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Abstract. We present criteria for a pair of maps to constitute a quaternion-symbol equiv-
alence (or a Hilbert-symbol equivalence if we deal with global function fields) expressed
in terms of vanishing of the Clifford invariant. In principle, we prove that a local condi-
tion of a quaternion-symbol equivalence can be transcribed from the Brauer group to the
Brauer-Wall group.
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1. Introduction

Two fields K and L are called Witt equivalent if their Witt rings of symmetric

bilinear forms are isomorphic. The pursuit for criteria for Witt equivalence of global

fields gave rise to the notion of a reciprocity equivalence (see [7], [8], [9]), later

renamed to a Hilbert-symbol equivalence (cf. [10], [11], [1]). This in turn became

a research subject by itself (see e.g. [1], [11]), especially once it was generalized to

higher dimensional forms. Meanwhile a similar approach, utilizing a notion of the

so called quaternion-symbol equivalence, was effectively used for investigating Witt

equivalence of algebraic function fields of one variable (see [4], [3], [5]).

In this paper we present new criteria for a pair of maps to constitute a Hilbert-

symbol equivalence of global function fields (see Proposition 3.6) and formally real

algebraic function fields over a fixed real closed field of constants (cf. Proposition 4.4).

To this end we introduce (see Definition 2.1) the notion of a graded quaternion-

symbol equivalence, which is a variation of Hilbert-symbol and quaternion-symbol

equivalences.
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Recall (see [7], [4]) that a central condition of Hilbert-symbol and quaternion-

symbol equivalences was expressed in terms of splitting of local quaternion algebras.

Here we investigate the splitting in a narrower sense, by moving the condition from

the Brauer group to the Brauer-Wall group. It is slightly surprising that this con-

dition turns out to be equivalent to the previous one, since earlier we effectively

controlled the splitting of 2-fold Pfister forms, while now we control only binary

hyperbolic forms. Anyway, in Proposition 3.6 we show that for two global func-

tion fields the pair of maps (t, T ) is a Hilbert-symbol equivalence if and only if it

is a graded quaternion-symbol equivalence if and only if it induces isomorphisms of

subgroups of local Brauer-Wall groups generated by graded quaternion algebras (it

trivially induces isomorphisms of subgroups of local Brauer groups as well, since in

this case any such subgroup consists of only two elements). For real function fields

we give the analogue of this result in Proposition 4.4. Namely, we show there that

for two formally real algebraic function fields over a common real closed field of con-

stants the pair of maps (t, T ) is a quaternion-symbol equivalence if and only if it

is a graded quaternion-symbol equivalence if and only if it induces isomorphisms of

subgroups of local Brauer groups generated by quaternion algebras if and only if it

induces isomorphisms of subgroups of local Brauer-Wall groups generated by graded

quaternion algebras.

2. Notation and terminology

Throughout this paper letters K, L always denote either global function fields of

characteristics different from 2 (Section 3) or formally real function fields over a

fixed real closed field (Section 4). We denote by Ω(K), Ω(L) the sets of all the

points of K, L that are trivial on their fields of constants. In the case that K, L are

real we further denote by γK , γL the subsets of all points having real residue fields.

Following [2] we call such points real.

For any point p ∈ Ω(K) we denote by Kp the completion of K at p. Further, θp :

K̇/K̇2 → L̇/L̇2 is the epimorphism of square class groups induced by the canonical

injection K →֒ Kp. Similarly Θp : WK → WKp is the epimorphism of the Witt

rings of K and Kp.

Further, we denote by Br(K) and BW(K) the Brauer and Brauer-Wall groups of

K, respectively. Following [6] we denote by
(

f,g
K

)

a quaternion algebra as well as its

class in Br(K), while by
〈

f,g
K

〉

we denote the same quaternion algebra but this time

augmented with a Z2-gradation. We also use the same symbol to denote its class in

BW(K). Finally, GQ(K) is the subgroup of BW(K) generated by the classes of all

graded quaternion algebras.
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In order to simplify the wording of the rest of the paper let us introduce the

following definition analogous to the definition of Hilbert-symbol equivalence and

quaternion-symbol equivalence.

Definition 2.1. Let K, L be two function fields and let A ⊆ Ω(K), B ⊆ Ω(L)

be fixed sets of points of K and L. A pair of maps (t, T ) in which t : K̇/K̇2 → L̇/L̇2

is an isomorphism of square-class groups and T : A → B is a bijection is called a

graded quaternion-symbol equivalence of the fields K, L with respect to the sets A

and B if the following two conditions are satisfied:

• t preserves minus one, i.e. t(−1) = −1;

• the pair (t, T ) preserves the vanishing of local Clifford invariants in the sense

that
〈

f, g

Kp

〉

= 1 ∈ BW(Kp) ⇐⇒

〈

tf, tg

LTp

〉

= 1 ∈ BW(LTp)

for all square classes f, g ∈ K̇/K̇2 and all points p ∈ A.

In general one cannot expect that the graded quaternion-symbol equivalence would

coincide with the quaternion-symbol equivalence. The easiest example—although

over a power series field rather than a function field—is as follows. Take k to be

the field R(X) of rational functions over the reals and define K = k((T )) to be the

power series field over k. Then there is only one point of K trivial on k, denote it

by p. The square class group K̇/K̇2 of K can be expressed as

K̇/K̇2 ∼= k̇/k̇2 ×Z2.

We treat the square class group k̇/k̇2 as an F2 -vector space. The set {−1, X, X2+1}

is linearly independent so it can be extended to the basis B of k̇/k̇2. Define the

automorphism t to exchange the basis vectorsX andX2+1 and fix all other elements

of B. Extend f to the whole K̇/K̇2. Then the pair (t, T ), with T being the only

permutation of Ω(K) = {p}, is a graded quaternion-symbol equivalence of K with

itself but it is not a quaternion-symbol equivalence, since
(

X,X
K

)

6= 1 but
(

tX,tX
K

)

= 1.

In this paper we are interested exclusively in global and real function fields, hence

we always assume that if K, L are global function fields, then A = Ω(K), B = Ω(L).

Otherwise, if K, L are formally real algebraic function fields over a real closed field

then A = γK , B = γL. Therefore, in what follows we omit the phrase ‘with respect

to the sets A and B’.
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3. Global function fields

Respecting the precedence of Hilbert-symbol equivalence studies, we begin by

analysing the global case. In this whole section K, L are two global function fields.

For reader’s convenience we summarize here some known facts concerning the

Hilbert-symbol equivalence of global function fields that we use in the sequel.

(HS1) There exists a Hilbert-symbol equivalence of K and L iff K, L are Witt

equivalent iff they have equal levels (i.e. s(K) = s(L))—see [8, Theorem

1.1] and [9, Theorem 1.3].

(HS2) The pair (t, T ) is a Hilbert-symbol equivalence iff for every p ∈ Ω(K) the

isomorphism t induces local Harrison isomorphisms K̇p/K̇2
p → L̇Tp/L̇2

Tp
—

see [8, Proposition 1.4]

(HS3) If the pair (t, T ) is a Hilbert-symbol equivalence, then for every point p

the isomorphism t factors through K̇2
p , hence it induces isomorphisms of

local groups of square classes K̇p/K̇2
p → L̇Tp/L̇2

Tp
. Moreover, it induces

isomorphisms of 2-torsion subgroups of local Brauer groups Br2(Kp) →

Br2(LTp) sending
(

f,g
Kp

)

to
(

tf,tg
LTp

)

.

(HS4) A Hilbert-symbol equivalence is tame (i.e. ordp f ≡ ordTp tf (mod 2)) at

every point p for which −1 is not a square—see [1, Lemma 1.18].

Our aim is to prove that a pair (t, T ) is a Hilbert-symbol equivalence if and only

if it is a graded quaternion-symbol equivalence. But let us first note an immediate

“existentional” consequence of the above facts.

Observation 3.1. A graded quaternion-symbol equivalence (t, T ) preserves local

levels, i.e. s(Kp) = s(LTp) for every p.

Indeed, a level of a (non-dyadic) p-adic local field is either 1 or 2. Suppose that

s(Kp) = 2, this means that −1 is not a square inKp. Take a quadratic form 〈−1,−1〉,

the local Clifford invariant
〈

−1,−1
Kp

〉

6= 1 does not vanish. Thus,
〈 t(−1),t(−1)

LTp

〉

=
〈

−1,−1
LTp

〉

6= 1. Consequently, −1 is not a square in LTp. Therefore, s(LTp) = 2. Now,

(HS1) implies

Corollary 3.2. If there exists a graded quaternion-symbol equivalence, then there

exists a Hilbert-symbol equivalence.

We now proceed toward our main result. First we show that any Hilbert-symbol

equivalence is graded.
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Lemma 3.3. If (t, T ) is a Hilbert-symbol equivalence of K and L, then it is a

graded quaternion-symbol equivalence.

P r o o f. Let (t, T ) be a Hilbert-symbol equivalence. It is well known (see e.g.

the first part of the proof of [8, Proposition 1.3]) that it preserves −1. Hence we

need to show only the second condition. Take two square classes f, g ∈ K̇/K̇2

and a point p ∈ Ω(K). Assume that the local Clifford invariant at p vanishes:
〈

f,g
Kp

〉

= 1 ∈ BW (Kp). This is possible only if the form Θp

〈

f, g
〉

is hyperbolic, which

means that its class in the Witt ring of Kp is zero. Now (HS2) implies that t induces

a local Harrison isomorphism, hence also a local Witt isomorphism WKp → WLTp.

Consequently ΘTp

〈

tf, tg
〉

= 0 ∈ WLTp and so
〈

tf,tg
LTp

〉

= 1 ∈ BW(LTp). �

We may now consider the converse implication. First we need the following simple

observation. Notice that it holds over arbitrary K, L—not only global ones. We will

use it again in the next section.

Observation 3.4. A graded quaternion-symbol equivalence preserves local

squares in the sense that

f ∈ K2
p ⇐⇒ tf ∈ L2

Tp.

Indeed, by the very definition we see

f ∈ K2
p ⇐⇒

〈

−1, f

Kp

〉

= 1 ⇐⇒

〈

t(−1), tf

LTp

〉

=

〈

−1, tf

LTp

〉

= 1 ⇐⇒ tf ∈ L2
Tp.

Lemma 3.5. If (t, T ) is a graded quaternion-symbol equivalence of K and L,

then it is a Hilbert-symbol equivalence.

P r o o f. Assume that (t, T ) is a graded quaternion-symbol equivalence. Take

two square classes f, g ∈ K̇/K̇2 and a point p ∈ Ω(K). Consider two cases, first

suppose that −1 is not a square in Kp. Observation 3.1 implies that −1 is not a

square in LTp, either. By the previous observation, t maps local squares onto local

squares. Since it preserves −1, so it maps local minus squares onto local minus

squares. The group of square classes of Kp—and LTp alike—equals {±1,±p} with

p being a fixed uniformizer (see [6, Theorem VI.2.2]). In particular, it is isomorphic

to (Z2)
2. Thus (t, T ) preserves the parity of a valuation:

∧

h∈K̇/K̇2

ordp h ≡ ordp th (mod 2).

Now [6, Theorem VI.2.2] asserts that
(

−1,±p
Kp

)

=
(

p,p
Kp

)

=
(

−p,−p
Kp

)

is the only non-

split quaternion algebra over Kp, hence
(

−1,±tp
LTp

)

=
(

tp,tp
LTp

)

=
(

−tp,−tp
LTp

)

is the only

non-split quaternion algebra over LTp.
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Conversely, assume that −1 is a square in Kp, hence by 3.1 also in LTp. Now the

Hilbert-symbol
(

f,g
Kp

)

vanishes if and only if at least one of the following conditions

is met:

f ∈ K2
p or g ∈ K2

p or fg ∈ K2
p .

In every case, the previous observation implies that
(

tf,tg
LTp

)

= 1 as well. �

We are now ready to present our first main result.

Proposition 3.6. Let K, L be two global function fields of characteristics 6= 2, let

t : K̇/K̇2 → L̇/L̇2 be an isomorphism of their square class groups and T : Ω(K) →

Ω(L) a bijection of their sets of points. The following three conditions are equivalent:

(1) The pair (t, T ) preserves Hilbert-symbols in the sense that
(

f,g
Kp

)

= 1 iff
(

tf,tg
LTp

)

=

1 for any f, g ∈ K̇/K̇2 and p ∈ Ω(K)—i.e. (t, T ) is a Hilbert-symbol equivalence.

(2) The pair (t, T ) preserves −1 and local Clifford invariants in the sense that
〈

f,g
Kp

〉

= 1 iff
〈

tf,tg
LTp

〉

= 1 for any f, g ∈ K̇/K̇2 and p ∈ Ω(K)—i.e. (t, T ) is a

graded quaternion-symbol equivalence.

(3) The pair (t, T ) preserves −1 and induces isomorphisms of subgroups of local

Brauer-Wall groups generated by graded quaternion algebras given by
〈

f,g
Kp

〉

7→
〈

tf,tg
LTp

〉

.

P r o o f. The equivalence (1) ⇔ (2) follows from Lemmas 3.3 and 3.5. The

implication (3) ⇒ (2) is trivial. Hence all we need to do is to show (1) ⇒ (3).

Assume that the pair (t, T ) is a Hilbert-symbol equivalence. Write the elements of

Brauer-Wall group in a ‘triple notation’ (see [6, Ch.V, sec. 3]), so that
〈

f,g
Kp

〉

becomes
((

f,g
Kp

)

, 0,−fg
)

. Recall that GQ(Kp) is the subgroup of BW(Kp) spanned by graded

quaternion algebras. It is straightforward to check that it has order 8. Depending on

whether −1 is a square or not, this group is isomorphic to either (Z2)
3 or Z2 × Z4.

In the later case, elements of order four are precisely
((

−1,±p
Kp

)

, 0,±p
)

. Denote by

X =
(

u,p
Kp

)

the unique non-split quaternion algebra. The group GQ(Kp) consists of

elements

1 = (1, 0, 1), A := (1, 0, u), B := (1, 0, p), C := (1, 0, up),

D := (X, 0, p), E := (X, 0, up), F := (X, 0, 1), G := (X, 0, u).

The relations between binary forms and their Clifford invariants are summarized

in Table 1. Let Υ: GQ(Kp) → GQ(LTp) be the mapping induced by t, namely

Υ
((

f,g
Kp

)

, 0,−fg
)

=
((

tf,tg
LTp

)

, 0,−tftg
)

. Now, [6, Theorem V.3.9] provides us with

the rule of multiplication in GQ in triple notation. In principle,

(3.7)
((a, b

Kp

)

, 0,−ab
)

·
((f, g

Kp

)

, 0,−fg
)

=
((a, b

Kp

)(f, g

Kp

)(

−ab,−fgKp

)

, 0, abfg
)

.
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By (HS3) we obtain that t induces isomorphisms K̇p/K̇2
p → L̇Tp/L̇2

Tp
and Br2(Kp) →

Br2(LTp). Hence both the multiplications employed in (3.7) are carried over from

Kp to LTp. Thus, Υ is an isomorphism. �

〈

a,b
Kp

〉

1 −1 p −p

1 A 1 C B
−1 1 A D E
p C D G 1
−p B E 1 G

〈

a,b
Kp

〉

1 u p up

1 1 A B C
u A 1 E D
p B E 1 G
up C D G 1

Table 1. The group GQ(Kp) when −1 is not a square (left), and when it is a square (right)

We may rephrase the above result as follows.

Corollary 3.8. Let t : K̇/K̇2 → L̇/L̇2 be an isomorphism of square class groups

such that t(−1) = −1 and let T : Ω(K) → Ω(L) be a bijection. The following

conditions are equivalent:

• The mapping
(

f,g
Kp

)

7→
(

tf,tg
LTp

)

is an isomorphism Br2(Kp) → Br2(LTp) for every

point p ∈ Ω(K).

• The mapping
〈

f,g
Kp

〉

7→
〈

tf,tg
LTp

〉

is an isomorphism GQ(Kp) → GQ(LTp) of sub-

groups of Brauer-Wall groups for every point p ∈ Ω(K).

4. Real function fields

Now we turn our attention to the case of real function fields. Thus, in this section| is a fixed real closed field and K, L are two formally real algebraic function fields

over |. Recall that here a graded quaternion-symbol equivalence is implicitly meant
to be taken with respect to the pair (γK , γL). We need the following basic lemma.

Lemma 4.1. Let t : K̇/K̇2 → L̇/L̇2 be an isomorphism of the square class groups

of K and L such that t(−1) = −1 and let T : γK → γL be a bijection. Assume that

the pair (t, T ) preserves local squares in the sense that

f ∈ K2
p ⇐⇒ tf ∈ L2

Tp

for every square class f ∈ K̇/K̇2 and every point p ∈ γK . Then:

(1) The pair (t, T ) is “tame” in the sense that it preserves parity of valuation:

ordp f ≡ ordTp tf (mod 2) for every f ∈ K̇/K̇2 and p ∈ γK .

(2) For every point p ∈ γK the mapping
(

f,g
Kp

)

7→
(

tf,tg
LTp

)

is an isomorphism from

Br2(Kp) onto Br2(LTp).
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P r o o f. Observe that the group of square classes of a local field with real closed

residue field (e.g. of Kp and LTp) consists of four elements, namely ±1,±p with p

being a fixed uniformizer. Hence it is isomorphic to (Z2)
2. Since the local squares

are mapped onto local squares and −1 is mapped onto −1, so there is no degree of

freedom left except to map uniformizers onto uniformizers. This proves (1).

To show (2) observe that Br2(Kp) (as well as Br2(LTp)) is again isomorphic to

(Z2)
2. Precisely, the class of

(

1,f
Kp

)

∼=
(

f,−f
Kp

)

∼= M2,2(Kp) is the unit element and

three non-unit elements are given by the classes of
(

−1,f
Kp

)

∼=
(

f,f
Kp

)

for any f /∈ K2
p

(see [6, Corollary III.2.6 and Proposition VI.1.9]). The part already proved implies

that the mapping
(

f,g
Kp

)

7→
(

tf,tg
LTp

)

is well defined and preserves the unit element.

Hence it is an isomorphism, as any permutation of (Z2)
2 constant on the unit is an

isomorphism. �

Now, any quaternion-symbol equivalence (preserving −1) factors through local

squares, hence the above lemma proves the following simple result (which can be

found also in [5, Theorem 3.1]):

Corollary 4.2. If (t, T ) is a quaternion-symbol equivalence of K, L with respect

to (γK , γL) and such that t(−1) = −1, then it is tame in the sense that ordp f ≡

ordTp tf (mod 2) for any f ∈ K̇/K̇2 and p ∈ γK .

This also implies that any quaternion-symbol equivalence is graded.

Corollary 4.3. If (t, T ) is a quaternion-symbol equivalence of K and L with

respect to (γK , γL) and such that t(−1) = −1, then it is a graded quaternion-symbol

equivalence.

Indeed, take f, g ∈ K̇/K̇2 and a point p ∈ γK . Assume that
〈

f,g
Kp

〉

= 1; this

means that θpf = −θpg, so −fg ∈ K2
p . Now t factors through local squares, hence

−tftg ∈ L2
Tp
. Consequently

〈

tf,tg
LTp

〉

= 1.

Now from 3.4 we know that any graded quaternion-symbol equivalence preserves

local squares, hence the second assertion of Lemma 4.1 implies that it is a quaternion-

symbol equivalence. All in all, we have just proved

Proposition 4.4. Let K, L be two formally real algebraic function fields over a

fixed real closed field |. Let t : K̇/K̇2 → L̇/L̇2 be an isomorphism of their square

class groups such that t(−1) = −1 and let T : γK → γL be a bijection of their set of

points. The following three conditions are equivalent:

(1) The pair (t, T ) preserves quaternion-symbols in the sense that
(

f,g
Kp

)

= 1 iff
(

tf,tg
LTp

)

= 1 for any f, g ∈ K̇/K̇2 and p ∈ γK—i.e. (t, T ) is a quaternion-symbol

equivalence.
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(2) The pair (t, T ) preserves local Clifford invariants in the sense that
〈

f,g
Kp

〉

= 1 iff
〈

tf,tg
LTp

〉

= 1 for any f, g ∈ K̇/K̇2 and p ∈ γK—i.e. (t, T ) is a graded quaternion-

symbol equivalence.

(3) The pair (t, T ) induces isomorphisms of subgroups of local Brauer-Wall groups

generated by graded quaternion algebras given by
〈

f,g
Kp

〉

7→
〈

tf,tg
LTp

〉

.

The proof of implication (1)⇒ (2) is fully analogous to the one for global function

fields. Again, like in the global case, we may rephrase the above proposition.

Corollary 4.5. Let t : K̇/K̇2 → L̇/L̇2 be an isomorphism of square class groups

such that t(−1) = −1 and let T : γK → γL be a bijection. The following conditions

are equivalent:

• The mapping
(

f,g
Kp

)

7→
(

tf,tg
LTp

)

is an isomorphism Br2(Kp) → Br2(LTp) for every

point p ∈ γK .

• The mapping
〈

f,g
Kp

〉

7→
〈

tf,tg
LTp

〉

is an isomorphism GQ(Kp) → GQ(LTp) of sub-

groups of Brauer-Wall groups for every point p ∈ γK .
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