuous. It is also surjective by Proposition 1.5.

It has a canonical continuous section s0, which associates to T ∈ Ψ∞
inv(M1 ×R)R the

operator s0(T ) := ηTη, where η is a smooth function on R × ∂M1 and with support

in (−∞,−1)×∂M1, and equal to 1 in a neighborhood of infinity (cf. Equation (13)).

Moreover, s0 sends properly supported operators to Ψ−∞
inv (M). This shows that

Ψ−∞
inv (M) ∼= ker(Φ) ⊕ s0(Ψ

∞
inv(M1 × R))R,

as Fréchet spaces. We also see that the quotient seminorms defined by the seminorms

of Equation (20) on the range of Φ are the same as the seminorms defining the

topology onS (R×(∂M1)2). SinceS (R×(∂M1)2) is the closure of χ(Ψ−∞
inv (M1×R)),

the result follows. �

The same proof as above also gives the following result.

Corollary 2.4. Let Y be a compact, smooth manifold without boundary. Then

the algebra Ψ−∞
ai (Y × R)R is the space of operators T on L2(Y × R) such that

(I + ∆Y ×R)madk
̺(T )(I + ∆Y ×R)m is continuous on L2(M) and R-invariant for any

m, k ∈ Z+. The resulting family of seminorms is the family of seminorms of Equation

(20) defining the topology on Ψ−∞
ai (Y × R)R.

Let I be the kernel of the map Φ: Ψ−∞
ai (M) → Ψ−∞(∂M1×R) of Definition (25).

It is an ideal of Ψ∞
ai (M) (i.e., Ψ∞

ai (M)I = IΨ∞
ai (M)). We also have the following

description of I that is similar in spirit to Corollary 2.4.

Lemma 2.5. The space I is the space of all continuous operators T on L2(M)

such that (I + ∆)m̺lT̺l(I + ∆)m is bounded on L2(M) for any m, l ∈ Z+. The

resulting family of seminorms is the family of seminorms of Equation (20) defining

the topology on I.

P r o o f. It is clear from the definition that

T → ‖(I + ∆)m̺lT̺l(I + ∆)m‖

is one of the seminorms of Equation (20), namely ‖ · ‖l,m.

Conversely, let T be an operator on L2(M) such that for each m, l ∈ Z+ the

operator (I +∆)m̺lT̺l(I +∆)m is bounded. The family of seminorms T → ‖̺l(I +

∆)mT (I+∆)m̺l‖ is equivalent to the family ‖·‖l,m. We shall use this family instead.
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The Schwartz kernel of T is KT (x, y) = 〈Tδy, δx〉 and it satisfies

(26) ̺l(x)̺l(y)|KT (x, y)| 6 C2‖̺l(I + ∆)mT (I + ∆)m̺l‖

where C > ‖δx‖−m, uniformly in x ∈M , for some m > n/2. (We have used here the

Sobolev embedding theorem for manifolds with cylindrical ends [1].)

We shall prove now that T is in the closure of kerΦ ⊂ Ψ−∞
inv (M) (recall that

Φ(T ) = T̃ is the indicial map). Let αn = 1−ϕn(η) ∈ C∞
c (M), where ϕn is translation

by −n on the cylindrical end, and η ∈ C ∞(M) is equal to 1 in a neighborhood of

infinity and is supported on ∂M1 × (−∞, 0], if

M = M1 ∪ ∂M1 × (−∞, 0]

is a standard decomposition of M .

We have that Tn := αnTαn has the compactly supported Schwartz kernel

KTn
(x, y) = αn(x)KT (x, y)αn(y).

Taking l > 1 in the Equation (26), we see using Shur’s lemma (as in the proof of

Lemma 1.2) that ‖Tn − T ‖ → 0 (the norm here is that of bounded operators on

L2(M)). The proof that ‖Tn − T ‖l,m → 0 for l > 0 or m > 0 is completely similar.

�

Let M = M1 ∪ (∂M1 × (−∞, 0]) be a standard decomposition of M (so M1 is a

smooth, compact manifold with smooth boundary). We consider a tubular neighbor-

hood ∂M1 × [0, 1) ⊂ M1 of the boundary ∂M1 of M1. Consider, as before, a diffeo-

morphism ψ from M to the interior of M1 that coincides with (y, t) 7→ (y,−t−1) ∈
∂M1×(0, 1) ⊂M1 in a neighborhood of infinity. This diffeomorphism can be assumed

to be the identity outside the tubular neighborhood ∂M1 × [0, 1) and to correspond

to a diffeomorphism of (−∞, 0] onto (0, 1/2].

Corollary 2.6. The diffeomorphism ψ above identifies I with C∞
0 (M2

1 ), that is,

the space of smooth functions on M2
1 that vanish to infinite order at the boundary

∂(M2
1 ) = (∂M1 ×M1) ∪ (M1 × ∂M1).

P r o o f. This follows right away from the proof of Lemma 2.5. �

To formulate the following results, it is convenient to use the following classical

concept (see [41], for example). Let L (H ) denote the algebra of bounded operators

on some Hilbert space H .

Definition 2.7. Let A be an algebra of bounded operators on some Hilbert

space H (i.e., A ⊂ L (H )). We say that A is spectrally invariant if, and only if,

(I+T )−1 ∈ I+A , for any T ∈ A such that I+T is invertible as an operator onH .
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Lemma 2.8. The algebras I ⊂ L (L2(M)) and the algebra Ψ−∞
ai (∂M1 × R)R ⊂

L (L2(∂M1 × R)) are spectrally invariant.

P r o o f. Both are well known results (see [24] or [42] and the references therein).

An easy proof is obtained using Lemma 2.5 or, respectively, Corollary 2.4. �

The property of being spectrally invariant is preserved under extensions of algebras

(see [24]). Using this twice, we obtain the following result.

Corollary 2.9. The algebras Ψ−∞
ai (M) ⊂ L (L2(M)) and Ψ0

ai(M) ⊂ L (L2(M))

are spectrally invariant.

A proof of this corollary is also contained in the following theorem, which is the

main result of this section. It states that Ψ∞
ai (M) is, in a certain sense, also spectrally

invariant, its proof does not rely on the above corollary.

Theorem 2.10. Let T ∈ Ψm
ai (M), m > 0, be such that T is invertible as a

(possibly unbounded) operator on L2(M). If m > 0, we assume also that T is

elliptic. Then T−1 ∈ Ψ−m
ai (M).

P r o o f. Note that for m = 0, it is a consequence of the invertibility that T must

again be elliptic, as in the case m > 0.

Let Q1 be a parametrix of T , namely, Q1 ∈ Ψ−m
ai (M) and

Q1T − I, TQ1 − I ∈ Ψ−∞
ai (M).

Let ξ be a distribution such that ξ , T ξ ∈ L2(M). Then

ξ = Q1(Tξ) − (Q1T − I)ξ ∈ Hm(M).

This shows that the maximal domain of T is Hm(M). Since T is invertible, the graph

topology on the domain of T coincides with the topology of Hm(M). It follows then

that T : Hm(M) → L2(M) is Fredholm (in fact, even invertible) and hence T̂ (τ) is

invertible in L (L2(∂M1)) for any τ ∈ R.
Let R1 ∈ Ψ−∞

ai (M) be such that R1 and R̂1(τ) are injective, for any τ ∈ R.
(This is possible because L2(M) has a countable orthonormal basis. It would not

be possible to chose such an R1 ∈ Ψ−∞
inv (M), we owe this comment to the referee.)

Then Q2 := Q∗
1Q1 +R∗

1R1 is a parametrix of TT
∗ such that Q2 : L2(M) → H2m(M)

is an isomorphism. Let R2 := TT ∗Q2 − I ∈ Ψ−∞
ai (M). By construction, I + R2 is

invertible on L2(M) and I + R̂2(τ) are invertible on L
2(∂M1) for any τ ∈ R.

By Lemma 2.8 applied to I + R̂2(τ) and the algebra Ψ−∞
ai (∂M1 × R)R, we can

find R3 ∈ Ψ−∞
ai (M) such that (I + R2)(I + R3) − I ∈ I. (We can take R3 =
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s0[(I + R̃2)
−1 − I]. We can also assume that I +R3 is injective, by replacing I +R3

with

(I +R2)
∗[(I +R3)

∗(I +R3) +R∗
4R4],

where R4 ∈ I is injective.

We are now ready to complete our proof. The operator R5 := TT ∗Q2(I+R3)−I ∈
I is such that I+R5 is injective. It follows that I+R5 = TT ∗Q2(I+R3) is Fredholm

of index zero and, hence, invertible on L2(M). Using again Lemma 2.8, we obtain

that there exists R6 ∈ I such that (I +R5)(I +R6) = I. Thus,

TT ∗Q2(I +R3)(I +R6) = I.

This means that P := T ∗Q2(I + R3)(I +R6) is a right inverse to T . We can prove

in exactly the same way that T has a left inverse in Ψ−m
ai (M) and, hence, that it is

invertible in Ψ∞
ai (M). �

The above theorem applied to T = I + ∆ gives the following result.

Corollary 2.11. Let M be a manifold with cylindrical ends and ∆ = ∆M be the

Laplace operator on M . Then (I + ∆)−1 ∈ Ψ−2
ai (M).

2.2. Perturbation by potentials. We shall need also a further extension of the

above corollary. To state it, recall that an operator L, mapping L2
loc into distribu-

tions, is said to have the unique continuation property if

Lu = 0 & u vanishes in an open set =⇒ u = 0 on M.

Proposition 2.12. Let L ∈ Ψm
ai (M) be nonnegative (that is, (Lf, f) > 0 for all

f ∈ C∞
c (M)) and satisfy the unique continuation property. Also, let V ∈ C∞(M) ∩

Ψ0
ai(M) (that is, V is translation invariant in a neighborhood of infinity), V > 0, such

that V is strictly positive on some open subset of M . Then, if L + V : Hm(M) →
L2(M) is Fredholm, it is also invertible.

P r o o f. The assumptions L > 0 and V > 0 imply L+V > 0, as well. Assume by

contradiction that L + V : Hm(M) → L2(M) is Fredholm but not invertible. Then

L+ V is Fredholm as an unbounded operator on L2(M) and is not invertible. This

shows that 0 must be an eigenvalue of L+ V .

Let u 6= 0, u ∈ L2(M) be an associated eigenvector:

(L+ V )u = 0.
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Then

〈Lu, u〉+ 〈V u, u〉 = 0,

where 〈·, ·〉 is the inner product on L2(M).

Since 〈Lu, u〉 > 0 and 〈V u, u〉 > 0, we must have both ‖L1/2u‖2 = 〈Lu, u〉 = 0

and ‖V 1/2u‖2 = 〈V u, u〉 = 0. Thus Lu = 0 and V u = 0. The second relation gives

that u vanishes on some open subset of M . Since L has the unique continuation

property, u must vanish identically. This contradicts the original assumptions and

the proof is now complete. �

Example. If T ∈ Ψk
ai(M) has the unique continuation property then L := T ∗T

satisfies the hypotheses of the above proposition (with m = 2k). In particular, this

is the case for ∆ = ∆M = d∗d, since the kernel of d = dM consists of only locally

constant functions.

The following theorem is crucial for our approach to extending the method of layer

potentials to manifolds with cylindrical ends.

Theorem 2.13. Let M be a manifold with cylindrical ends and V > 0 be a

smooth function onM that is translation invariant in a neighborhood of infinity and

does not vanish at infinity. Denote by ∆ = ∆M the Laplace operator on M . Then

∆ +V is invertible as an unbounded operator on L2(M) and (∆ +V )−1 ∈ Ψ−2
ai (M).

P r o o f. For starters, ∆ is non-negative (∆ > 0) and has the unique contin-

uation property (cf. the previous example). Since the potential V is non-negative,

as well as strictly positive on some non-empty open set, our result will follow from

Proposition 2.12 as soon as we show that ∆ + V : H2(M) → L2(M) is Fredholm.

Since ∆ is elliptic, P := ∆ + V : H2(M) → L2(M) will be Fredholm if, and only

if, P̃ is invertible. In turn, to show that P̃ is invertible it suffices to prove the norm

of the inverse of P̂ (τ) : H2(∂M1) → L2(∂M1) is bounded uniformly in τ ∈ R.
More specifically, let V∞ ∈ C∞(∂M1) be the limit at infinity of the function V .

(This limit exists because we assumed V to be translation invariant in a neighborhood

of infinity.) Denote ∆ = ∆∂M1
, to simplify notation in what follows. By definition,

we have

P̂ (τ) = ∆ + τ2 + V∞.

Since V∞ + τ2 > 0 and does not vanish identically for any τ ∈ R, by assumption, we
obtain as in [33] that P̂ (τ) is indeed invertible for any τ ∈ R. (One can also justify
this using the methods used to prove Proposition 2.12.)

Let L (X,Y ) denote the normed space of all linear bounded operators between

two Banach spaces X , Y .
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The invertibility of ∆ + V∞ implies that ∆∂M1
+ V∞ > cI, for some c > 0. The

functional calculus gives that (∆ + τ2 + V∞)2 > c2I and that

(∆ + τ2 + V∞)2 > (∆ + V∞)2 >
1

4
∆2 +

1

2
(∆ + V∞)2 − V 2

∞ >
1

4
∆2 − ‖V∞‖2

∞ .

Consequently,

(27) (∆+ τ2 +V∞)2 >
ε

4
(∆2 − 4‖V∞‖∞)+ (1− ε)c2 > 2C2(∆2 + 1) > C2(∆+ 1)2,

if ε > 0 and C > 0 are small enough. In particular, we obtain from Equation (27)

that

‖(∆ + τ2 + V∞)(∆ + 1)−1‖ > C,

and, ultimately,

‖(∆∂M1
+ τ2 + V∞)−1‖L (L2(∂M1),H2(∂M1))

= ‖(∆∂M1
+ 1)(∆∂M1

+ τ2 + V∞)−1‖L (L2(∂M1),L2(∂M1)) 6 C−1,

for any τ ∈ R. This completes the proof of our theorem. �

Let us mention that in the proof of the above theorem we used an ad-hoc argument

to prove a result that holds in much greater generality. Namely, assume that P is

elliptic of order m. Then there exists R > 0 such that P̂ (τ) is invertible as a map

Hm(∂M1) → L2(∂M1), for any |τ | > R. Moreover, P̂ (τ)−1 depends continuously

on τ on its domain of definition. In particular, if P is elliptic of order m > 0

and P̂ (τ) is invertible for any τ , then ‖P̂ (τ)−1‖ is uniformly bounded as a map
L2(∂M1) → Hm(∂M1). See [46], especially Theorem 9.2, for details.

2.3. Products. We shall need also the following product decomposition result

for the ideal of regularizing, almost invariant pseudodifferential operators.

First, let us observe that if M is a manifold with cylindrical ends and X is a

smooth, compact, Riemannian manifold without boundary, then M × X is also a

manifold with cylindrical ends.

For any Fréchet algebra A, we shall denote by C∞(X2, A) the space of smooth

functions on X ×X and values in A, with the induced topology and the product:

(28) f ⋆ g(x, x′′) =

∫

X

f(x, x′)g(x′, x′′) dx′,

the integration being with respect to the volume element obtained from the Rieman-

nian metric on X . For example, Ψ−∞(X) ∼= C∞(X2, C ).

1171



Theorem 2.14. Let M be a manifold with cylindrical ends and X be a smooth,

compact, Riemannian manifold without boundary. Then Ψ−∞
ai (M×X) is isomorphic

to C ∞(X2,Ψ−∞
ai (M)).

P r o o f. Let us denote by S (R, V ) the Schwartz space of rapidly decreasing

smooth functions on R with values in a Fréchet space V . Also, let C ∞
0 denote the

space of smooth functions on a manifold with boundary that vanish to infinite order

at the boundary, as in the statement of Corollary 2.6.

The statement of the theorem follows from Lemma 2.3, Corollary 2.6, and the

relations

(29) S (R,C ∞((∂M1 ×X)2)) ≃ C
∞(X2,S (R,C ∞((∂M1)

2))) , and

C
∞
0 ((∂M1 ×X)2) ≃ C

∞(X2,C∞
0 ((∂M1)

2)) .

�

3. Boundary layer potential integrals

We want to extend the method of boundary layer potential to manifolds with

cylindrical ends. We begin by introducing the class of manifolds with boundary that

we plan to study in this paper.

3.1. Submanifolds with cylindrical ends. Let N ⊂M be a submanifold with

boundary of a manifold with cylindrical ends. We want to generalize the method

of layer potentials to this non-compact case. We notice that N plays a role in the

method of boundary layer potentials mostly through its boundary ∂N . (We shall

make our assumptions on N more precise below in Definition 5.1.) Because of this,

we shall formulate some of our results in the slightly more general setting when ∂N

is replaced by a suitable submanifold of codimension one.

Definition 3.1. LetM = M1∪ (∂M1× (−∞, 0]) be a manifold with cylindrical

ends. A submanifold with cylindrical ends of M is a submanifold Z ⊂M such that

Z ∩ (∂M1 × (−∞, 0]) = Z ′ × (−∞, 0],

for some submanifold Z ′ ⊂ ∂M1. We shall write then Z ∼ Z ′ × (−∞, 0].

We shall fix Z,Z ′ as above in what follows. Our main interest is of course when

Z = ∂N , but for certain reasonings, it is useful to allow this slightly greater level of

generality.
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Let us recall from [48, vol. II, Proposition 2.8], that a distribution L on Rn × Rn

is the kernel of a classical pseudodifferential operator of order −j, j = 1, 2, . . . , if,

and only if,

(30) L ∼
∞∑

l=0

(ql(x, z) + pl(x, z) ln |z|)

where ql are smooth functions of x with values distributions in z that are homoge-

neous of degree j+ l−n and smooth for z 6= 0, and pl are polynomials homogeneous

of degree j + l− n. (The sign “∼” in Equation (30) above means that the difference
L−

N∑
l=0

(ql(x, z)+pl(x, z) ln |z|) is as smooth as we want if N is chosen large enough.)
It is not difficult to check that the converse holds true also for j = 0 under some

additional conditions, for example when p0 = 0 and q0(x, z) is odd in z and the

associated distribution is defined by a principal value integral.

Theorem 3.2. Let M be a manifold with cylindrical ends and let Z ⊂ M be

a codimension one submanifold with cylindrical ends, as in Definition 3.1. If P ∈
Ψm

inv(M), m < −1, is given by the kernel K ∈ C∞(M2 \M), then the restriction of

K to Z2 \Z extends uniquely to the kernel of an operator PZ ∈ Ψm+1
inv (Z). The same

result holds true with Ψm
ai (M) and Ψm+1

ai (Z) replacing Ψm
inv(M) and Ψm+1

inv (Z).

Moreover, if σm(P ) is odd, then we can also allow m = −1, provided that we

define PZ by using a principal value integral.

P r o o f. Let P ∈ Ψm
inv(M). Then K is supported in a set of the form

Vε := {(x, y) ∈M2, dist(x, y) < ε},

by Definition 1.1. Clearly the restriction of K to Z2 \Z will be supported in Vε∩Z2.

Moreover, by standard (local) arguments, namely Equation (30) above, K|Z×Z is

the kernel of a unique pseudodifferential operator on Z of order 6 m+ 1. (See [47],

[48]). The translation invariance of this operator follows from the definition.

To prove the same result for operators that are almost translation invariant in a

neighborhood of infinity, it is enough to do this for order −∞ operators. More pre-
cisely, we need to check that if T ∈ Ψ−∞

ai (M), then TZ ∈ Ψ−∞
ai (Z). This statement

is local in a neighborhood of Z in the following sense. Let ϕ be a smooth function

on M that is translation invariant in a neighborhood of infinity, ϕ = 1 in a neigh-

borhood of Z and with support in a small neighborhood of Z. The statement for

T is equivalent to the corresponding statement for ϕTϕ. We can assume then that

M = Z × S1, with Z identified with Z × {1}. By the Theorem 2.14, we can write
T = T (θ, θ′), θ, θ′ ∈ S1 to be a smooth function with values in Ψ−∞

ai (Z). The result

then follows because TZ = T (1, 1). �
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We need now to investigate the relation between restriction to the submanifold Z

of codimension one in M and indicial operators.

Proposition 3.3. Let Z ⊂M be as in Definition 3.1, with Z of codimension one,

Z ∼ Z ′ × (−∞, 0], in a neighborhood of infinity. Let P ∈ Ψm
ai (M), m 6 −1. Then

P̃Z′×R = P̃Z and [P̂ (τ)]Z′ = P̂Z(τ).

P r o o f. This follows from definitions, as follows. First we notice that both

statements of the Proposition are local in a neighborhood of infinity, so we can

assume that Z = Z ′ × R. The first relation then is automatic. For the second
relation we also use the fact that the restriction to Z ′ and the Fourier transform in

the R-direction commute. �

3.2. Boundary layer potential integrals. We now proceed to define the bound-

ary layer potential integrals. Let M be a manifold with cylindrical ends and Z ⊂M

be a submanifold with cylindrical ends of codimension one. (Later on we shall re-

strict ourselves to the case when Z = ∂N , where N ⊂ M is a submanifold with

boundary and cylindrical ends. For now though, it is more convenient to continue

to consider this more general case.)

Let δZ be the surface measure on Z, regarded as a distribution onM . If f ∈ L2(Z),

then

(31) f ⊗ δZ ∈ H−a(M) , a > 1/2.

Similarly, if δ′Z is the normal derivative of δZ , then

(32) f ⊗ δ′Z ∈ H−a−1(M) , a > 1/2.

Definition 3.4. Fix a smooth function V > 0, V ∈ Ψ0
inv(M), V not identical

equal to 0 on M . As before, we shall continue to denote by ∆ = ∆M the Laplace

operator on M . Let f ∈ L2(Z) and a > 1/2. The single layer potential integral

associated to Z ⊂M and ∆ + V is defined as

S (f) := (∆ + V )−1(f ⊗ δZ) ∈ H2−a(M),

and the double layer potential integral associated to Z ⊂M and V is defined as

D(f) := (∆ + V )−1(f ⊗ δ′Z) ∈ H1−a(M).

Assume that the normal bundle of Z in M is oriented (so there will be a positive

side and negative side of Z inM). As in [33] we shall denote by f± the non-tangential

1174



limits of some function defined onM \Z, when we approach Z from the positive side
(+), respectively from the negative side (−), provided, of course, that these limits
exist pointwise almost everywhere. (It is here where we need the normal bundle to

Z to be oriented.)

We now begin to follow the strategy of [33]. Let

(33) S := [(∆ + V )−1]Z ∈ Ψ−1
ai (Z).

We shall fix in what follows a vector field ∂ν onM that is normal to Z at every point

of Z. The principal symbol of the order −1 operator (∆ + V )−1∂∗ν is odd, so we can

also define

(34) K := [(∆ + V )−1∂∗ν ]Z ∈ Ψ0
ai(Z).

Proposition 3.5. With the above notation, the operator S of Equation (33) is

elliptic. Moreover, the zero principal symbol of K vanishes, σ0(K) = 0, and hence

actually K ∈ Ψ−1
ai (Z).

P r o o f. First, the fact that S is elliptic follows from a symbol calculation (which

is local in nature) analogous to [35, (3.42), p. 33]. In fact, similar considerations

show that σ0(K) = 0 so, in fact, K ∈ Ψ−1
ai (Z). See also the discussion in [48, vol. II,

Proposition 11.2, p. 36]. �

Let Z ⊂M be a codimension one submanifold with cylindrical ends with oriented

normal bundle to Z. Then we shall denote by f+ the non-tangential limits at Z

from the positive part of the normal bundle. Similarly, we shall denote by f− the

non-tangential limits at Z from the negative part of the normal bundle.

Theorem 3.6. Let Z ⊂ M be a codimension one submanifold with cylindrical

ends. Assume the normal bundle to Z is oriented. Given f ∈ L2(Z), we have

S (f)+ = S (f)− = Sf

as pointwise a.e. limits. Also, using the notation of Equation (34) above, we have

∂νS (f)± = (± 1
2I +K∗)f,

where K∗ is the formal transpose of K.

P r o o f. Let us write T := (∆ + V )−1 = P + R, where P ∈ Ψm
inv(M) (so it

is translation invariant in a neighborhood of infinity) and R ∈ Ψ−∞
ai (M). The first

statement of the proposition, namely

[T (f ⊗ δZ)]± = TZf

1175



is clearly linear in T ∈ Ψm
ai (M), m < −1. It is enough then to prove it for P and R

separately.

For T = (∆+V )−1 replaced by P , this is a local statement (because P is properly

supported), which then follows from [33, Proposition 3.8].

For T replaced by R, we argue as in the proof of Theorem 3.2 that we can assume

that M = Z × S1, with Z identified with the submanifold Z × {1}. Then we use
again Theorem 2.14 to write R = R(θ, θ′), for some smooth function with values in

Ψ−∞
ai (Z).

This gives

R(f ⊗ δZ)(z, θ) = [R(θ, 1)f ](z)

and RZ = R(1, 1). Let gθ(z) = R(f ⊗ δZ)(z, θ). The assumptions on the function

R(θ, θ′) guarantee that the function

S1 ∋ θ 7→ gθ ∈ Hm(M)

is continuous (in fact, even C∞) for any m. Then

[R(f ⊗ δZ)]± = lim
θ→1±0

gθ = g1 := R(1, 1)f = RZf.

�

The following theorem is proved in a completely similar way, following the results

of [33, Proposition 3.8].

Theorem 3.7. Let Z be a codimension one submanifold with cylindrical ends of

M with oriented normal bundle. Given f ∈ L2(Z), we have

D(f)± = (∓ 1
2I +K)f

as pointwise a.e. limits.

We can replace the pointwise almost everywhere limits with L2-limits both for the

tangential limits of the single and double layer potentials; see Theorem 3.12.

For further reference, let us discuss now the “trace theorem” for codimension one

submanifolds in our setting. See [1] for more details and results of this kind for

manifolds with a Lie structure at infinity.
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Proposition 3.8. Let Z ⊂ M be a submanifolds with cylindrical ends of the

manifold with cylindrical ends M . Then the restriction map C∞
c (M) → C ∞

c (Z)

extends to a continuous map Hs(M) → Hs−1/2(Z), for any s > 1/2.

P r o o f. We can assume, as in the proof of Theorem 3.6, that M = Z × S1.

Since the Sobolev spaces Hs(M) and Hs−1/2(Z) do not depend on the metric on

M and Z, as long as these metrics are compatible with the structure of manifolds

with cylindrical ends, we can assume that the circle S1 is given the invariant metric

making it of length 2π and that M is given the product metric.

Then ∆ = ∆Z + ∆S1 and ∆S1 = −∂2
θ has spectrum {4π

2n2}, n ∈ Z. Let L2(Z ×
S1)n ⊂ L2(Z × S1) denote the eigenspace corresponding to the eigenvalues n ∈ Z of
(2πi)−1∂θ. Then

L2(Z × S1) ≃
⊕

n∈ZL2(Z × S1)n ≃
⊕

n∈ZL2(Z),

where the isomorphism L2(Z×S1)n ≃ ⊕
n∈ZL2(Z) is obtained by restricting to 1 ∈ S1.

To prove our proposition, it is enough to check that if ξn ∈ L2(Z) is a sequence

such that

(35)
∑

n

‖(1 + n2 + ∆Z)s/2ξn‖2 <∞

then
∑

(1 + ∆Z)s/2−1/4ξn is convergent.

Let C = 1 +
∫R(1 + t2)−s dt and assume that each ξn is in the spectral subspace

of ∆Z corresponding to [m,m+ 1) ⊂ R+ . Then

(1 +m2)s−1/2

( ∑

n

‖ξn‖
)2

6 C
∑

n

‖(1 + n2 +m2)s/2ξn‖2.

Since the constantC is independent ofm and the spectral spaces of∆Z corresponding

to [m,m+1) ⊂ R give an orthogonal direct sum decomposition of L2(Z), this checks

Equation (35) and completes the proof. �

3.3. Higher regularity of the layer potentials. We shall not need the follow-

ing results in what follows. We include them for completeness and because they give

a better intuitive picture of the properties of layer potentials. Choose a small open

tubular neighborhood U of Z in M , such that U ≃ Z× (−ε, ε) via a diffeomorphism
that is compatible with the cylindrical ends structure of Z and M . For example,

assume that ∂ν is a vector field on M that is normal to Z and translation invariant
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in a neighborhood of infinity. Denote by exp(t∂ν) the one-parameter group of diffeo-

morphisms generated by ∂ν . (This group exists because ∂ν extends to the canonical

compactification of M to a manifold with boundary ≃M1.) Then the range U = Uε

of the map

Z × (−ε, ε) ∋ (z, t) 7→ Ψ(z, t) := exp(t∂ν)z ∈M

is a good choice, for ε > 0 small enough. In particular, for ε small enough, the

complement U c
ε of Uε is a smooth submanifold with boundary, such that its boundary

∂U c
ε is a submanifold with cylindrical ends. Moreover, ∂U

c
ε = Z−ε ∪ Z+ε is the

disjoint union of two manifolds diffeomorphic to Z via Z ≃ Z × {±ε} ≃ Z±ε, where

the second map is given by Ψ.

Denote by Hm(U c
ε ) the space of restrictions of distributions in Hm(M) to (the

interior of) the complement of Uε.

The following two theorems describe the mapping properties of the single and

double layer potentials. Since the statements and proofs work actually in greater

generality, we begin with some more general results, which we shall then specialize

to the case of single and double layer potentials.

Theorem 3.9. Let U ≃ Z × (−ε, ε) be a tubular neighborhood of Z in M (as

above) and let T ∈ Ψm
ai (M). Restriction to U c defines for any s continuous maps

Hs(Z) ∋ f 7→ T (f ⊗ δZ) ∈ H∞(U c),

which are translation invariant in a neighborhood of infinity, for any tubular neigh-

borhood U of Z.

P r o o f. Let ψ0 and ψ1 be smooth functions on M and T ∈ Ψm
ai (M). Assume

the following: ψ0 and ψ1 are translation invariant in a neighborhood of infinity; ψ0

is equal to 1 in a neighborhood of Z; ψ1 vanishes in a neighborhood of the support

of ψ0; and ψ0 is equal to 1 in a neighborhood of U c. Then

T (f ⊗ δZ)|Uc = (ψ1Tψ0)(f ⊗ δZ)

and ψ1Tψ0 ∈ Ψ−∞
ai (M) because the supports of ψ0 and ψ1 are disjoint. �

Consider now U = Uε ≃ Z × (−ε, ε), for ε > 0 small enough, where the last

diffeomorphism is given by the exponential map. Then decompose ∂U c
ε = Z+ε ∪Z−ε

as a disjoint union, as above. In particular, we fix the diffeomorphisms Z ≃ Z±ε

defined by the exponential, as above. Then the traces of the restrictions to U c
ε

(36) Hs(Z) ∋ f → T±εf := T (f ⊗ δZ)|Z±ε
∈ Hs′

(Z±ε) ≃ Hs′

(Z)

define continuous operators T±ε : Hs(Z) → Hs′

(Z), for any s, s′ ∈ R.
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We fix in what follows ε > 0 as above. Similarly, we obtain operators T±t :

Hs(Z) → Hs′

(Z), for any t ∈ (0, ε] and any s, s′ ∈ R.
Theorem 3.10. Let T ∈ Ψm

ai (M) and Tt be as above, Equation (36). Then

T±t ∈ Ψ−∞
ai (Z) and the two functions

(0, ε] ∋ t→ tl∂k
t T±t ∈ Ψm+1+k−l+δ

ai (Z)

extend by continuity to [0, ε] if δ > 0. These extensions are bounded for δ = 0.

P r o o f. The proof is based on the ideas in [48, vol. II, Ch. 7, Sec. 12], especially

Theorem 12.6, and some local calculations. Here are some details.

Since the statement of the theorem is “linear” in T , it is enough to prove it for

T ∈ Ψm(M) and for T ∈ Ψ−∞
ai (M). The later case is obvious—in fact, it is already

contained in the proof of Theorem 3.6. Then, we can further reduce the proof to

the case when T = s0(T1), with T1 ∈ Ψai(∂M1 × R)R, and to the case when T has
compactly supported Schwartz kernel. Again, the second case is easier, being an

immediate consequence of the corresponding result for the compact case. Because

the second case involves a similar argument, we shall nevertheless discuss this here.

Assume, for the next argument, that M is compact. Since the result is true for

regularizing operators, we can use a partition of unity to localize to the domain

of a coordinate chart. This allows then to further replace M with Rn , Z withRn−1 , and T with an operator of the form T = a(x,D), with a( , ) in Hörmander’s

symbol class Sm = Sm(Rn ) [48, vol. II] of functions that satisfy uniform estimates

in the space variable x (recall that a ∈ C ∞(Rn × Rn ) is in Sm(Rn ) if, and only if,

|∂α
x ∂

β
ξ a(x, ξ)| 6 Cαβ(1 + |ξ|)m−|β| for all multi-indices α and β).

Let (x′, xn) ∈ Rn−1 × R and (ξ′, ξn) ∈ Rn−1∗ × R∗ be the usual decomposition of

the variables. Also, let

at(x
′, ξ′) = (2πi)−1

∫R eitξna(x, t, ξ′, ξn) dξn.

Then at is such that Tt = at(x,D) and the (two) functions tl∂k
t a±t extend to con-

tinuous functions [0, ε] → Sm+1+l−k+δ = Sm+1+l−k+δ(Rn ), for any δ > 0. These

extensions are bounded as functions with values in Sm+1+l−k. This completes the

proof of our result for the case M compact.

Let us consider now to the case when T = s0(T1). We can assume that M =

∂M1 × R and that T is R-invariant. The proof is then the same as in the case M
compact, but using local coordinates on ∂M1 instead of onM , and making sure that

all our symbols and all maps preserve the R-invariance. This completes the proof of
our result. �
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A consequence of the above theorem is the following continuity result.

Corollary 3.11. Let T ∈ Ψ−1
ai (M).

(i) If f ∈ Hm(Z), then the functions (0, ε] ∋ t 7→ T±tf ∈ Hm(Z) extend by

continuity at 0.

(ii) If f ∈ H∞(Z), then the mappings (0, ε] × Z 7→
(
T±tf

)
(z) extend to functions

in H∞([0, ε] × Z).

P r o o f. Denote by L (X,Y ) the normed space of bounded operators between

two Banach spacesX and Y . Theorem 3.10 ensures that (0, ε] → T±t have continuous

extensions to functions

[0, ε] → L (Hm+δ(Z), L2(Z)),

for δ > 0. For δ = 0 these extensions will be bounded.

This proves the first part of our result as follows. If f ∈ Hm+δ(Z), then the func-

tions T±tf ∈ L2(Z) extend by continuity on [0, ε] because T±t extend by continuity

on [0, ε] as maps to L (Hm+δ(Z), L2(Z)). Since Hm+δ(Z), δ > 0, is dense in Hm(Z)

and T±t are bounded as maps [0, ε] → L (Hm(Z), L2(Z)), the result follows from an

ε/3-type argument.

To prove (ii), it is enough to prove then that ∂b
t (I +∆Z)aT±tf is in L

2([0, ε]×Z),

for any a, b ∈ N. Using again Theorem 3.10, we know that ∂b
t (I + ∆Z)aT±t extend

to continuous functions [0, ε] → Ψc
ai(M), with c = m+2+ b+2a, (take δ = 1). Since

f ∈ H∞(Z) ⊂ Hc(Z), the functions (0, ε] ∋ t→ ∂b
t (I+∆Z)aT±tf ∈ L2(Z) extend by

continuity to a function defined on [0, ε]. This extension is then in L2([0, ε]×Z). �

We can specialize all the above results to T = (∆ + V )−1 or T = (∆ + V )−1∂∗ν .

This gives maps S±t(f) := S (f)|Z±t
and D±t(f) := D(f)|Z±t

, where t ∈ (0, ε].

Theorem 3.12. Using the notation we have just introduced, we have

(i) S±t, D±t ∈ Ψ−∞
ai (Z) and the functions (0, ε] ∋ t→ tl∂k

t S±t ∈ Ψδ−1+k−l
ai (Z) and

(0, ε] ∋ t → tl∂k
t D±t ∈ Ψδ+k−l

ai (Z) extend by continuity to [0, ε], for δ > 0. For

δ = 0 these functions are bounded.

(ii) If f ∈ L2(Z), then the functions t→ S±tf, D±tf ∈ L2(Z) extend by continuity

to [0, ε].

(iii) If f ∈ H∞(Z), then the restrictions of S (f) and D(f) to Z × [−ε, 0) and,

respectively, Z × (0, ε] extend to functions in H∞(Z × [−ε, 0]), respectively in

H∞(Z × [0, ε]).
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4. Layer potentials depending on a parameter

The aim of this section is to investigate the invertibility of layer potential operators

which depend on a parameter τ ∈ R, via a method initially developed by G. Verchota
in [50], for the case of the flat-space Laplacian. The novelty here is to derive estimates

which are uniform with respect to the real parameter τ .

Let M be a smooth, compact, boundaryless Riemannian manifold, and fix a rea-

sonably regular subdomain Ω ⊂ M (Lipschitz will do). Here, M will play the role

of ∂M1 in our standard notation and, anticipating notation introduced in the next

section, Ω will play the role of the exterior of X .

Set ν for the outward unit conormal to Ω and dσ for the surface measure on ∂Ω

(naturally inherited from the metric on M). The departure point is the following

Rellich type identity:

∫

∂Ω

〈ν, w〉
{
|∇tanu|2 − |∂νu|2

}
dσ(37)

= 2Re

∫

∂Ω

〈wtan,∇u〉∂ν ū dσ − 2Re

∫

Ω

〈∇ū, w〉∆M u dx

+ Re

∫

Ω

{
(divw)|∇u|2 − 2(Lwg)(∇u,∇ū)

}
dx,

which, so we claim, is valid for a (possibly complex-valued) scalar function u and

a real-valued vector field w (both sufficiently smooth, otherwise arbitrary) in Ω.

Hereafter, the subscript ‘tan’ denotes the tangential component relative to ∂Ω. At

the level of vector fields, ∇ is used to denote the Levi-Civita connection onM. Also,

Lwg stands for the Lie derivative of the metric tensor g with respect to the field w;

recall that, in general,

Lwg(X,Y ) = 〈∇Xw, Y 〉 + 〈∇Y w,X〉,

for any two vector fields X,Y .

To prove (37), consider the vector field F := |∇u|2w − 2(∂wu)∇ū and compute

〈ν, F 〉 = |∇u|2〈ν, w〉 − 2 (∂wu)(∂ν ū)(38)

= |∇u|2〈ν, w〉 − 2 〈wtan,∇u〉 ∂ν ū− 2 |∂νu|2〈ν, w〉
= 〈ν, w〉(|∇tanu|2 − |∂νu|2) − 2〈wtan,∇u〉 ∂ν ū,

by decomposing w = wtan + 〈ν, w〉ν and |∇u|2 = |∇tanu|2 + |∂νu|2. Furthermore,

(39) divF = (divw)|∇u|2 + w(|∇u|2) − 2 (∂wu)∆M ū− 2∇u(∂wū).
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Given the current goal, the first and the third terms suit our purposes; for the rest

we write

w(|∇u|2) − 2∇u(∂wū) = w(|∇u|2) − 2∇u(w(ū))

= w(|∇u|2) − 2 [∇u,w]ū− 2w(∇u(ū))
= w(|∇u|2) + 2〈∂w(∇u),∇ū〉 − 2〈∇∇uw,∇ū〉 − 2w|∇u|2

= −w(|∇u|2) + Re [w(|∇u|2)] − 2(Lw g)(∇u,∇ū),

where the third equality utilizes the fact that ∇ is torsion-free. Since the real parts
of the first two terms in the last expression above cancel out, it ultimately follows

that

(40) Re (divF ) = (divw)|∇u|2 − 2 Re [(∂wū)∆M u] − 2 Re (Lw g)(∇u,∇ū).

Thus, the Rellich identity (37) follows from (40), (38), and the Divergence Theorem,

after taking the real parts.

Another general identity (in fact, a simple consequence of the Divergence Theorem)

that is useful here is

(41)

∫

∂Ω

|u|2〈w, ν〉dσ = Re

∫

Ω

{2u〈∇ū, w〉 + (divw)|u|2} dx.

To proceed, fix a nonnegative scalar potential W ∈ C∞(M) and for the remainder

of this subsection assume that

(42) (∆M + τ2 +W )u = 0 in Ω,

where τ ∈ R is an arbitrary parameter (fixed for the moment). Our immediate
objective is to show that

(43)

∫

∂Ω

|∂νu|2 dσ 6 C

∫

∂Ω

{|∇tanu|2 + (1 + τ2)|u|2} dσ,

uniformly in τ , and that for each ε > 0 there exists a finite constant C = C(Ω, ε) > 0

so that

(44)

∫

∂Ω

{|∇tanu|2 + τ2|u|2} dσ 6 C

∫

∂Ω

|∂νu|2 dσ + ε

∫

∂Ω

|u|2 dσ

uniformly in the parameter τ ∈ R. We shall also need a strengthened version of (44)
to the effect that

(45) W > 0 in Ω =⇒
∫

∂Ω

{|∇tanu|2 + (1 + τ2)|u|2} dσ 6 C

∫

∂Ω

|∂νu|2 dσ

uniformly in the parameter τ ∈ R.
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With an eye on (44), let us recall Green’s first identity for the function u that we

assumed to satisfy Equation (42)

∫

Ω

{|∇u|2 + τ2|u|2 +W |u|2} dx = Re

∫

∂Ω

ū ∂νu dσ

which readily yields the energy estimate

(46)

∫

Ω

{|∇u|2 + τ2|u|2 +W |u|2} dx 6

∫

∂Ω

|u||∂νu| dσ.

In turn, this further entails

(47)

∫

Ω

τ2|∇u||u| dx 6 C|τ |
∫

Ω

{τ2|u|2 + |∇u|2} dx 6 C|τ |
∫

∂Ω

|u||∂νu| dσ,

uniformly in τ .

Let us now select w to be transversal to ∂Ω, i.e.

(48) ess inf 〈w, ν〉 > 0 on ∂Ω,

something which can always be arranged given that ∂Ω is assumed to be Lipschitz.

This, in concert with (41), then gives

(49)

∫

∂Ω

|u|2 dσ 6 C

∫

Ω

{|u|2 + |∇u||u|} dx.

Multiplying (49) with τ2 and then invoking (46)–(47) eventually justifies the estimate

(50)

∫

∂Ω

τ2|u|2 dσ 6 C

∫

∂Ω

(1 + |τ |)|∂νu||u| dσ.

Next, make the (elementary) observation that for every ε, δ > 0 there exists C =

C(ε, δ) > 0 so that

(51) (1 + |τ |)|∂νu||u| 6 δτ2|u|2 + C|∂νu|2 + ε|u|2,

uniformly in τ . When considered in the context of (50), the boundary integral

produced by the first term in the right side of (51) can be absorbed in the left side

of (50), provided δ is sufficiently small. Thus, with this alteration in mind, (50)

becomes ∫

∂Ω

τ2|u|2 dσ 6 C

∫

∂Ω

|∂νu|2 dσ + ε

∫

∂Ω

|u|2 dσ
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which is certainly in the spirit of (44). In fact, in order to fully prove the latter

estimate, there remains to control the tangential gradient in a similar fashion. To

this end, observe that (48) and Rellich’s identity (37) give

∫

∂Ω

|∇tanu|2 dσ 6 C

∫

∂Ω

|∂νu|2 dσ + C

∫

Ω

τ2|∇u||u| dx+ C

∫

Ω

|∇u|2 dx,

uniformly in τ . With this at hand, the same type of estimates employed before can be

used once again to further bound the solid integrals in terms of (suitable) boundary

integrals. The bottom line is that

(52)

∫

∂Ω

|∇tanu|2 dσ 6 C

∫

∂Ω

|∂νu|2 dσ + ε

∫

∂Ω

|u|2 dσ,

uniformly in τ , and (44) follows.

It is now easy to prove (45), having disposed off (44). One useful ingredient in

this regard is

(53)

∫

Ω

|u|2 dx 6 C

∫

Ω

{|∇u|2 +W |u|2} dx,

itself a version of Poincaré’s inequality. When used in conjunction with (46) and

(49), this readily yields

(54)

∫

∂Ω

|u|2 dσ 6 C

∫

Ω

{|∇u|2 +W |u|2} dx 6 C

∫

∂Ω

|u||∂νu| dσ

so that, ultimately,

(55)

∫

∂Ω

|u|2 dσ 6 C

∫

∂Ω

|∂νu|2 dσ,

in the case we are currently considering. In concert with (44), this concludes the proof

of (45). Let us now turn our attention to the estimate (43). For starters, Rellich’s

identity (37) can also be employed, along with the condition (48), to produce

(56)

∫

∂Ω

|∂νu|2 dσ 6 C

∫

∂Ω

|∇tanu|2 dσ + C

∫

Ω

τ2|∇u||u| dx+ C

∫

Ω

|∇u|2 dx,

uniformly in τ . Then, much as before,

∫

Ω

{τ2|∇u||u| + |∇u|2} dx 6 C

∫

∂Ω

(1 + |τ |)|∂νu||u| dσ(57)

6 δ

∫

∂Ω

|∂νu|2 dσ + C

∫

∂Ω

(1 + τ2)|u|2 dσ,
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where δ > 0 is chosen small and C depends only on Ω and δ. With these two

estimates at hand, the endgame in the proof of (43) is clear.

After these preliminaries, we can finally address the main theme of this subsection.

More concretely, for each τ ∈ R, let Sτ , Kτ be, respectively, the single and the double

layer potential operators associated with∆M+τ2+W on ∂Ω (recall that the potential

function W was first introduced in connection with (42)). From the work in [33], it

is known that if Ω has a Lipschitz boundary then both

Sτ : L2(∂Ω) −→ H1(∂Ω) and 1
2I +Kτ : L2(∂Ω) −→ L2(∂Ω)

are invertible operators for each τ ∈ R. Our objective is to study how the norms of
their inverses depend on the parameter τ . To discuss this issue, for each τ ∈ R and
f ∈ H1(∂Ω), set

(58) ‖f‖H1
τ
(∂Ω) := ‖f‖H1(∂Ω) + |τ |‖f‖L2(∂Ω).

Thus, R ∋ τ 7→ ‖ · ‖H1
τ
(∂Ω) is a one-parameter family of equivalent norms on the

Sobolev space H1(∂Ω). The main result of this subsection is as follows.

Proposition 4.1. Assume that Ω is a fixed, Lipschitz subdomain ofM, and retain

the notation introduced above. Then there exits a finite constant C = C(∂Ω) > 0,

depending exclusively on the Lipschitz character of Ω, such that for each τ ∈ R, we
have

(59) ‖S−1
τ f‖L2(∂Ω) 6 C‖f‖H1

τ
(∂Ω)

uniformly for f ∈ H1(∂Ω).

Furthermore, if W > 0 on a set of positive measure in Ω, then for any τ ∈ R we
also have

(60) ‖(1
2I +Kτ )−1f‖L2(∂Ω) 6 C‖f‖L2(∂Ω),

uniformly for f ∈ L2(∂Ω).

P r o o f. Consider first (60). Let Ω+ := Ω, Ω− := M \ Ω̄, and for f ∈ L2(∂Ω),

set u := S f in Ω±. Thus,

(61) (u)+ = (u)−, (∇tanu)+ = (∇tanu)−, (∂νu)± = (± 1
2I +K∗

τ )f.

In turn, (61), (43) and (45) allow us to write

‖(− 1
2I +K∗

τ )f‖L2(∂Ω) = ‖(∂νu)−‖L2(∂Ω)

6 C‖(u)−‖H1
τ
(∂Ω) = C‖(u)+‖H1

τ
(∂Ω) 6 C‖(∂νu)+‖L2(∂Ω)

= C‖(1
2I +K∗

τ )f‖L2(∂Ω).
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Consequently,

‖f‖L2(∂Ω) 6 ‖(− 1
2I +K∗

τ )f‖L2(∂Ω) + ‖(1
2I +K∗

τ )f‖L2(∂Ω)(62)

6 C‖(1
2I +K∗

τ )f‖L2(∂Ω)

for some constant C = C(∂Ω) > 0 independent of τ . Going further, if L (X) :=

L (X,X), the normed algebra of all bounded operators on a Banach space X , then

(62) entails

‖(1
2I +Kτ )−1‖

L

(
L2(∂Ω)

) = ‖(1
2I +K∗

τ )−1‖
L

(
L2(∂Ω)

) 6 C.

This takes care of (60).

As for (59), the argument is rather similar, the main step being the derivation of

the estimate

‖f‖L2(∂Ω) 6 C‖∇tan(Sτf)‖L2(∂Ω) + C(1 + |τ |)‖Sτf‖L2(∂Ω),

out of (61) and (43), when the latter is written both for Ω+ and Ω−. Once again, the

crux of the matter is that the intervening constant C = C(∂Ω) > 0 is independent

of τ . The proof is finished. �

5. The Dirichlet problem

We now apply the results we have established to solve the inhomogeneous Dirichlet

problem on manifolds with boundary and cylindrical ends.

The class of manifolds with boundary and cylindrical ends that we consider have a

product structure at infinity (including the boundary and the metric). It is possible

to relax somewhat these conditions, but for simplicity we do not address this technical

question in this paper.

Definition 5.1. Let N be a Riemannian manifold with boundary ∂N . We

shall say that N is a manifold with boundary and cylindrical ends if there exists an

open subset V of N isometric to (−∞, 0)×X , where X is a compact manifold with

boundary, such that N \ V is compact.

The manifolds M , N , and X are all assumed to be smooth (we only work with

smooth manifolds in this paper). Even the potential applications to manifolds with

conical points are via a Kondratiev type transformation that maps the boundary to

a manifold with cylindrical ends and maps the conical point to infinity. (These are

the “blow-up” transformations use by Melrose.)
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Lemma 5.2. Let N be a Riemannian manifold with boundary ∂N . Then N is a

manifold with boundary and cylindrical ends if, and only if, there exists a manifold

with cylindrical ends (without boundary) M with a standard decomposition

M = M1 ∪
(
∂M1 × (−∞, 0]

)

and containing N such that

N ∩
(
∂M1 × (−∞, 0]

)
= X × (−∞, 0],

for some compact manifold with boundary X ⊂ ∂M1.

P r o o f. If there is a manifold M with the indicated properties, then it follows

from the definition that N is a manifold with boundary and cylindrical ends. If the

metric on N is a product metric on a tubular neighborhood of ∂N , then we can take

M := N ∪ (−N) to be the double of N . (That is, the manifold obtained by gluing

two copies of N along their common boundary). The general case can be reduced

to this one, because any metric on N is equivalent to a product metric in a small

tubular neighborhood of ∂N . (This is proved by taking the exponential map of −ν.
A more general tubular neighborhood theorem can be found in [1].) �

Let M = M1 ∪ (∂M1 × (−∞, 0]) be a manifold with cylindrical ends. The trans-

formation

(−∞,−1] ∋ x→ t := x−1 ∈ [−1, 0)

then extends to a diffeomorphism ψ between M and the interior M0 := M1 \ ∂M1 of

M1:

(63) ψ : M →M0 := M1 \ ∂M1.

If N ⊂M is a manifold with boundary and cylindrical ends, as in Lemma 5.2, then

the above diffeomorphism will map N to a subset N0 ⊂ M0, whose closure N1 is

a compact manifold with corners of codimension at most two, N1 ⊂ M1. We can

identify N1 with the disjoint union N0 ∪X , if X is as in the definition above.
We shall fix N ⊂ M as above in what follows. We define then Hs(N) to be the

space of restrictions to the interior of N of distributions u ∈ Hs(M). Recall that the

main goal of this paper is to prove that the map

(64) Hs(N) ∋ u→ ((∆N + V )u, u|∂N) ∈ Hs−2(N) ⊕Hs−1/2(∂N)

is an isomorphism for s > 1/2, where V > 0 a smooth function that is asymptotically

translation invariant in a neighborhood of infinity (that is V ∈ Ψ0
ai(M)).

We shall use the results of the previous subsections for the particular case when

Z = ∂N .
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Proposition 5.3. Assume that the function V is chosen so that V is not iden-

tically zero on ∂M1 \X. Then the map − 1
2I +K∗ : L2(∂N) → L2(∂N) is injective.

P r o o f. Just follow word for word [33, Proposition 4.1]. �

Note that our signs are opposite to those in [33] or [49], because we use the

definition that makes the Laplace operator is positive.

To prove the Fredholm property of the operators 1
2I +K and 1

2I +K∗, we need

to slightly change the corresponding argument in [33]. Recall that the index of a

Fredholm operator P is the dimension of the kernel of P minus the dimension of the

cokernel of P .

Proposition 5.4. Retain the same assumptions as in Proposition 5.3. Then the

operator

(65) − 1
2I +K : L2(∂N) −→ L2(∂N)

is Fredholm of index zero.

P r o o f. The above proposition is known whenM is compact [33, Corollary 4.5].

To check that it is Fredholm, we shall rely on (iv) in Theorem 2.1 which, in view of

Proposition 3.5, (15), and (16), amounts to studying the associated indicial family.

Let W := V∂M1
, where V∂M1

(y) = V (y, x), for (y, x) ∈ ∂M1 × (−∞, R), for

some large R. The existence of such a V∂M1
follows from the assumption that V

is translation invariant in a neighborhood of infinity. Also, let T = (∆ + V )−1∂∗ν .

Recall that K := T∂N and that ∂N ∼ ∂X × (−∞, 0] in a neighborhood of infinity.

Then Proposition 3.3 gives

(66) K̂(τ) = T̂∂N (τ) = [T̂ (τ)]∂X = [(∆∂M1
+ τ2 +W )−1∂∗ν ]∂X = Kτ ,

whereKτ is the double layer potential operator associated with the perturbed Lapla-

cian ∆∂M1
+ τ2 + W on ∂X (cf. the discussion in §3.3). Let fτ (x) be the Fourier

transform in the t-variable of f(x, t) (t ∈ R). In light of this and (16), there remains
to prove that the map

(67) L2(∂X × R) ∋ f(x, t) 7→ F
−1[(− 1

2I +Kτ )f̂τ (x)](t) ∈ L2(∂X × R)

is an isomorphism. To see this, let g ∈ L2(∂X×R) be arbitrary and, for each τ ∈ R,
introduce hτ := (− 1

2I +Kτ )−1ĝτ . From Proposition 4.1 (utilized for Ω := ∂M1 \X,
which accounts for a change in sign as far as the coefficient 1/2 is concerned), it

follows that this is meaningful, hτ ∈ L2(∂X) and

(68) ‖hτ‖L2(∂X) 6 C‖ĝτ‖L2(∂X), uniformly for τ ∈ R.
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If we now set h(x, t) := F−1(hτ (x))(t) then, thanks to (68) and Plancherel’s formula,

∫

∂X

∫R |h(x, t)|2 dt dσx =

∫

∂X

∫R |hτ (x)|2 dτdσx =

∫R ‖hτ‖2
L2(∂X) dτ(69)

6 C

∫R ‖ĝτ‖2
L2(∂X) dτ = C

∫

∂X

∫R |g(x, t)|2 dt dσx.

That is, h ∈ L2(∂X × R) and ‖h‖L2(∂X×R) 6 C‖g‖L2(∂X×R). Furthermore,

F
−1[(− 1

2I +Kτ )ĥτ (x)](t) = F
−1[(− 1

2I +Kτ )hτ (x)](t)(70)

= F
−1(ĝτ )(x) = g(x, t)

which proves that the map (67) is onto. The fact that (67) is also one-to-one, follows

more or less directly from the analogue of (60) in our context.

Thus, at this stage, we may conclude that (65) is indeed a Fredholm operator; there

remains to compute its index. To set the stage, let us observe that Proposition 5.3

and duality can now be used to justify that

(71) − 1
2I +K : L2(∂N) −→ L2(∂N) is onto.

Next, so we claim,

(72) − 1
2I +K : H1(∂N) −→ H1(∂N) is Fredholm and onto

as well. Indeed, since K ∈ Ψ−1
ai (∂N), it follows that for each s,

(73) f ∈ Hs(∂N) & (− 1
2I +K)f ∈ Hs+1(∂N) =⇒ f ∈ Hs+1(∂N).

In concert with (71), this shows that the operator in (72) is onto. Also, since

(74) dim Ker (− 1
2I +K;H1(∂N)) 6 dimKer (− 1

2I +K;L2(∂N)) < +∞,

the claim (72) is proved. In particular,

(75) index (− 1
2I +K;L2(∂N)) 6 0 and index (− 1

2I +K;H1(∂N)) 6 0.

We now take an important step by proving that

(76) S : L2(∂N) −→ H1(∂N) is Fredholm.

(Later on we shall prove that this operator is in fact invertible). This task is accom-

plished much as before, i.e. by relying on Theorem 2.1 and Proposition 4.1, and we
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only sketch the main steps. First, as pointed out in Proposition 3.5, S is elliptic.

Second, the first estimate in Proposition 4.1 eventually allows us to conclude that

the assignment

L2(∂X × R) ∋ f(x, t) 7→ F
−1[Sτ f̂τ (x)](t) ∈ H1(∂X × R)

is an isomorphism, concluding the proof of the claim (76).

Having dealt with (76), we next invoke an intertwining identity, to the effect that

(− 1
2I +K

)
S = S

(
− 1

2I +K∗).

This can be seen by starting with Green’s formula u = D(u|∂N ) − S (∂νu) written

for the harmonic function u := S (f), and then using the jump-relations deduced in

Theorems 3.6–3.7. The identity (5) allows us to obtain

index (− 1
2I +K;H1(∂N)) = index (− 1

2I +K∗;L2(∂N))

= −index (− 1
2I +K;L2(∂N)).

From this and (75) we may finally conclude that the operator (65) has index zero,

as desired. �

Corollary 5.5. Let V be as before. Then the operator

− 1
2I +K : Hs(∂N) −→ Hs(∂N)

is invertible for each s ∈ R.
P r o o f. To begin with, the case s = 0 is easily proved by putting together the

above two propositions. In particular, the operator − 1
2I+K : Hs(∂N) −→ Hs(∂N),

in the statement of this corollary, is injective for each s > 0. Since the fact that this

operator is also surjective is a consequence of the corresponding claim in the case

s = 0 and the smoothing property (73), the desired conclusion follows for s > 0. As

for the case s < 0, a similar reasoning shows that

(77) − 1
2I +K∗ : H−s(∂N) −→ H−s(∂N)

is invertible for each s < 0. This and duality then yield the invertibility of − 1
2I+K :

Hs(∂N) −→ Hs(∂N) for s < 0, as wanted. �

Another proof of the above result can be obtained from Theorem 2.10, for the case

m = 0, the “easy one.”

Recall that Hs(N) is the space of restrictions of distributions in Hs(M) to the

interior of N . (Both M and N are smooth manifolds.) After these preliminaries, we

are finally in a position to discuss the following basic result.
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Theorem 5.6. Let V ∈ Ψ0
ai(M) be a smooth positive function. For any s > 0 and

any f ∈ Hs(∂N), there exists a unique function u ∈ Hs+1/2(N) such that u|∂N = f

and (∆N + V )u = 0.

P r o o f. Extend first V to a smooth positive function in Ψ0
ai(M) (that is, asymp-

totically translation invariant in a neighborhood of infinity) which is not identically

zero on the complement of N . The conclusion in Corollary 5.5 will hold for this

function. First we claim that

(78) D : Hs(∂N) −→ Hs+1/2(N), s ∈ R,
is well-defined and bounded. Indeed, if s < 0, then this is a consequence of the

implication

(79) f ∈ Hs(∂N), s < 0 =⇒ f ⊗ δ∂N ∈ Hs−1/2(∂N)

along with the factorization D(g) = (∆ + V )−1∂∗ν (g ⊗ δ∂N ). For s = 0, one can

employ the techniques of [35]. The case s > 0 then follows inductively from what

we have proved so far with the aid of a commutator identity which essentially reads

∇Df = D(∇tanf) + lower order terms; see (8.19) in [34] as well as (6.17) in [35].

Having disposed off (78) the existence part in the theorem is then easily addressed.

Specifically, if s > 0, consider g := (− 1
2I + K)−1f ∈ Hs(∂N) and then set u :=

D(g) ∈ Hs+1/2(N) by (78).

To prove uniqueness, assume that u ∈ Hs+1/2(N) is a null solution for the Dirichlet

problem in N . For an arbitrary function ϕ ∈ C∞
c (N), let v solve the Dirichlet prob-

lem

(∆N + V )v = 0, v|∂N = −[(∆ + V )−1ϕ]|∂N ,

and then set w := v + (∆ + V )−1ϕ. It follows that (∆N + V )w = ϕ in N and

w|∂N = 0. Consequently, Green’s formula gives

(u, ϕ) = (u, (∆N + V )w) = ((∆N + V )u,w) = 0

since u|∂N = w|∂N = 0. Since ϕ is arbitrary, this forces u = 0 in N as desired. �

We are now ready to prove Theorem 0.2 which, for the convenience of the reader,

we restate below.
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Theorem 5.7. Let N be a manifold with boundary and cylindrical ends and

V > 0 be a smooth functions that is asymptotically translation invariant in a neigh-

borhood of infinity. Then

Hs(N) ∋ u→ ∆̃N (u) := ((∆N + V )u, u|∂N) ∈ Hs−2(N) ⊕Hs−1/2(∂N)

is a continuous bijection, for any s > 1/2.

P r o o f. First we extend V to M , making sure that it is still > 0, smooth, and

asymptotically translation invariant. The continuity of the map ∆̃N follows from

the continuity of ∆N + V : Hs(N) → Hs−2(N) and from the continuity of the trace

map Hs(N) → Hs−1/2(∂N).

As before, we fix a smooth function V > 0 which vanishes in a neighborhood

of N . We take V to be not identically equal to 0 and to be translation invariant

in a neighborhood of infinity, as before. This is seen to be possible using a tubular

neighborhood of infinity. Let g ∈ Hs−2(N) be arbitrary. First extend g to a dis-

tribution (denoted also g) in Hs−2(M), then set u1 = (∆ + V )−1g ∈ Hs(M) and

f1 = u1|∂N ∈ Hs−1/2. Finally, choose u2 ∈ Hs(N) such that (∆N + V )u2 = 0 and

u2|∂N = f − f1. Then u := u1 + u2 satisfies (∆N + V )u = g and u|∂N = f . This

proves the surjectivity of ∆̃N . The injectivity of this map then follows from the

uniqueness part in Theorem 5.6. �

It is likely that some versions of the above two theorems extend to weighted

Sobolev spaces. This will likely requires techniques similar to those used in [13]. In

[42], Schrohe and Schulze have generalized the Boutet de Monvel calculus to mani-

folds with boundary and cylindrical ends. With some additional work, their results

can probably be used to prove our Theorem 0.2 above. Our approach, however,

is shorter and also leads to a characterization of the Dirichlet-to-Neumann bound-

ary map, Theorem 5.8. It is worth pointing out that our methods can also handle

non-smooth structures (cf. §4) and seem amenable to other basic problems of math-

ematical physics in non-compact manifolds (such as Maxwell’s equations in infinite

cylinders). We hope to return to these issues at a later time.

5.1. The Dirichlet-to-Neumann map. Theorem 5.6 allows us to define the

Dirichlet-to-Neumann map N

N (f) = (∂νu)+

for f ∈ L2(∂N) and u solution of (∆N + V )u = 0, u+ := u|∂N = f .
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Theorem 5.8. Let N be a manifold with boundary and cylindrical ends. Then

the operator S : Hs(∂N) → Hs+1(∂N) of Equation (33) is invertible for any s and

(1
2I+K

∗)S−1 = N , the “Dirichlet-to-Neumann map.” In particular,N ∈ Ψ1
ai(∂N).

P r o o f. The operator S is elliptic by Proposition 3.5. For further reference, let

us note here that

(80) f ∈ Hs(∂N) & Sf ∈ Hs+1(∂N) =⇒ f ∈ Hs+1(∂N),

by elliptic regularity.

Next, using the notation of Proposition 4.1, we have Ŝ(τ) = Sτ . By the results

of the same proposition, Ŝ(τ) is invertible for any τ , and the norm of the inverse

is uniformly bounded (this can be proved also by using the results of [33] or [35]

and the estimates in [46]). Consequently, S : Hs(∂N) → Hs+1(∂N) is Fredholm

(cf. Theorem 2.1).

Checking that S is injective when s = 0 is done much as in the last part of §6 in

[33]. In short, the idea is as follows. Assume that Sf = 0 for some f ∈ Hs(∂N) and

let N ⊂ M , where M is a manifold with cylindrical ends without boundary, as in

Lemma 5.2. Then u := S (f) satisfies (∆ + V )u = 0 on M \ ∂N , and

u∂N = u+ = u− = Sf = 0.

Furthermore, thanks to (80), (79) and the factorizationS (f) = (∆+V )−1(f⊗δ∂N ),

the function u is sufficiently regular so that (the uniqueness part in) Theorem 5.6

holds both in N and in M \N . Hence, by Theorem 3.6,

f = (∂νu)+ − (∂νu)− = 0,

as desired. Thus, S : Hs(∂N) → Hs+1(∂N) is injective, first for s > 0 (via a simple

embedding), then for s ∈ R via (80).
Since S is formally self-adjoint, we get that S has also dense range. Using now

the fact that S is Fredholm, we obtain that S is bijective, as desired. �

Corollary 5.9. The Cauchy data space

{(u|∂N , ∂νu|∂N ) ; u ∈ Hs(N), (∆N + V )u = 0}

is a closed subspace of Hs−1/2(∂N) ⊕Hs−3/2(∂N) for any s > 1/2.
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P r o o f. By Theorem 5.7, the Cauchy data space

C := {(u|∂N , ∂νu|∂N) ; u ∈ Hs(N), (∆N + V )u = 0}

is given by the graph of N , namely

C = Γ(N ) := {(f,N f), f ∈ Hs−1/2} ⊂ Hs−1/2(∂N) ⊕Hs−3/2(∂N).

Theorem 5.8 shows that this space is closed, sinceN ∈ Ψ1
ai(∂N) and hence it defines

a continuous (everywhere defined) map Hs−1/2(∂N) → Hs−3/2(∂N). �

We conclude this section with yet another integral representation formula for the

Dirichlet problem.

Corollary 5.10. Retain the usual set of assumptions. Then, for each s > 0, the

solution to the boundary problem

u ∈ Hs+1/2(N), (∆N + V )u = 0, u|∂N = f ∈ Hs(∂N),

(first treated in Theorem 5.6) can also be expressed in the form

u = S (S−1f) in N.

P r o o f. The starting point is the claim (which can be justified in a manner

similar to (78)) that

(81) S : Hs(∂N) −→ Hs+3/2(M), s ∈ R,
is well-defined and bounded. In concert with the fact that S : Hs(∂N) → Hs+1(∂N)

is invertible, this finishes the proof of the corollary. �
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