Czechoslovak Mathematical Journal

Jaroslav Ježek
 Varieties of idempotent slim groupoids

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 4, 1289-1309

Persistent URL: http://dml.cz/dmlcz/128238

Terms of use:

© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

VARIETIES OF IDEMPOTENT SLIM GROUPOIDS

J. Ježek, Praha

(Received November 28, 2005)

Abstract. Idempotent slim groupoids are groupoids satisfying $x x \approx x$ and $x(y z) \approx x z$. We prove that the variety of idempotent slim groupoids has uncountably many subvarieties. We find a four-element, inherently nonfinitely based idempotent slim groupoid; the variety generated by this groupoid has only finitely many subvarieties. We investigate free objects in some varieties of idempotent slim groupoids determined by permutational equations.

Keywords: groupoid, variety, nonfinitely based
MSC 2000: 20N02

This paper is a continuation of the paper [4] which was concerned with general slim groupoids. Here we are going to investigate the idempotent case. An idempotent slim groupoid is a groupoid satisfying $x x \approx x$ and $x(y z) \approx x z$. In [1] idempotent slim groupoids (or their duals) were investigated under the name rectangular groupoids.

We are going to prove in the present paper that the variety of idempotent slim groupoids has uncountably many subvarieties. While all at most three-element idempotent slim groupoids are finitely based, we will find a four-element, inherently nonfinitely based idempotent slim groupoid. It will turn out that the variety \mathbf{Y} generated by this groupoid has the following interesting property: although it is finitely generated and inherently nonfinitely based, it has only finitely many (in fact, precisely six) subvarieties.

We also investigate a descending chain of varieties \mathbf{W}_{n} of idempotent slim groupoids determined by permutational equations of restricted length. For many pairs k, n of natural numbers we determine whether the free object $\mathscr{F}_{k, n}$ in \mathbf{W}_{n} with k generators is finite or infinite, and in some cases we compute the cardinality

The work is a part of the research project MSM0021620839 financed by MSMT and partly supported by the Grant Agency of the Czech Republic, grant \#201/05/0002.
of the free groupoid. The intersection \mathbf{W}_{∞} of the varieties \mathbf{W}_{n} is investigated in a similar way.

The terminology and notation used here are the same as in the paper [4].

1. Uncountably many varieties

By a subword of a word $x_{1} \ldots x_{n}$ we mean a word $x_{i} x_{i+1} \ldots x_{j}$ where $1 \leqslant i \leqslant j \leqslant n$. A word $x_{1} \ldots x_{n}$ (where x_{i} are variables) is said to be I-reduced if $x_{i} \neq x_{i+1}$ for $i=1, \ldots, n-1$. The I-reduction of a word $x_{1} \ldots x_{n}$ is defined inductively in the following way: a variable is its own I-reduction; if $n>1$ and $y_{1} \ldots y_{m}$ is the I-reduction of $x_{1} \ldots x_{n-1}$ then the I-reduction of $x_{1} \ldots x_{n}$ is $y_{1} \ldots y_{m}$ if $x_{n-1}=x_{n}$ and $y_{1} \ldots y_{m} x_{n}$ if $x_{n-1} \neq x_{n}$. It is easy to see that an equation $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ is satisfied in all idempotent slim groupoids if and only if the I-reductions of $x_{1} \ldots x_{n}$ and $y_{1} \ldots y_{m}$ coincide.

Theorem 1.1. The variety of idempotent slim groupoids has $2^{\aleph_{0}}$ subvarieties.
Proof. For a word u, variables y, z and a nonnegative integer n we define a word $u[y z]^{n}$ by induction as follows: $u[y z]^{0}=u ; u[y z]^{n+1}=\left(\left(u[y z]^{n}\right) y\right) z$.

Let M be a subset of $\{3,4,5, \ldots\}$. A word is said to be M-bad if it equals $x y x[z y]^{k} x y z y$ for some variables x, y, z and an integer $k \in M$. The M-correction of an M-bad word $x y x[z y]^{k} x y z y$ is the word $x y x[y z]^{k} x y z y$. An M-significant word is a word that is either M-bad or is the M-correction of an M-bad word. An I-reduced word is said to be M-good if it does not contain any M-bad subword.

Claim 1. Let u be an M-significant I-reduced word, $u=x y x[y z]^{k} x y z y$ or $u=$ $x y x[z y]^{k} x y z y$. Then x, y, z are pairwise different variables. Indeed, $x y$ and $y z$ are subwords of u, so $x \neq y$ and $y \neq z$. Either $z x$ (in the first case) or $x z$ (in the second case) is a subword of u, so $x \neq z$.

Claim 2. Let $u=x_{1} \ldots x_{n}$ be an I-reduced word and let $x_{i} \ldots x_{j}$ and $x_{p} \ldots x_{q}$ be its two M-significant subwords. Then either $\langle i, j\rangle=\langle p, q\rangle$ or $q \leqslant i+2$ or $j \leqslant p+2$. Put $x=x_{j-3}, y=x_{j-2}$ and $z=x_{j-1}$. By Claim 1, x, y, z are three different variables. If $j=q$ then it is easy to see that $i=p$ and the two subwords are identical. Let, e.g., $q<j$. For $c \in\{i, i+1, i+3, i+4, \ldots, j-6, j-4\}$ we have $q \neq c+3$ since $x_{c} \in\left\{x_{c+2}, x_{c+3}\right\}$ while $x_{q-3} \notin\left\{x_{q-1}, x_{q}\right\}$. Since $x_{q-5} \neq x_{q-3}$ while $x_{i}=x_{i+2}$, we have $q \neq i+5$. Since $x_{q-1} \in\left\{x_{q-4}, x_{q-5}\right\}$ while $x_{j-3} \notin\left\{x_{j-6}, x_{j-7}\right\}$, we have $q \neq j-2$.

Claim 3. Any I-reduced word u can be transformed into an M-good word by a finite sequence of replacements of M-bad subwords with their M-corrections. The
resulting M-good word is uniquely determined by u and M. By Claim 2, whenever an M-bad subword v is replaced by its M-correction w then any of the later replacements can touch it at most at the first three or the last three positions of its variables; but these positions remain unchanged by the replacements, so w remains unchanged till the end of the process.

The unique M-good word resulting from an I-reduced word u in this way will be called the M-correction of u. Define a groupoid A_{M} in the following way: its underlying set is the set of M-good I-reduced words; its binary operation, denoted by \circ, is given by

$$
x_{1} \ldots x_{n} \circ y_{1} \ldots y_{m}=\left\{\begin{array}{l}
x_{1} \ldots x_{n} \text { if } y_{m}=x_{n} \\
\text { the } M \text {-correction of } x_{1} \ldots x_{n} y_{m} \text { otherwise } .
\end{array}\right.
$$

Claim 4. Let a_{1}, \ldots, a_{n} be elements of A_{M}. Then $a_{1} \circ a_{2} \circ \ldots \circ a_{n}$ is the Mcorrection of the I-reduction of the word $a_{1} z_{2} \ldots z_{n}$, where z_{i} is the last variable in the word a_{i}. This follows from the definition of \circ by induction on n.

Claim 5. A_{M} is an idempotent slim groupoid. For $k \geqslant 3$, the equation $x y x[y z]^{k} x y z y \approx x y x[z y]^{k} x y z y$ is satisfied in A_{M} if and only if $k \in M$. This follows from Claim 4.

Since there are $2^{\aleph_{0}}$ different subsets of $\{3,4, \ldots\}$, it follows from Claim 5 that there are $2^{\aleph_{0}}$ different varieties of idempotent slim groupoids.

2. I-Strongly nonfinitely based slim groupoids

By an I-strongly nonfinitely based slim groupoid we mean a finite idempotent slim groupoid A such that whenever A satisfies an equation $\langle u, v\rangle$ where u, v are I-reduced words and u is linear then $u=v$.

Theorem 2.1. Let A be a finite, I-strongly nonfinitely based idempotent slim groupoid. Then A is inherently nonfinitely based.

Proof. The proof is essentially the same as that of Theorem 6.1 of [4]; the small difference is that for a term t, one should consider (instead of just t^{*}) the I-reduction of t^{*}. Observe, however, that our present result is not a consequence of that theorem: an I-strongly nonfinitely based idempotent slim groupoid is not strongly nonfinitely based.

Consider the idempotent slim groupoid $\mathscr{G}_{4,3}$ with elements a, b, c, d and multiplication table

	a	b	c	d
a	a	a	c	c
b	b	b	c	c
c	a	a	c	c
d	b	b	d	d

Theorem 2.2. $\mathscr{G}_{4,3}$ is an I-strongly nonfinitely based idempotent slim groupoid.
Proof. For a homomorphism h of the groupoid T of terms into $\mathscr{G}_{4,3}$ and for a word $t=x_{1} \ldots x_{n}$ (where x_{i} are variables) we have
(1) $h(t)=d$ iff $h\left(x_{1}\right)=d$ and $h\left(x_{i}\right) \in\{c, d\}$ for all i;
(2) $h(t)=c$ iff $h\left(x_{n}\right) \in\{c, d\}$ and either $h\left(x_{1}\right) \neq d$ or $h\left(x_{i}\right) \notin\{c, d\}$ for at least one i;
(3) $h(t)=b$ iff one of the following two cases takes place:

- $h\left(x_{1}\right)=b$ and $h\left(x_{i}\right) \in\{a, b\}$ for all i,
- $h\left(x_{1}\right)=d$ and there exists an index $k<n$ such that $h\left(x_{i}\right) \in\{c, d\}$ for all $i \leqslant k$ and $h\left(x_{i}\right) \in\{a, b\}$ for all $i>k ;$
(4) $h(t)=a$ in the other cases.

This will help in the following computations.
Since $\mathscr{G}_{4,3}$ has a two-element subgroupoid satisfying $x y \approx x$ (the subgroupoid $\{a, b\}$) and a two-element factor satisfying $x y \approx y$ (the factor $\mathscr{G}_{4,3} / \beta_{\mathscr{G}_{4,3}}$), any equation satisfied in $\mathscr{G}_{4,3}$ has the same first variables and the same last variables at both sides.

Let $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle$ be satisfied in $\mathscr{G}_{4,3}$, where x_{i} and y_{j} are variables. Then $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}$. In order to prove this, suppose that there exists an i with $x_{i} \notin\left\{y_{1}, \ldots, y_{m}\right\}$ and let i be the largest index with this property. Take the homomorphism $h: T \rightarrow \mathscr{G}_{4,3}$ with $h\left(x_{i}\right)=b$ and $h(z)=d$ for all other variables z. Then $h\left(x_{1} \ldots x_{n}\right) \in\{a, b, c\}$ while $h\left(y_{1} \ldots y_{m}\right)=d$, a contradiction.

Let $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle$ be satisfied in $\mathscr{G}_{4,3}$, where $x_{1} \ldots x_{n}$ and $y_{1} \ldots y_{m}$ are both I-reduced and $x_{1} \ldots x_{n}$ is linear. Suppose $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$. We have $1<n \leqslant m$.

Let us prove that $y_{m-i}=x_{n-i}$ for $i=0, \ldots, n-1$. Suppose $y_{m-i} \neq x_{n-i}$ for some i, and let i be the least number with this property; then $i>0$. If $y_{m-i}=x_{j}$ for some $j<n-i$, then $h\left(x_{1} \ldots x_{n}\right) \neq h\left(y_{1} \ldots y_{m}\right)$ where $h\left(x_{1}\right)=\ldots=h\left(x_{n-i}\right)=d$ and $h\left(x_{n-i+1}\right)=\ldots=h\left(x_{n}\right)=b$. If $y_{m-i}=x_{j}$ for some $j>n-i$, then $h\left(x_{1} \ldots x_{n}\right) \neq$ $h\left(y_{1} \ldots y_{m}\right)$ where $h\left(x_{1}\right)=\ldots=h\left(x_{n-i-1}\right)=d$ and $h\left(x_{n-i}\right)=\ldots=h\left(x_{n}\right)=b$.

So, $y_{m}=x_{n}, \ldots, y_{m-n+1}=x_{1}$. If $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$, we get $m>n$. We have $y_{m-n}=x_{i}$ for some $i \geqslant 3$. Define h by $h\left(x_{1}\right)=\ldots=h\left(x_{i-1}\right)=d$ and $h\left(x_{i}\right)=\ldots=$ $h\left(x_{n}\right)=b$. Then $h\left(x_{1} \ldots x_{n}\right)=b$ while $h\left(y_{1} \ldots y_{m}\right)=c$, a contradiction.

Theorem 2.3. The groupoid $\mathscr{G}_{4,3}$ is, up to isomorphism, the only I-strongly nonfinitely based idempotent slim groupoid with at most four elements.

Proof. It is possible to generate all idempotent slim groupoids with at most four elements that do not satisfy the equation $x y z u \approx x y z u z u z u$. Only one such groupoid is obtained, the groupoid $\mathscr{G}_{4,3}$.

3. Three-element idempotent slim groupoids

Theorem 3.1. All idempotent slim groupoids with at most three elements are finitely based.

Proof. According to Gerhard [2], all varieties of idempotent semigroups are finitely based. According to Jacobs and Schwabauer [3], all varieties of algebras with one unary operation are finitely based. Thus it remains to consider the at most three-element idempotent slim groupoids that are not semigroups and do not satisfy $x y \approx x z$. It is easy to find that there is, up to isomorphism, precisely one such groupoid. It has three elements a, b, c and multiplication

	a	b	c
a	a	a	c
b	b	b	c
c	a	a	c

It has been shown in [1] that the equational theory of this groupoid is based on the three equations $x(z y) \approx x y, x x \approx x$ and $x y z u \approx x z y u$.

Proof of this theorem. Denote this groupoid by S. We are going to show that the equational theory of S is based on the three equations $x(z y) \approx x y, x x \approx x$ and $x y z u \approx x z y u$. One can easily check that these three equations are satisfied in S. Clearly, an equation $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ (where x_{i} and y_{j} are variables) is a consequence of the three equations if and only if $x_{1}=y_{1}, x_{n}=y_{m}$ and $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}$. Let $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ be satisfied in S. If $x_{1} \neq y_{1}$, take the homomorphism $h: T \rightarrow S$ with $h\left(x_{1}\right)=b$ and $h(z)=a$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right)=b$ while $h\left(y_{1} \ldots y_{m}\right) \in\{a, c\}$, a contradiction. If $x_{n} \neq y_{m}$, take $h: T \rightarrow S$ with $h\left(x_{n}\right)=c$ and $h(z)=a$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right)=c$ while $h\left(y_{1} \ldots y_{m}\right) \in\{a, b\}$, a contradiction. If $\left\{x_{1} \ldots, x_{n}\right\} \neq\left\{y_{1}, \ldots, y_{m}\right\}$, then without loss of generality $x_{i} \notin\left\{y_{1}, \ldots, y_{m}\right\}$ for some i; take $h: T \rightarrow S$ with $h\left(x_{i}\right)=c$ and $h(z)=b$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right) \in\{a, c\}$ while $h\left(y_{1} \ldots y_{m}\right)=b$, a contradiction.

Remark 3.2. In idempotent slim groupoids, $x y z x \approx x$ implies $x y z \approx x z$. Indeed, $x y z=x y x z y y z=x y x z=x z$.

Remark 3.3. In idempotent slim groupoids, the equations $x y x \approx x$ and $x y z u x \approx$ $x p(y) p(z) p(u) x$ for all permutations p of $\{y, z, u\}$ imply $x y z u \approx x z y u$. Indeed, $x y z u=x y z u x u=x z y u x u=x z y u$.

4. The varieties \mathbf{W}_{n}

For $n \geqslant 1$ denote by \mathbf{W}_{n} the variety of idempotent slim groupoids satisfying $x y_{1} \ldots y_{n} x \approx x y_{p(1)} \ldots y_{p(n)} x$ for all permutations p of $\{1, \ldots, n\}$.

Clearly, \mathbf{W}_{1} is the variety of all idempotent slim groupoids, \mathbf{W}_{2} is determined (together with the equations of idempotent slim groupoids) by $x y z x \approx x z y x, \mathbf{W}_{3}$ by $x y z u x \approx x u z y x \approx x z y u x$, etc. We have $\mathbf{W}_{1} \supset \mathbf{W}_{2} \supset \mathbf{W}_{3} \supset \ldots$. Denote by \sim_{n} the equational theory of \mathbf{W}_{n}.

It can be easily checked (with an aid of computer) that every groupoid in \mathbf{W}_{3} with at most 8 elements belongs to \mathbf{W}_{4}.

We denote by $\mathscr{F}_{k, n}$ the free groupoid in \mathbf{W}_{n} with k generarors. In the following we are going to describe $\mathscr{F}_{k, n}$ for small numbers k.

Theorem 4.1. $\mathscr{F}_{2, n}$ is infinite for $n \leqslant 2$. For $n \geqslant 3, \mathscr{F}_{2, n}$ has 8 elements and its multiplication table is

$\mathscr{F}_{2,2}$	x	y	$x y$	$y x$	$x y x$	$y x y$	$x y x y$	$y x y x$
x	x	$x y$	$x y$	x	x	$x y$	$x y$	x
y	$y x$	y	y	$y x$	$y x$	y	y	$y x$
$x y$	$x y x$	$x y$	$x y$	$x y x$	$x y x$	$x y$	$x y$	$x y x$
$y x$	$y x$	$y x y$	$y x y$	$y x$	$y x$	$y x y$	$y x y$	$y x$
$x y x$	$x y x$	$x y x y$	$x y x y$	$x y x$	$x y x$	$x y x y$	$x y x y$	$x y x$
$y x y$	$y x y x$	$y x y$	$y x y$	$y x y x$	$y x y x$	$y x y$	$y x y$	$y x y x$
$x y x y$	$x y x$	$x y x y$	$x y x y$	$x y x$	$x y x$	$x y x y$	$x y x y$	$x y x$
$y x y x$	$y x y x$	$y x y$	$y x y$	$y x y x$	$y x y x$	$y x y$	$y x y$	$y x y x$

Proof. Denote the two generators by x and y. Clearly, every word over $\{x, y\}$ is \sim_{n}-equivalent to a word that is a beginning of either $x y x y x y \ldots$ or $y x y x y x \ldots$. All these words are pairwise \sim_{n}-inequivalent if $n \leqslant 2$. For $n \geqslant 3$, we have $x y x y x \sim_{n} x y x$ and $y x y x y \sim_{n} y x y$, so every word is \sim_{n}-equivalent to one of the eight words. It is easy to check that the eight-element groupoid belongs to \mathbf{W}_{n}. Consequently, it is the free groupoid.

We say that a word $x_{1} \ldots x_{n}$ precedes a word $y_{1} \ldots y_{m}$ if one of the following three cases takes place:
(1) $n<m$,
(2) $n=m \geqslant 3, x_{1}=x_{3}$ and $y_{1} \neq y_{3}$,
(3) $n=m \geqslant 4, x_{1} \neq x_{3}, y_{1} \neq y_{3}, x_{2}=x_{4}$ and $y_{2} \neq y_{4}$.

A word t is said to be \sim_{n}-minimal if there is no word preceding t and \sim_{n}-equivalent with t. Clearly, every word (in a fixed number of variables) is \sim_{n}-equivalent with at least one \sim_{n}-minimal word.

A word $y_{1} \ldots y_{m}$ is said to be an extension of $x_{1} \ldots x_{n}$ if $n \leqslant m$ and $x_{i}=y_{i}$ for all $i \leqslant n$. Let t, u, v, \ldots be words over $\left\{x_{1} \ldots, x_{k}\right\}$. We write $t \triangleleft_{k, n}\langle u, v, \ldots\rangle$ if u, v, \ldots are extensions of u and every \sim_{n}-minimal extension of u (containing only x_{1}, \ldots, x_{k}) is extended by one of the words u, v, \ldots..

We are now going to describe $\mathscr{F}_{3,3}$. So, in the next lemmas let \triangleleft stand for $\triangleleft_{3,3}$. Denote the three generators by x, y, z.

Lemma 4.2. $x y x y \triangleleft\langle x y x y z\rangle$.
Proof. It follows from $x y x y z x \sim_{3} x y x y x z x \sim_{3} x y x z x \sim_{3} x y z x$.

Lemma 4.3. $x y x z \triangleleft\langle x y x z y\rangle$.
Proof. \quad yyxzyx \sim_{3} xyxyzx $\sim_{3} x y z x$ and $x y x z y z \sim_{3} x y z x y z \sim_{3} x z y x y z \sim_{3}$ $x z y y x z \sim_{3} x z y x z \sim_{3} x y z x z$.

Lemma 4.4. $x y z x \triangleleft\langle x y z x\rangle$.
Proof. $x y z x y \sim_{3} x y x z y$ and $x y z x z \sim_{3} x z y x z \sim_{3} x z x y z$.

Lemma 4.5. $x y z y \triangleleft\langle x y z y z x\rangle$.
Proof. $x y z y x \sim_{3} x y z x, x y z y z y \sim_{3} x y z y, x y z y z x z \sim_{3} x y z x y z$ and $x y z y z x y \sim_{3}$ xyzyxzy $\sim_{3} x y z x z y$.

From these lemmas it follows that every word in the variables x, y, z is $\sim_{3^{-}}$ equivalent with at least one word that can be extended to a word similar to one of the words $x y x y z, x y x z y, x y z x, x y z y z x$. (Two words are said to be similar if one is obtained by a permutation of variables in the other.) It is not difficult to write all such words; their number is 66 . Now we know that $\mathscr{F}_{3,3}$ has at most 66 elements and we suspect that 66 could be the precise number. In order to prove it, we try to write the multiplication table for $\mathscr{F}_{3,3}$; clearly, if the groupoid given by this table satisfies the equations of \mathbf{W}_{3}, it is the free groupoid in \mathbf{W}_{3}. The trouble is that the multiplication table would be too big. However, it is sufficient to consider just
a fragment. First of all, instead of the 66 columns it is sufficient to write the three columns corresponding to the three generators: the product of two words is equal to the product of the first word with the last variable in the second. And instead of 66 rows, it is sufficient to write the representative 12 of them; the other ones are obtained by permutations of variables. We obtain the displayed fragment. In this fragment, each of the first 2 rows can be permuted to 3 different rows and each of the next 10 rows to 6 .

$\mathscr{F}_{3,3}$	x	y	z
x	x	$x y$	$x z$
$x y z x$	$x y z x$	$x y x z y$	$x z x y z$
$x y$	$x y x$	$x y$	$x y z$
$x y x$	$x y x$	$x y x y$	$x y x z$
$x y z$	$x y z x$	$x y z y$	$x y z$
$x y x y$	$x y x$	$x y x y$	$x y x y z$
$x y x y z$	$x y z x$	$x y x z y$	$x y x y z$
$x y x z$	$x y z x$	$x y x z y$	$x y x z$
$x y x z y$	$x y z x$	$x y x z y$	$x z x y z$
$x y z y$	$x y z x$	$x y z y$	$x y z y z$
$x y z y z$	$x y z y z x$	$x y z y$	$x y z y z$
$x y z y z x$	$x y z y z x$	$x y x z y$	$x z x y z$

We can check easily that this groupoid satisfies the equations of \mathbf{W}_{3}. (Observe that in order to check a permutational equation of the form considered here, it is sufficient to interpret its leftmost variable as an arbitrary element and all the remaining variables as variables only.) So, this groupoid is the groupoid $\mathscr{F}_{3,3}$ and the free groupoid has precisely 66 elements.

The groupoid does not belong to \mathbf{W}_{4}, since the element $x y z y z x$ can be reduced to $x y z x$. It easily follows that the groupoid $\mathscr{F}_{3,4}$ (which has to be a factor of $\mathscr{F}_{3,3}$) has 60 elements. We get

Theorem 4.6. The groupoid $\mathscr{F}_{3,3}$ has 66 elements and its multiplication table can be reconstructed from the above given fragment of 12 rows and 3 columns. The groupoid $\mathscr{F}_{3,4}$ has 60 elements and its multiplication table can be reconstructed from the fragment for $\mathscr{F}_{3,3}$ in which the last row is deleted and the element xyzyzx is replaced by $x y z x$.

Next we are going to describe the groupoid $\mathscr{F}_{4,5}$. So, in the next lemmas let \triangleleft stand for $\triangleleft_{4,5}$. Denote the four generators by x, y, z, u.

Lemma 4.7. $x y x y \triangleleft\langle x y x y z u z u, x y x y u z u z\rangle$.
Proof. Let t be a \sim_{5}-minimal extension of $x y x y$. Clearly, t cannot start with either $x y x y x$ or $x y x y y$, so (if it is different from $x y x y$) it must start with either $x y x y z$ or $x y x y u$. Each of these words can continue (to remain \sim_{5}-minimal) only in the indicated way. We have xyxyzuzux $\sim_{5} x y x y z u x \sim_{5} x y z u x$ and $x y x y z u z u y \sim_{5}$ xyxyzuy, so that $x y x y z u z u$ has no proper \sim_{5}-minimal extension.

Lemma 4.8. $x y x z y \triangleleft\langle x y x z y u\rangle$.
Proof. We cannot continue with z, since $x y x z y z \sim_{5} x y z x y z \sim_{5} x y z y x z \sim_{5}$ $x y y z x z \sim_{5} x y z x z$. So, clearly we can continue with u only. It is evident that the word $x y x z y u$ can be continued neither with x nor y nor u. It also cannot be continued with z, since $x y x z y u z \sim_{5}$ xyxzuyz \sim_{5} xyzuxyz \sim_{5} xzyuxyz \sim_{5} xzyyuxz \sim_{5} xzyuxz.

Lemma 4.9. $x y x z u \triangleleft\langle x y x z u z u, x y x z u y\rangle$.
Proof. Clearly, the word can continue neither with x nor u and if it is continued with z then there is only one possible further continuation, $x y x z u z u$. For the continuations of xyxzuy, consider

```
xyxzuyz ~}\mp@subsup{5}{5}{}xyzuxyz\mp@subsup{~}{5}{}xyzuyxz\mp@subsup{~}{5}{}xyyzuxz\mp@subsup{~}{5}{}xyzuxz an
xyxzuyи \mp@subsup{~}{5}{}xyиzxyu \mp@subsup{~}{5}{}}\mathrm{ xyиzyxu }\mp@subsup{~}{5}{}xyyuzxu \mp@subsup{~}{5}{}xyuzxu
```

Lemma 4.10. $x y x z \triangleleft\langle x y x z y u, x y x z u z u, x y x z u y\rangle$.
Proof. It follows from 4.8 and 4.9 , since clearly the word cannot be continued with either x or z.

Lemma 4.11. $x y x \triangleleft\langle x y x y z u z u, x y x y u z u z, x y x z y u, x y x z u z u, x y x z u y, x y x u y z$, xyxuzuz〉.

Proof. It follows from 4.7 and 4.10.

Lemma 4.12. $x y z x \triangleleft\langle x y z x u\rangle$.
Proof. A continuation of $x y z x y$ (of $x y z x z$) is \sim_{5}-equivalent to a continuation of $x y x z y$ (of $x z x y z$, respectively, since $x y z x z \sim_{5} x z y x z \sim_{5} x z x y z$) of the same length and so it need not be considered. We have $x y z x u z \sim_{5} x y z u x z \sim_{5} x z y u x z \sim_{5}$ $x z x y u z$, a word starting with $x z x$.

Lemma 4.13. $x y z y \triangleleft\langle x y z y z u, x y z y u z\rangle$.
Proof. It is easy to see that $x y z y z \triangleleft\langle x y z y z u\rangle$. Since $x y z y u z u \sim_{5} x y z u y z u \sim_{5}$ xyuzyzu \sim_{5} xyuzzyu $\sim x y u z y u$, we have $x y z y u \triangleleft\langle x y z y u z\rangle$.

Lemma 4.14. $x y z u \triangleleft\langle x y z u x, x y z u y, x y z u z u\rangle$.
Proof. Since

```
xyzuxy ~}\mp@subsup{~}{5}{}xyxzuy
xyzuxz ~}\mp@subsup{~}{5}{}xyzxuz \mp@subsup{~}{5}{}xzyxuz \mp@subsup{~}{5}{}xzxyuz
xyzuxu }\mp@subsup{~}{5}{}\mathrm{ xuyzxu }\mp@subsup{~}{5}{}\mathrm{ xuxyzu,
```

we have $x y z u x \triangleleft\langle x y z u x\rangle$. Since

```
xyzuyz ~}\mp@subsup{~}{5}{}\mathrm{ xyzyuz,
xyzuyu }\mp@subsup{~}{5}{}xyuzyu \mp@subsup{~}{5}{5}\mathrm{ xyuyzu,
```

we have $x y z u y \triangleleft\langle x y z u y\rangle$. Clearly, $x y z u z \triangleleft\langle x y z u z u\rangle$.
From these lemmas it follows that every word in the variables x, y, z, u is $\sim_{5^{-}}$ equivalent to at least one word that can be extended to a word similar to one of the words $x y x y z u z u, x y x z y u, x y x z u z u, x y x z u y, x y z x u, x y z y z u, x y z y u z, x y z u x$, $x y z u y, x y z u z u$. It is not difficult to write all such words; their number is 548 . Now we know that $\mathscr{F}_{4,5}$ has at most 548 elements and, similarly to the case of three generators, we can write a fragment of the multiplication table. This fragment that is displayed has 4 columns and 28 representative rows. Each of the first 2 rows can be permuted to 4 different rows, each of the next 7 rows to 12 , and each of the last 19 rows to 24 .

One can verify that the groupoid satisfies the equations of \mathbf{W}_{5} either with an aid of computer or also manually. The result is that the equations are indeed satisfied, and we obtain

Theorem 4.15. The groupoid $\mathscr{F}_{4,5}$ has 548 elements and its multiplication table can be reconstructed from the fragment of 28 rows and 4 columns.

It is easy to see that the groupoids $\mathscr{F}_{4, n}$ are infinite for $n \leqslant 4$. The reason is that the terms xyxyzuzuxyxyzuzu... are pairwise \sim_{n}-inequivalent.

$\mathscr{F}_{4,5}$	x	y	z	u
x	x	$x y$	$x z$	$x u$
$x y z u x$	xyzux	xyxzuy	xzxyuz	xuxyzu
$x y$	$x y x$	$x y$	$x y z$	$x y u$
$x y x$	$x y x$	$x y x y$	$x y x z$	$x y x u$
$x y x y$	$x y x$	$x y x y$	$x y x y z$	xyxyu
$x y z x$	$x y z x$	$x y x z y$	$x z x y z$	$x y z x u$
$x y x z u y$	xyzux	$x y x z u y$	$x z x y u z$	xuxyzu
$x y z x u$	xyzux	$x y x z u y$	$x z x y u z$	$x y z x u$
xyzuy	xyzux	$x y z u y$	$x y z y u z$	$x y u y z u$
$x y z$	$x y z x$	$x y z y$	$x y z$	$x y z u$
$x y x y z$	$x y z x$	$x y x z y$	$x y x y z$	$x y x y z u$
$x y x z$	$x y z x$	$x y x z y$	$x y x z$	$x y x z u$
$x y x z y$	$x y z x$	$x y x z y$	$x z x y z$	$x y x z y u$
$x y z y$	$x y z x$	$x y z y$	$x y z y z$	$x y z y u$
$x y z y z$	$x y z x$	$x y z y$	$x y z y z$	$x y z y z u$
$x y z u$	xyzux	$x y z u y$	$x y z u z$	$x y z u$
$x y x y z u$	xyzux	$x y x z u y$	xyxyzuz	$x y x y z u$
$x y x y z u z$	xyzux	$x y x z u y$	xyxyzuz	$x y x y z u z u$
$x y x y z u z u$	xyzux	$x y x z u y$	xyxyzuz	$x y x y z u z u$
$x y x z u$	xyzux	$x y x z u y$	$x y x z u z$	$x y x z u$
$x y x z y u$	xyzux	$x y x z u y$	$x z x y u z$	$x y x z y u$
$x y x z u z$	xyzux	$x y x z u y$	$x y x z u z$	$x y x z u z u$
$x y x z u z u$	xyzux	$x y x z u y$	$x y x z u z$	$x y x z u z u$
$x y z y z u$	xyzux	$x y z u y$	$x y z y u z$	$x y z y z u$
$x y z y u$	xyzux	$x y z u y$	$x y z y u z$	$x y z y u$
$x y z y u z$	xyzux	$x y z u y$	$x y z y u z$	xyuyzu
$x y z u z$	xyzux	$x y z u y$	$x y z u z$	$x y z u z u$
$x y z u z u$	xyzux	$x y z u y$	$x y z u z$	$x y z u z u$

Theorem 4.16. If k is even and $n<2 k-3$ then $\mathscr{F}_{k, n}$ is infinite. If k is odd and $n<2 k-4$ then $\mathscr{F}_{k, n}$ is infinite.

Proof. Denote the generators by x_{1}, \ldots, x_{k}. For k even the words

$$
x_{1} x_{2} x_{1} x_{2} \ldots x_{k-1} x_{k} x_{k-1} x_{k} x_{1} x_{2} x_{1} x_{2} \ldots
$$

and for k odd the words

$$
x_{1} x_{2} x_{1} x_{2} \ldots x_{k-2} x_{k-1} x_{k-2} x_{k-1} x_{k} x_{1} \ldots
$$

are pairwise inequivalent with respect to the equations of \mathbf{W}_{n}.

Theorem 4.17. Let $k \geqslant 3$. Then $\mathscr{F}_{k, 2 k-3}$ is finite.
Proof. For $k=3$ it follows from the above theorem. So, let $k \geqslant 4$. Put $n=2 k-3$ and denote by \sim the equational theory of \mathbf{W}_{n}. Consider only words in k fixed variables. By a minimal word we will mean a word that is not ~-equivalent to a shorter word. Clearly, every minimal word is I-reduced.

Suppose that there exists a minimal word $x_{1} \ldots x_{m}$ containing at least three occurrences of some variable, and take such a minimal word of minimal possible length. Then $x_{1}=x_{i}=x_{m}$ for precisely one $i \in\{2, \ldots, m-1\}$ and each variable different from x_{1} has at most two occurrences in $x_{1} \ldots x_{m}$. Consequently, $m \leqslant 2 k+1$. Since $i-2 \leqslant m-4 \leqslant 2 k-3=n$ and $x_{1}=x_{i}$, the variables x_{2}, \ldots, x_{i-1} can be arbitrarily permuted and (consequently) are pairwise different. For the same reason, x_{i+1}, \ldots, x_{m-1} can be arbitrarily permuted and are pairwise different. If x_{2}, \ldots, x_{m-1} are pairwise different or if there is at most one pair of equal elements among them then $m-2 \leqslant k+1 \leqslant 2 k-3=n$ (since $k \geqslant 4$), so that the inner variables in $x_{1} \ldots x_{m}$ can be arbitrarily permuted; in particular, they can be permuted in such a way that x_{i} gets to the position with index 2 , so that the word starts with two equal variables and can be shortened, a contradiction. Hence there exist four different indexes j, m, r, s with $x_{j}=x_{m}, x_{r}=x_{s}, j<i<m$ and $j<r<i<s$. We can assume that $s<m$, because the two places can be permuted. Take such a quadruple j, m, r, s with the largest possible j. Then x_{j+1}, \ldots, x_{m-1} are all different with the only exception $x_{r}=x_{s}$, so the length of this sequence is at most k which is less than n, and x_{r}, x_{s} can be permuted to become neighbors and then one of them deleted, a contradiction.

So, every minimal word contains at most two occurrences of each of the k variables. There are only finitely many such words and every word in the k variables is \sim equivalent to at least one minimal word.

Theorem 4.18. Let $k \geqslant 3$. If k is odd put $n=2 k-2$, and if k is even put $n=2 k-3$. Then $\mathscr{F}_{k, n}=\mathscr{F}_{k, m}$ for all $m \geqslant n$.

Proof. It is sufficient to prove for every $m \geqslant n$ that if $\mathscr{F}_{k, n} \in \mathbf{W}_{m}$ then $\mathscr{F}_{k, n} \in \mathbf{W}_{m+1}$; the statement will then follow by induction on m. Let $m \geqslant n$ and $\mathscr{F}_{k, n} \in \mathbf{W}_{m}$. We need to prove $x y_{1} \ldots y_{m+1} x=x y_{p(1)} \ldots y_{p(m+1)} x$ in $\mathscr{F}_{k, n}$ for all elements $x, y_{1}, \ldots, y_{m+1}$ of $\mathscr{F}_{k, n}$ and all permutations p of $\{1, \ldots, m+1\}$. However, clearly it is sufficient to prove it only in the case when all the elements $x, y_{1}, \ldots, y_{m+1}$ are from the k-element set of generators of $\mathscr{F}_{k, n}$. In order to do this, it is sufficient to prove that $x y_{1} \ldots y_{m+1} x=x z_{1} \ldots z_{m} x$ for a sequence z_{1}, \ldots, z_{m} such that $\left\{x, z_{1}, \ldots, z_{m}\right\}=\left\{x, y_{1}, \ldots, y_{m+1}\right\}$.

If some member of the sequence $x, y_{1}, \ldots, y_{m+1}, x$ is equal to the immediately following member, we can delete it and the claim is confirmed. So, we can assume that $y_{i} \neq y_{i+1}$ for all i and $y_{1} \neq x \neq y_{m+1}$.

Suppose that $y_{i}=y_{j}=y_{r}$ for some $i<j<r$. Then $x y_{1} \ldots y_{m+1} x=$ $x y_{1} \ldots y_{i} y_{j} y_{i+1} \ldots y_{j-1} y_{j+1} \ldots y_{r} \ldots y_{m+1} x=x y_{1} \ldots y_{j-1} y_{j+1} \ldots y_{m+1} x$. So, we can assume that every element occurs at most twice in y_{1}, \ldots, y_{m+1}.

Consider first the case when $y_{i}=y_{j}=x$ for some $1 \leqslant i<j \leqslant m+1$. Then

$$
\begin{aligned}
x y_{1} \ldots y_{m+1} x & =x y_{i} y_{1} \ldots y_{i-1} y_{i+1} \ldots y_{j} \ldots y_{m+1} x \\
& =x y_{1} \ldots y_{i-1} y_{i+1} \ldots y_{m+1} x
\end{aligned}
$$

Now let $y_{i}=x$ for precisely one i. Since the sequence y_{1}, \ldots, y_{m+1} with y_{i} deleted contains at most $k-1$ different elements and $k<m$, we have $y_{j}=y_{q}$ and $y_{r}=y_{s}$ for two different pairs $j<q$ and $r<s$. Without loss of generality, $j<r$. If $j<q<i$ then $x y_{1} \ldots y_{m+1} x=x y_{1} \ldots y_{j} y_{q} y_{j+1} \ldots y_{q-1} y_{q+1} \ldots y_{i} \ldots y_{n+1} x=$ $x y_{1} \ldots y_{q-1} y_{q+1} \ldots y_{n+1} x$. So, we can assume that $j<i<q$ and, similarly, $r<i<s$. Since y_{q}, y_{s} are between y_{i} and the last occurrence of x, they can be permuted and thus we can suppose that $s<q$. But then the two occurrences of $y_{r}=y_{s}$ are between the two occurrences of $y_{j}=y_{q}$, they can be moved to get one the elements next to the other and then one of them can be deleted. It remains to consider the case when x does not occur in y_{1}, \ldots, y_{m+1}.

Let k be odd. The sequence y_{1}, \ldots, y_{m+1} contains at most $k-1$ different elements. If each of them occurs at most twice, we get $m+1 \leqslant 2 k-2=n$, a contradiction. Thus at least one of these elements occurs at least three times; this case has been handled above.

Let k be even and let us work again under the assumption that no element occurs more than twice in y_{1}, \ldots, y_{m+1}. If some of these elements occurs only once, we get $m+1 \leqslant 2 k-3=n$, a contradiction. Thus every element occurs precisely twice in y_{1}, \ldots, y_{m+1}. Clearly, we can assume that there is no quadruple i, j, r, s of indexes with $i<j<r<s, y_{i}=y_{s}$ and $y_{j}=y_{r}$. We are going to prove by induction on $i \geqslant 0$ that if $4 i+1 \leqslant m+1$ then $4 i+4 \leqslant m+1$ and $x y_{1} \ldots y_{m+1} x=x z_{1} \ldots z_{m+1} x$ for some z_{1}, \ldots, z_{m+1} such that $z_{4 j+1}=z_{4 j+3}$ and $z_{4 j+2}=z_{4 j+4}$ for all $j \leqslant i$. Let this be true for all numbers less than i. So, we can suppose that $y_{4 j+1}=y_{4 j+3}$ and $y_{4 j+2}=y_{4 j+4}$ for all $j<i$. Since $y_{4 i+1}$ does not occur in $y_{1}, \ldots, y_{4 i}$, we have $y_{4 i+1}=y_{q}$ for some $q \geqslant 4 i+3$. If $q>4 i+3$ then $y_{4 i+2}=y_{r}$ for some $r>q$ and the variables between $y_{4 i+2}$ and y_{r} can be permuted so that y_{q} is moved to the position of $y_{4 i+3}$. So, we can assume that $y_{4 i+1}=y_{4 i+3}$. Since $y_{4 i+2}$ does not occur in $y_{1}, \ldots, y_{4 i+1}$, we have $y_{4 i+2}=y_{s}$ for some $s \geqslant 4 i+4$. If $s>4 i+4$, then for a similar reason y_{s} can be moved to the position of $y_{4 i+4}$, and thus we can also suppose that $y_{4 i+2}=y_{4 i+4}$.

It follows that the number of different elements in y_{1}, \ldots, y_{m+1} is even. But the number is $k-1$, which is odd. So, if k is even, the assumption that no element occurs more than twice in $y_{1}, \ldots, y_{m=1}$ is contradictory.

The following table summarizes what we know about the cardinalities of $\mathscr{F}_{k, n}$ for $k \leqslant 6$ and $n \leqslant 9$.

$\left\|\mathscr{F}_{k, n}\right\|$	2	3	4	5	6	7	8	9
$k=2$	∞	8	8	8	8	8	8	8
$k=3$	∞	66	60	60	60	60	60	60
$k=4$	∞	∞	∞	548	548	548	548	548
$k=5$	∞	∞	∞	∞	$?$	f_{1}	f_{2}	f_{2}
$k=6$	∞	f_{3}						

Here f_{1}, f_{2} and f_{3} are some finite numbers that we did not compute. In particular, we do not know whether $f_{1}=f_{2}$. We do not know whether $\mathscr{F}_{5,6}$ is finite.

5. The variety \mathbf{W}_{∞}

We denote by \mathbf{W}_{∞} the intersection of the varieties $\mathbf{W}_{n}(n=1,2, \ldots)$. In this section \sim always denotes the equational theory of \mathbf{W}_{∞}.

Lemma 5.1. Let x_{1}, \ldots, x_{n} be variables and let $1 \leqslant i<j<k<m \leqslant n$ be such that $x_{i}=x_{k}$ and $x_{j}=x_{m}$. Then

$$
x_{1} \ldots x_{n} \sim x_{1} \ldots x_{i} x_{p(i+1)} \ldots x_{p(m-1)} x_{m} \ldots x_{n}
$$

for any permutation p of $\{i+1, \ldots m-1\}$ such that $p(j)<p(k)$.
Proof. $\quad x_{j}$ can be moved to the position $i+1$ and then x_{k} can be moved to the position $i+2$. Since the remaining variables of $x_{i+1} \ldots x_{m-1}$ are now between two occurrences of the same variable x_{m}, they can be arbitrarily permuted. Then the variable at position $i+2$ can be moved to an arbitrary place p with $i+2 \leqslant p<m$ and the variable at position $i+1$ to an arbitrary place q with $i+1 \leqslant q<p$.

Let us fix a strict linear ordering \sqsubset of the set of variables. A word $x_{1} \ldots x_{n}$ is said to be admissible if
(1) $x_{1} \ldots x_{n}$ is I-reduced,
(2) every variable has at most two occurrences in $x_{1} \ldots x_{n}$,
(3) whenever $1 \leqslant i<j \leqslant n$ and $x_{i}=x_{j}$ then the variables x_{i+1}, \ldots, x_{j-1} are pairwise different and if each of them has only one occurrence in $x_{1} \ldots x_{n}$ then $x_{i+1} \sqsubset x_{i+2} \sqsubset \ldots \sqsubset x_{j-1}$,
(4) whenever $1 \leqslant i<j<k<m \leqslant n, x_{i}=x_{k}$ and $x_{j}=x_{m}$ then $j=i+1, k=i+2$, each of the variables x_{i+3}, \ldots, x_{m-1} has only one occurrence in $x_{1} \ldots x_{n}$ and $x_{i+3} \sqsubset x_{i+4} \sqsubset \ldots \sqsubset x_{m-1}$.

Lemma 5.2. Every word is ~-equivalent to at least one admissible word.
Proof. It is sufficient to consider a word $x_{1} \ldots x_{n}$ that is not \sim-equivalent with any shorter word. Clearly, $x_{1} \ldots x_{n}$ is I-reduced. If $1 \leqslant i<j<k \leqslant n$ and $x_{i}=x_{j}=$ x_{k} then x_{j} can be moved to position $i+1$ and then, because of the idempotency, deleted. If $1 \leqslant i<j \leqslant n, x_{i}=x_{j}$ and the variables $x_{r}(r=i+1, \ldots, j-1)$ are pairwise different then these variables can be permuted to obtain $x_{i+1} \sqsubset \ldots \sqsubset x_{j-1}$. Let $1 \leqslant i<j<k<m \leqslant n, x_{i}=x_{k}$ and $x_{j}=x_{m}$. By 5.1 we can suppose that $j=i+1$ and $k=i+2$. Suppose $x_{c}=x_{d}$ for some $c \in\{i+3, \ldots, m-1\}$ and some $d \neq c$. If $i+3 \leqslant d \leqslant m-1$ then x_{c} and x_{d} are between the two occurrences of x_{m} and thus x_{d} can be deleted. If $d<i$ then x_{i} and x_{i+2} are between the two occurrences of x_{c}. If $d>m$ then x_{i+1} and x_{i+2} can be moved to positions $m-2$ and $m-1$ respectively, so that then both occurrences of x_{m} are between the two occurrences of x_{c} and the word $x_{1} \ldots x_{n}$ can be again shortened. Thus each of the variables x_{i+3}, \ldots, x_{m-1} has only one occurrence in $x_{1} \ldots x_{n}$. These variables can be permuted to obtain $x_{i+3} \sqsubset \ldots \sqsubset x_{m-1}$.

Lemma 5.3. Let $x_{1} \ldots x_{n}$ and $y_{1} \ldots y_{m}$ be two different admissible words. Then the equation $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ together with the equations of \mathbf{W}_{∞} implies one of the following three equations:
(1) $x y x y \approx x y$,
(2) $y z y z x \approx y z y x$,
(3) $x y z y z \approx x z y z$.

Proof. By induction on $n+m$. If $x_{n} \neq y_{m}$ then $z\left(x_{1} \ldots x_{n}\right)=z\left(y_{1} \ldots y_{m}\right)$ gives $z x_{n} \approx z y_{m}$, which implies $x y \approx x$ and then the equation (1). So, let $x_{n}=y_{m}$.

Suppose $\left\{x_{1}, \ldots, x_{n}\right\} \neq\left\{y_{1}, \ldots, y_{m}\right\}$. Without loss of generality, $y_{i} \notin\left\{x_{1}, \ldots, x_{n}\right\}$ for some i. Substitute y for y_{i} and x for any other variable. We get one of the equations $x \approx y x, x \approx x y x$ or $x \approx y x y x$. Each of these equations implies (1). (In the case of $x \approx y x y x$ take the substitution $x \mapsto y x$.)

If $x_{1} \neq y_{1}$, take a new variable z and substitute $z x_{1}$ for x_{1}. We get $z x_{1} \ldots z x_{n} \approx$ $y_{1} \ldots y_{m}$ where $\left\{z, x_{1}, \ldots, x_{n}\right\} \neq\left\{y_{1}, \ldots, y_{m}\right\}$ and thus we get the equation (1) as before.

Thus we can assume that $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}, x_{1}=y_{1}$ and $x_{n}=y_{m}$. Since $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$, we have $n>1$ and $m>1$.

Suppose that x_{n} has only one occurrence in $x_{1} \ldots x_{n}$ and only one occurrence in $y_{1} \ldots y_{m}$. If $x_{n-1} \neq y_{m-1}$, substitute x for x_{n}, y for x_{n-1} and z for all other variables. We get that either $z y x$ or $y z y x$ or $z y z y x$ is \sim-equivalent with either $y z x$ or $z y z x$ or $y z y z x$. In each of the four cases (the two terms must start with the same variable) we get either (1) or (2). Now let $x_{n-1}=y_{m-1}$. If we substitute x_{n-1} for x_{n}, we get $x_{1} \ldots x_{n-1} \sim y_{1} \ldots y_{m-1}$ where $x_{1} \ldots x_{n-1}$ and $y_{1} \ldots y_{m-1}$ are two different admissible terms, so that the induction hypothesis can be applied.

Suppose that x_{n} has only one occurrence in $x_{1} \ldots x_{n}$ but two occurrences in $y_{1} \ldots y_{m}$. Substitute x for x_{n} and y for all other variables. We get $y x \sim y x y x$, i.e., we get (1).

It remains to consider the case when $x_{n}=y_{m}$ has two occurrences in $x_{1} \ldots x_{n}$ and two occurrences in $y_{1} \ldots y_{m}$. Let $i<n, j<m, x_{i}=x_{n}$ and $y_{j}=y_{m}$. Put $C=\left\{x_{i+1}, \ldots, x_{n-1}\right\}$ and $D=\left\{y_{j+1}, \ldots, y_{m-1}\right\}$.

Suppose that each variable from C has only one occurrence in $x_{1} \ldots x_{n}$ and each variable from D has only one occurrence in $y_{1} \ldots y_{m}$. If $C-D \neq \emptyset$ and $D-C=\emptyset$, substitute x for x_{n}, x for every variable from $C \cap D$ and y for all other variables to obtain $y x y x \sim y x$, i.e., we get (1). If $C-D \neq \emptyset$ and $D-C \neq \emptyset$, substitute x for x_{n}, x for every variable from C and y for all other variables to obtain that $y x \sim y x y x$. If $C=D$, substitute a variable $x \notin\left\{x_{1}, \ldots, x_{n}\right\}$ for every variable from $\left\{x_{i}, \ldots, x_{n}\right\}$ to obtain $x_{1} \ldots x_{i-1} x \sim y_{1} \ldots y_{j-1} x$ where $x_{1} \ldots x_{i-1} x$ and $y_{1} \ldots y_{j-1} x$ are two different admissible words, so that the induction hypothesis can be applied.

Next suppose that each variable from C has only one occurrence in $x_{1} \ldots x_{n}$, while $y_{j-1}=y_{j+1}$. If $y_{j+1} \notin C$, substitute x for all variables from $\left\{x_{i}, \ldots, x_{n}\right\}$ and y for all other variables to obtain $y x \sim y x y x$. Let $y_{j+1} \in C$. If $C-D \neq \emptyset$, substitute x for all variables from $\left\{y_{j}, \ldots, y_{m}\right\}$ and y for all other variables to obtain $y x y x \sim y x$. If $D-C \neq \emptyset$, substitute x for all variables from $\left\{x_{i}, \ldots, x_{n}\right\}$ and y for all other variables to obtain $y x \sim y x y x$. If $C=D$, substitute x for all variables from $\left\{x_{i}, \ldots, x_{n}\right\}-\left\{y_{i+1}\right\}, y$ for y_{i+1} and z for all other variables to obtain $z x y x \sim z y x y x$; we get (3).

Finally, let $x_{i-1}=x_{i+1}$ and $y_{j-1}=y_{j+1}$. If $x_{i+1}=y_{j+1}$, substitute x_{n} for x_{i+1} to obtain $x_{1} \ldots x_{i-1} x_{i+2} \ldots x_{n} \sim y_{1} \ldots y_{j-1} y_{j+2} \ldots y_{m}$ and use the induction hypothesis. Let $x_{i+1} \neq y_{j+1}$. If $y_{j+1} \notin\left\{x_{i}, \ldots, x_{n}\right\}$, substitute x for every variable from $\left\{x_{i}, \ldots, x_{n}\right\}$ and y for all other variables to obtain $y x \sim y x y x$. If $y_{j+1} \in$ $\left\{x_{i}, \ldots, x_{n}\right\}$ and $x_{i+1} \in\left\{y_{j}, \ldots, y_{m}\right\}$, substitute x for x_{n}, x for x_{i+1}, z for every variable from $\left\{x_{i+2}, \ldots, x_{n-1}\right\}$ and y for every other variable to obtain either $z x y x \sim$ $z y x y z x$ or $z x y x \sim z y x y x$ and thus (substitute x for y in the first equation) either (1) or (3).

Theorem 5.4. The variety \mathbf{W}_{∞} is generated by $\mathscr{F}_{3,4}$ and every word is $\mathbf{W}_{\infty^{-}}$equivalent with precisely one admissible word.

Proof. By 5.2, every word is \mathbf{W}_{∞}-equivalent with at least one admissible word. If two different admissible words are \mathbf{W}_{∞}-equivalent then \mathbf{W}_{∞} satisfies one of the three equations $5.3(1), 5.3(2)$ and $5.3(3)$. However, it is easy to check that none of these three equations is satisfied in $\mathscr{F}_{3,4}$. Since $\mathscr{F}_{3,4}$ belongs to \mathbf{W}_{∞}, it follows that every word is \mathbf{W}_{∞}-equivalent with precisely one admissible word. If $\mathscr{F}_{3,4}$ satisfies an equation not satisfied by all algebras in \mathbf{W}_{∞} then, again by 5.3 , it satisfies one of the three equations, which is not possible.

Remark 5.5. The variety \mathbf{W}_{∞} is not generated by $\mathscr{F}_{2,2}$. Indeed, $\mathscr{F}_{2,2}$ satisfies $x y z y z \approx x z y z$ and this equation is not satisfied in \mathbf{W}_{∞}.

Remark 5.6. According to 5.4 , the cardinality $C(k)$ of the k-generated free algebra in \mathbf{W}_{∞} can be computed in the following way. Denote by S_{k} the set of finite sequences $\left\langle n_{1}, \ldots, n_{r}\right\rangle$ of positive integers such that $n_{1}+\ldots+n_{r}=k$. Put

$$
D(k)=\sum_{\left\langle n_{1}, \ldots, n_{r}\right\rangle \in S_{k}} \prod_{i=1}^{r}\binom{k-n_{1}-\ldots-n_{i-1}}{n_{i}} n_{i}^{2}
$$

Then $C(k)=\sum_{i=1}^{k}\binom{k}{i} D(i)$. In particular,

$$
\begin{gathered}
C(2)=8, C(3)=60, C(4)=548 \\
C(5)=6180, C(6)=83502
\end{gathered}
$$

Remark 5.7. The equations of \mathbf{W}_{∞} together with $x y x y \approx x y$ imply the equation $x y x z_{1} \ldots z_{n} y \approx x y z_{1} \ldots z_{n} y$. Indeed, $x y x z_{1} \ldots z_{n} y=x y x y z_{1} \ldots z_{n} y=x y z_{1} \ldots z_{n} y$.

Remark 5.8. The equations of \mathbf{W}_{∞} together with the equation $x y x z_{1} \ldots z_{n} y u \approx$ $x y x z_{1} \ldots z_{n} u(n \geqslant 1)$ imply $x y x y \approx x y$. Indeed, take the substitution sending y to x, z_{1}, \ldots, z_{n} to y and u to y.

Theorem 5.9. The intersection of \mathbf{W}_{3} with the variety determined by $x y x y \approx x y$ is the variety of idempotent slim groupoids satisfying $x y z u \approx x z y u$.

Proof. Denote by \sim the equational theory of \mathbf{W}_{3} extended by $x y x y \approx x y$. We have

```
xyxzy ~ xyxyzy~xyzy,
xyxzy~xyzxy~xzyxy ~ xzxyxy ~ xzxy,
xyzy~xzxy,
xzxy~xyxzy~xzyzy~xzy.
xyzu~xyxzu ~ xyxzxu ~ xzxyxu ~ xzyu
```


6. The variety \mathbf{Y}

Denote by \mathbf{Y} the variety determined by the equations of \mathbf{W}_{∞} together with the equations $x y x y z \approx x y x z$ and $z x y x y \approx z y x y$. In this section we denote by \sim the equational theory of \mathbf{Y}.

Lemma 6.1. We have
(1) zxyxu $\sim z y x y u$,
(2) $z x y v_{1} \ldots v_{n} x u \sim z y x v_{1} \ldots v_{n} y u$,
(3) $x y x u_{1} \ldots u_{n} y z \sim x y u_{1} \ldots u_{n} x z$,
(4) $z x y x u_{1} \ldots u_{n} y \sim z y x u_{1} \ldots u_{n} y$.

Proof. (1) zxyxu $\sim z x y x y u \sim z y x y u$.
(2) $z x y v_{1} \ldots v_{n} x u \sim z x y x v_{1} \ldots v_{n} x u \sim z y x y v_{1} \ldots v_{n} x u \sim z y x y v_{1} \ldots v_{n} x y x u \sim$ $z y x y v_{1} \ldots v_{n} y x y u \sim z y x v_{1} \ldots v_{n} y u$.
(3) $x y x u_{1} \ldots u_{n} y z \sim x y u_{1} \ldots u_{n} y x y z \sim x y u_{1} \ldots u_{n} x y x z \sim x y u_{1} \ldots u_{n} x z$.
(4) $z x y x u_{1} \ldots u_{n} y \sim z y x y u_{1} \ldots u_{n} y \sim z y x u_{1} \ldots u_{n} y$.

By a 2 -admissible word we mean a word $x_{1} \ldots x_{n}$ such that
(1) $x_{1} \ldots x_{n}$ is I-reduced,
(2) every variable has at most two occurrences in $x_{1} \ldots x_{n}$,
(3) whenever $1 \leqslant i<j \leqslant n$ and $x_{i}=x_{j}$ then the variables x_{i+1}, \ldots, x_{j-1} are pairwise different and if each of them has only one occurrence in $x_{1} \ldots x_{n}$ then $x_{i+1} \sqsubset x_{i+2} \sqsubset \ldots \sqsubset x_{j-1}$,
(4) whenever $1<i<j<n$ and $x_{i}=x_{j}$ then $x_{i} \sqsubset x_{i+1} \sqsubset \ldots \sqsubset x_{j-1}$,
(5) whenever $1 \leqslant i<j<k<m \leqslant n, x_{i}=x_{k}$ and $x_{j}=x_{m}$ then $i=1, j=2$, $k=3, m=n$ and $x_{4} \sqsubset x_{5} \sqsubset \ldots \sqsubset x_{n-1}$.

Lemma 6.2. Let $x_{1} \ldots x_{n}$ and $y_{1} \ldots y_{m}$ be two different 2-admissible words. Then the equation $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ together with the equations of \mathbf{Y} implies $x y x y \approx x y$.

Proof. By induction on $n+m$. If $x_{n} \neq y_{m}$ then $z\left(x_{1} \ldots x_{n}\right) \approx z\left(y_{1} \ldots y_{m}\right)$ gives $z x_{n} \approx z y_{m}$, which implies $x y \approx x$ and then $x y x y \approx x y$. So, let $x_{n}=y_{m}$.

Suppose $\left\{x_{1}, \ldots, x_{n}\right\} \neq\left\{y_{1}, \ldots, y_{m}\right\}$. Without loss of generality, $y_{i} \notin\left\{x_{1}, \ldots, x_{n}\right\}$ for some i. Substitute y for y_{i} and x for any other variable. We get one of the equations $x \approx y x, x \approx x y x$ or $x \approx y x y x$. Each of these equations implies $x y x y \approx x y$. (In the case of $x \approx y x y x$ take the substitution $x \mapsto y x$.)

If $x_{1} \neq y_{1}$, take a new variable z and substitute $z x_{1}$ for x_{1}. We get $z x_{1} \ldots z x_{n} \approx$ $y_{1} \ldots y_{m}$ where $\left\{z, x_{1}, \ldots, x_{n}\right\} \neq\left\{y_{1}, \ldots, y_{m}\right\}$ and thus we get the equation $x y x y \approx$ $x y$ as before.

Thus we can assume that $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}, x_{1}=y_{1}$ and $x_{n}=y_{m}$. Since $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$, we have $n>1$ and $m>1$.

Suppose that x_{n} has only one occurrence in $x_{1} \ldots x_{n}$ and only one occurrence in $y_{1} \ldots y_{m}$. If $x_{n-1}=y_{m-1}$ then we can substitute x_{n-1} for x_{n} to obtain $x_{1} \ldots x_{n-1} \sim$ $y_{1} \ldots y_{m-1}$ where $x_{1} \ldots x_{n-1}$ and $y_{1} \ldots y_{m-1}$ are two different 2 -admissible terms, so that the induction hypothesis can be applied. Let $x_{n-1} \neq y_{m-1}$. If x_{n-1} has only one occurrence in $x_{1} \ldots x_{n}$, substitute x for x_{n}, x for x_{n-1} and y for all other variables to obtain $y x \approx y x y x$. If y_{m-1} has a single occurrence in $y_{1} \ldots y_{m}$, we can proceed similarly. It remains to consider the case when $x_{n-1}=x_{i}$ and $y_{m-1}=y_{j}$ for some $i<n-1$ and $j<m-1$. We cannot have $x_{n-1} \in\left\{y_{j+1}, \ldots, y_{m-2}\right\}$ and $y_{m-1} \in$ $\left\{x_{i+1}, \ldots, x_{n-2}\right\}$ at the same time, since then we would get both $x_{n-1} \sqsubset y_{m-1}$ and $y_{m-1} \sqsubset x_{n-1}$. Let $y_{m-1} \notin\left\{x_{i+1}, \ldots, x_{n-2}\right\}$ (the other case is similar). Substituting x for x_{i}, \ldots, x_{n} and y for all other variables we get $y x \approx y x y x$.

Suppose that x_{n} has only one occurrence in $x_{1} \ldots x_{n}$ but two occurrences in $y_{1} \ldots y_{m}$. Substitute x for x_{n} and y for all other variables. We get $y x \sim y x y x$.

It remains to consider the case when $x_{n}=y_{m}$ has two occurrences in $x_{1} \ldots x_{n}$ and two occurrences in $y_{1} \ldots y_{m}$. Let $i<n, j<m, x_{i}=x_{n}$ and $y_{j}=y_{m}$. Put $C=\left\{x_{i+1}, \ldots, x_{n-1}\right\}$ and $D=\left\{y_{j+1}, \ldots, y_{m-1}\right\}$.

Suppose that each variable from C has only one occurrence in $x_{1} \ldots x_{n}$ and each variable from D has only one occurrence in $y_{1} \ldots y_{m}$. If $C-D \neq \emptyset$ and $D-C=\emptyset$, substitute x for x_{n}, x for every variable from $C \cap D$ and y for all other variables to obtain $y x y x \sim y x$. If $C-D \neq \emptyset$ and $D-C \neq \emptyset$, substitute x for x_{n}, x for every variable from C and y for all other variables to obtain that $y x \sim y x y x$. If $C=D$, substitute a variable $x \notin\left\{x_{1}, \ldots, x_{n}\right\}$ for every variable from $\left\{x_{i}, \ldots, x_{n}\right\}$ to obtain $x_{1} \ldots x_{i-1} x \sim y_{1} \ldots y_{j-1} x$ where $x_{1} \ldots x_{i-1} x$ and $y_{1} \ldots y_{j-1} x$ are two different admissible words, so that the induction hypothesis can be applied.

Now consider the case when a variable from D has two occurrences in $y_{1} \ldots y_{m}$. Then $y_{1}=y_{3}, y_{2}=y_{m}$ and $y_{4} \sqsubset \ldots \sqsubset y_{m-1}$. If also some variable from C has two occurrences in $x_{1} \ldots x_{n}$, we get $x_{1} \ldots x_{n}=y_{1} \ldots x_{n}$, a contradiction. Thus every variable from C has only one occurrence in $x_{1} \ldots x_{n}$. In particular, the variable $x_{1}=y_{1}=y_{3}$ does not belong to C. Substitute x for x_{i}, \ldots, x_{n} and y for all other variables to obtain $y x \approx y x y x$.

Finally, the case when a variable from C has two occurrences in $x_{1} \ldots x_{n}$ can be handled similarly.

The free groupoid in \mathbf{Y} with three generators can be obtained from the groupoid $\mathscr{F}_{3,4}$ if we take its factor by the congruence generated by all pairs $\langle a b a b c, a b a c\rangle$ and $\langle a b c b c, a c b c\rangle$. It is easy to construct the multiplication table of this groupoid. It has 48 elements and we will denote it by $\mathscr{F}_{3, \mathbf{Y}}$. One can easily check that the groupoid does not satisfy $x y x y \approx x y$.

Theorem 6.3. The variety \mathbf{Y} is generated by $\mathscr{F}_{3, \mathbf{Y}}$ and every word is \mathbf{Y} equivalent to precisely one 2-admissible word.

Proof. It follows from 6.1 that every word is Y-equivalent to at least one 2 -admissible word. If two different 2 -admissible words were \mathbf{Y}-equivalent then \mathbf{Y} would satisfy $x y x y \approx x y$ by 6.2 . However, this equation is not satisfied in $\mathscr{F}_{3, \mathbf{Y}}$. Since $\mathscr{F}_{3, \mathbf{Y}}$ belongs to \mathbf{Y}, it follows that every word is \mathbf{Y}-equivalent to precisely one 2-admissible word. If $\mathscr{F}_{3, \mathbf{Y}}$ satisfied an equation not satisfied by all algebras in \mathbf{Y} then, again by 6.2 , it would satisfy $x y x y \approx x y$, which it does not.

Theorem 6.4. The lattice of subvarieties of \mathbf{Y} has six elements: the trivial variety V_{0}, the variety V_{1} of left zero semigroups, the variety V_{2} of right zero semigroups, the variety V_{3} of rectangular bands, the variety V_{4} of idempotent slim groupoids satisfying xyxy $\approx x y$, and itself. The only proper inclusions are $V_{0} \subset V_{1} \subset V_{3} \subset$ $V_{4} \subset \mathbf{Y}$ and $V_{0} \subset V_{2} \subset V_{3}$.

Proof. It follows from the above results that every proper subvariety of \mathbf{Y} is contained in V_{4}. The lattice of subvarieties of V_{4} has been described in [1].

Theorem 6.5. The variety \mathbf{Y} is generated by the inherently nonfinitely based four-element groupoid $\mathscr{G}_{4,3}$ introduced in 2.2.

Proof. It is easy to check that $\mathscr{G}_{4,3}$ satisfies all the equations of \mathbf{Y} but not the equation $x y x y \approx x y$.

References

[1] S. Crvenković and J. Dudek: Rectangular groupoids. Czech. Math. J. 35 (1985), 405-414. zbl
[2] J. A. Gerhard: The lattice of equational classes of idempotent semigroups. J. Algebra 15 (1970), 195-224.
[3] E. Jacobs and R.Schwabauer: The lattice of equational classes of algebras with one unary operation. Ann. of Math. 71 (1964), 151-155.
[4] J. Ježek: Slim groupoids. To appear.
[5] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Volume I. Wadsworth \& Brooks/Cole, Monterey, CA, 1987.

Author's address: J. Ježek, Department of Algebra, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mail: jezek@karlin.mff.cuni.cz.

