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FLOW PROLONGATION OF SOME TANGENT VALUED FORMS

Antonella Cabras, Firenze, and Ivan Kolář, Brno

(Received April 10, 2006)

Abstract. We study the prolongation of semibasic projectable tangent valued k-forms on
fibered manifolds with respect to a bundle functor F on local isomorphisms that is based on
the flow prolongation of vector fields and uses an auxiliary linear r-th order connection on
the base manifold, where r is the base order of F . We find a general condition under which
the Frölicher-Nijenhuis bracket is preserved. Special attention is paid to the curvature of
connections. The first order jet functor and the tangent functor are discussed in detail.
Next we clarify how this prolongation procedure can be extended to arbitrary projectable
tangent valued k-forms in the case F is a fiber product preserving bundle functor on the
category of fibered manifolds with m-dimensional bases and local diffeomorphisms as base
maps.

Keywords: semibasic tangent valued k-form, Frölicher-Nijenhuis bracket, bundle functor,
flow prolongation of vector fields, connection, curvature
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Our starting point is the general procedure of prolongating a connection Γ on

a fibered manifold Y → M to a connection on the fibered manifold FY → M ,

where F is an arbitrary bundle functor on the categoryFMm,n of fibered manifolds

with m-dimensional bases and n-dimensional fibers and their local isomorphisms, [6].

This procedure is based on the flow prolongation of vector fields. In [6] and [8] it

is clarified that if F has the base order r, then one needs an auxiliary linear r-th

order connection Λ on the base manifold M to construct the induced connection

F (Γ,Λ) on FY . In Section 2 of the present paper we deduce that every projectable

morphism Φ: Y ×M ∧kTM → TY linear in the second factor, which is equivalent to

a projectable semibasic tangent valued k-form on Y , induces a morphism F (Φ,Λ):

This work was done during the visit of I. Kolář at Dipartimento di Matematica Applicata
“G. Sansone”, Università di Firenze, supported by the University of Florence. The second
author was also supported by a grant of the GAČR No. 201/05/0523.
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FY ×M ∧kTM → TFY in a similar way. But first of all we clarify, in Proposition 1,

that the set of such forms, or equivalently morphisms, is closed with respect to the

Frölicher-Nijenhuis bracket. In Section 3 we present the coordinate expression of

J 1(Φ,Λ) in the case of the functor J1 of the first jet prolongation. In Proposition 2

we deduce that the curvature C
(

J 1(Γ,Λ)
)

of the connectionJ 1(Γ,Λ) differs from

the prolongation J 1(CΓ,Λ) of the curvature CΓ of Γ by a term depending on the

curvature of the connection Λ̃ conjugate to the auxiliary linear connection Λ. A

similar formula holds for the mixed curvature of two connections on Y .

Then we define integrability of Λ by using the viewpoint of the theory of G-

structures. Proposition 3 reads that if Λ is integrable, the operation Φ 7→ F (Φ,Λ)

preserves the Frölicher-Nijenhuis bracket for the morphisms whose underlying base

map is constant with respect to Λ. In Section 6 we interpret the construction of

tangent bundles of fibred manifolds as a functor transforming Y → M to TY → M

and we deduce an explicit formula for the difference of C
(

T (Γ,Λ)
)

and T (CΓ,Λ).

Our motivation arises from a general difference between the functors J1 and T : the

former preserves the fiber products, but the latter does not.

The final part of the paper is inspired by a classical result from the theory of

tangent valued forms on manifolds. If F is a product preserving bundle functor

on the category M f of all manifolds, the prolongation of a tangent valued k-form

from a manifold M to FM can be constructed by using the canonical exchange

diffeomorphism between FTM and TFM , [1], [3], [13]. For a fiber product preserving

bundle functor F on the category FMm of fibered manifolds with m-dimensional

bases and fibered manifold morphisms with local diffeomorphisms as base maps, we

show that one can use a kind of exchange map that has been recently introduced

by the second author, [4]. In this case we can construct a prolongation F (ϕ,Λ) of

every projectable tangent valued k-form ϕ on Y →M by means of an auxiliary r-th

order linear connection Λ on M . If ϕ is semibasic, we obtain the same result as in

Section 2. As an example, in Section 8 we discuss the case F = J1 in detail.

All manifolds and maps are assumed to be infinitely differentiable. Unless other-

wise specified, we use the terminology and notation from the book [6].

1. Semibasic forms and morphisms. Consider a fibered manifold p : Y →

M . A tangent valued k-form ϕ on Y is called semibasic, if

(1) ϕ(Z1, . . . , Zk) = 0

whenever at least one of the vectors Z1, . . . , Zk is vertical. Such a form defines a

morphism linear in the second factor Φ: Y ×M ∧kTM → TY by

(2) Φ(y,X1, . . . , Xk) = ϕ(Z1, . . . , Zk), Zi ∈ TyY, Tp(Zi) = Xi.
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This definition is correct: if we take another Zi ∈ TyY satisfying Tp(Zi) = Xi,

i = 1, . . . , k, then Zi = Zi +Wi, where Wi are vertical vectors. Then multilinearity

yields

ϕ(Z1 +W1, . . . , Zk +Wk) = ϕ(Z1, . . . , Zk).

Conversely, if Φ: Y ×M ∧kTM → TY is a morphism linear in the second factor,

then (2) defines a semibasic tangent valued k-form on Y , which will be sometimes

denoted by ω(Φ).

Let xi, yp, i = 1, . . ., m = dimM , p = 1, . . ., dimY − dimM , be local fiber

coordinates on Y . If Φ is projectable, which is the same as ω(Φ) is projectable, then

the coordinate expression of both Φ and ω(Φ) is

(3) dxj = a
j
i1...ik

(x) dxi1 ∧ . . . ∧ dxik , dyp = a
p
i1...ik

(x, y) dxi1 ∧ . . . ∧ dxik .

Consider another tangent valued l-form ψ on Y .

Proposition 1. If both ϕ and ψ are projectable and semibasic, then the

Frölicher-Nijenhuis bracket [ϕ, ψ] is also projectable and semibasic.

P r o o f. It is well known that [ϕ, ψ] is also projectable, [6]. To prove the main

assertion, we use the Lie bracket formula for [ϕ, ψ], [6], p. 71. Assume that one entry

is a vertical vector field. Since the Lie bracket of a projectable vector field and a

vertical vector field is vertical, we have one vertical vector field in each term on

the right hand side of the formula. Hence the value of [ϕ, ψ] vanishes, so [ϕ, ψ] is

semibasic. �

Thus our approach defines the Frölicher-Nijenhuis bracket of two linear projectable

morphisms Φ: Y ×M∧kTM → TY and Ψ: Y ×M∧lTM → TY . Write Φ: ∧kTM →

TM and Ψ: ΛlTM → TM for the underlying base maps. Then the explicit formula

for [Φ,Ψ]: Y ×M ∧k+lTM → TY is (an analogous expression was used in another

situation in [10])

[Φ,Ψ](ξ1, . . . , ξk+l) =
1

k! l!

∑

σ

sgnσ[Φ(ξσ(1), . . . , ξσ(k)),Ψ(ξσ(k+1), . . . , ξσ(k+l))](4)

+
−1

k!(l − 1)!

∑

σ

sgnσΨ
(

[Φ(ξσ(1), . . . , ξσ(k)), ξσ(k+1)], ξσ(k+2), . . . , ξσ(k+l)

)

+
(−1)kl

(k − 1)! l!

∑

σ

sgnσΦ
(

[Ψ(ξσ(1), . . . , ξσ(l)), ξσ(l+1)], ξσ(l+2), . . . , ξσ(k+l)

)

+
1
2 (−1)k−1

(k−1)!(l−1)!

∑

σ

sgnσΨ
(

Φ([ξσ(1), ξσ(2)], . . . , ξσ(k+1)), ξσ(k+2), . . . , ξσ(k+l)

)

+
1
2 (−1)(k−1)l

(k−1)!(l−1)!

∑

σ

sgnσΦ
(

Ψ([ξσ(1), ξσ(2)], . . . , ξσ(l+1)), ξσ(l+2), . . . , ξσ(k+l)

)

,

495



where ξ1, . . . , ξk+l are vector fields on M and the summations are with respect to all

permutations of k + l letters.

2. The flow prolongation of projectable semibasic forms. Consider a

bundle functor F on the category FMm,n of fibered manifolds with m-dimensional

bases and n-dimensional fibers and their local isomorphisms, [6]. The definition of the

order of F is based on the concept of the (q, s, r)-jet, s > q 6 r, of fibered manifold

morphisms, [6], p. 126. Consider two fibered manifolds p : Y → M , p̄ : Y → M and

two FMm,n-morphisms f, g : Y → Y . We say that F is of the order (q, s, r), if

jq,s,r
y f = jq,s,r

y g implies Ff |FyY = Fg|FyY , y ∈ Y . The number r is called the base

order of F .

For a projectable morphism linear in the second factor Φ: Y ×M ∧kTM → TY

and k vector fields ξ1, . . . , ξk on M , Φ(ξ1, . . . , ξk) is a projectable vector field on Y .

The restriction of the flow prolongation F
(

Φ(ξ1, . . . , ξk)
)

to FxY depends on the

r-jets jr
xξ1, . . . , j

r
xξk, x ∈M , cf. [8]. This defines a map

(5) FΦ: FY ×M ∧kJrTM → TFY

linear in the second factor that will be called the flow prolongation of Φ.

Consider a linear r-th order connection Λ on M , i.e. a base preserving linear

morphism Λ: TM → JrTM satisfying β ◦ Λ = idTM , where β is the target jet

projection.

Definition 1. The composition

(6) F (Φ,Λ) := FΦ ◦ (idFY ×M ∧k Λ): FY ×M ∧kTM → TFY

is said to be the flow prolongation of Φ with respect to Λ.

Clearly, if the values of Φ lie in the vertical tangent bundle V Y of Y , then the

values of F (Φ,Λ) lie in V (FY →M).

3. To supply an example, we are going to discuss the case F = J1 of the first

jet prolongation in detail. For a projectable vector field η on Y with the coordinate

expression

(7) ξi(x)
∂

∂xi
+ ηp(x, y)

∂

∂yp
,

its flow prolongationJ 1η is given by the well known formula

(8) η +

(

∂ηp

∂xi
+
∂ηp

∂yq
y

q
i −

∂ξj

∂xi
y

p
j

)

∂

∂y
p
i

,
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where yp
i are the induced coordinates on J

1Y , [6]. The coordinate form of Λ: TM →

J1TM is

(9) ξi
j = Γi

kj(x)ξ
k.

Consider Φ with the coordinate expression (3). Using direct evaluation, we ob-

tain the following additional coordinate expression ofJ 1(Φ,Λ): J1Y ×M ∧kTM →

TJ1Y :

dyp
j =

[∂a
p
i1...ik

∂xj
+
∂a

p
i1...ik

∂yq
y

q
j −

∂ak
i1...ik

∂xj
y

p
k + (ap

li2...ik
− ak

li2...ik
y

p
k)Γl

i1j(10)

+ . . .+ (ap
i1...ik−1l − ak

i1...ik−1ly
p
k)Γl

ikj

]

dxi1 ∧ . . . ∧ dxik .

4. The curvature of J 1(Γ,Λ). The lifting map of a connection on Y is a

morphism Γ: Y ×M TM → TY linear in the second factor. Its coordinate expression

is

(11) dxi = dxi, dyp = F
p
i (x, y) dxi.

Using (10), we obtain the well known additional coordinate expression of the con-

nection J 1(Γ,Λ) on J1Y →M , [6], p. 366, [9],

(12) dyp
j =

[∂F
p
i

∂xj
+
∂F

p
i

∂yq
y

q
j + (F p

k − y
p
k)Γk

ij

]

dxi.

The curvature CΓ of Γ is a morphism Y × ∧2TM → V Y with the coordinate

expression

(13) dxi = 0, dyp =
(∂F

p
j

dxi
+
∂F

p
j

∂yq
F

q
i

)

dxi ∧ dxj .

Hence we can construct

(14) J 1(CΓ,Λ): J1Y ×M ∧2TM → V J1Y.

To compare (14) with the curvature of J 1(C,Γ)

(15) C(J 1(Γ,Λ)): J1Y ×M ∧2TM → V J1Y,

we need the following concept.
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Since β : J1Y → Y is an affine bundle associated with the vector bundle V Y ⊗

T ∗M , Γ defines a map τΓ: J1Y → V Y ⊗ T ∗M ,

τΓ(z) = Γ(β(z)) − z, z ∈ J1Y.

The curvature of the classical linear connection Λ can be interpreted as a map

CΛ: M → TM ⊗ T ∗M ⊗ ∧2T ∗M.

The well known exact sequence

0 → β∗(V Y ⊗ T ∗M) → V J1Y
V β
→ V Y → 0

induces an injection β∗(V Y ⊗ T ∗M ⊗∧2T ∗M) → V J1Y ⊗∧2T ∗M . So we have the

evaluation map

〈τΓ, CΛ〉 : J1Y → V J1Y ⊗ ∧2T ∗M.

Write Λ̃ for the classical conjugate connection of Λ. The following assertion can

be proved by direct evaluation.

Proposition 2. We have C(J 1(Γ,Λ)) = J 1(CΓ,Λ) + 〈τΓ, CΛ̃〉.

Remark. A more general result will be interesting from the viewpoint of our

theory. If ∆ is another connection on Y , then the mixed curvature of Γ and ∆ is

defined to be the Frölicher-Nijenhuis bracket [Γ,∆]: Y ×M ∧2TM → V Y , [6], p. 232.

Even in this case we have deduced by direct evaluation

(16)
[

J 1(Γ,Λ),J 1(∆,Λ)
]

= J 1([Γ,∆],Λ) + 〈τΓ, CΛ̃〉 + 〈τ∆, CΛ̃〉.

Since CΓ = 1
2 [Γ,Γ], Proposition 2 is a special case of (16).

5. We define integrability of Λ: TM → JrTM by using the viewpoint of the

theory of G-structures. Using translations on Rm , we extend each X ∈ TxRm to

a constant vector field X̃ on Rm . The canonical integrable connection I : TRm →

JrTRm maps every X ∈ TxRm to jr
xX̃ .

Definition 2. A linear r-th order connection Λ on M is said to be integrable, if

for every x ∈M there exists a neighbourhood U and a diffeomorphism f : U → Rm

transforming Λ to I, i.e. I ◦ Tf = JrTf ◦ (Λ|U ).
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We say that f is a normal coordinate system of the integrable connection Λ. One

verifies easily that two normal coordinate systems of Λ differ by an affine transfor-

mation Rm → Rm .

In the case r = 1, a classical result reads that a classical linear connection is

integrable if and only if it is both torsion-free and curvature-free.

Assume Λ is integrable and consider a tangent valued k-form ϕ on M . We say

that ϕ is constant with respect to Λ, if in every normal coordinate system of Λ all

coefficients of ϕ are constant. In particular, the identity one-form idTM is constant

with respect to every integrable Λ. Clearly, if ψ is another tangent valued l-form on

M constant with respect to Λ, then [ϕ, ψ] = 0.

Now we can describe the most important case in which the operation Φ 7→ F (Φ,Λ)

preserves the Frölicher-Nijenhuis bracket. Consider two projectable morphisms Φ:

Y ×M ∧kTM → TY and Ψ: Y ×M ∧lTM → TY linear in the second factor.

Proposition 3. If Λ is integrable and the underlying tangent valued forms Φ

and Ψ are constant with respect to Λ, then

(17) [F (Φ,Λ),F (Ψ,Λ)] = F ([Φ,Ψ],Λ).

P r o o f. In a normal coordinate system of Λ, consider constant vector fields

X̃1, . . . , X̃k+l. In particular, it we have [X̃i, X̃j] = 0. By Definitions 1 and 2, we

have

(18) F (Φ,Λ)(X̃1, . . . , X̃k) = F (Φ(X̃1, . . . , X̃k))

and analogously forF (Ψ,Λ) andF ([Φ,Ψ],Λ). Consider (4) with ξ’s replaced by X̃’s.

Since Φ and Ψ are constant with respect to Λ, Φ(X̃1, . . . , X̃k) and Ψ(X̃k+1, . . . , X̃k+l)

are also constant vector fields and all terms on the right hand side except the first ones

vanish. Now we apply F to both sides and use the fact that the flow prolongation

preserves the bracket of vector fields. �

In particular, for every connection Γ and every integrable r-th order linear con-

nection Λ on the base manifold we have

(19) C
(

F (Γ,Λ)
)

= F (CΓ,Λ).

The same is true for the mixed curvature of two connections.

6. We find it useful to discuss the case of non-integrable Λ in another concrete

situation. If we interpret the construction of the tangent bundle of a fibered manifold

as a functor transforming Y →M to TY →M , every connection Γ on Y and a linear

connection Λ: TM → J1TM induce a connection T (Γ,Λ) on TY →M .

499



Write X i, Y p for the induced coordinates on TY . For a projectable vector field η

on Y , the coordinate form of its flow prolongation T η is

(20) η +
∂ξi

∂xj
Xj ∂

∂X i
+

(∂ηp

∂xi
X i +

∂ηp

∂yq
Y q

) ∂

∂Y p
.

Thus, if Γ and Λ are of the form (11) and (9), the equations of T (Γ,Λ) are

(21) dyp = F
p
i dxi,

dXj = Γj
ikX

k dxi,

dY p =

(

∂F
p
i

∂xj
Xj +

∂F
p
i

∂yq
Y q + F

p
j Γj

ikX
k

)

dxi.

Both C
(

T (Γ,Λ)
)

and T (CΓ,Λ) are sections TY → V (TY →M) ⊗ ∧2T ∗M .

Since TY → Y is a vector bundle, the identification TY ×Y TY = V (TY → Y ) and

the inclusion V (TY → Y ) →֒ V (TY → M) define a map TY ×Y TY → V (TY →

M). If we add Γ: Y ×M TM → TY to the second factor, we construct a map

TY ×M TM → V (TY →M). Dualizing in TM , we obtain a section

(22)
νΓ: TY → V (TY →M) ⊗ T ∗M,

νΓ(xi, yp, X i, Y p) = (xi, yp, X i, Y p, 0, dxi, F
p
i dxi).

The clasical curvature CΛ̃ of the conjugate connection of Λ can be interpreted as

a map TM → TM ⊗ ∧2T ∗M . Hence CΛ̃ ◦ Tp : TY → TM ⊗ ∧2T ∗M and we can

construct the evaluation map

〈νΓ, CΛ̃ ◦ Tp〉 : TY → V (TY →M) ⊗ ∧2T ∗M.

Using direct evaluation, one deduces

Proposition 4. We have C
(

T (Γ,Λ)
)

= T (CΓ,Λ) + 〈νΓ, CΛ̃ ◦ Tp〉.

7. The case of a fiber product preserving bundle functor. If F is a fiber

product preserving bundle functor of the base order r on the category FMm of

fibered manifolds with m-dimensional bases and fibered manifold morphisms with

local diffeomorphisms as base maps, then a natural transformation tY : JrY → FY

is defined as follows. Every section s : M → Y can be interpreted as a morphism s̃

of the trivial fibered manifold idM : M →M into Y and we set

(23) tY (jr
xs) = (F s̃)(x), x ∈M.

Taking into account tTM : JrTM → FTM and the surjective submersion FTp :

FTY → FTM , we can construct the fiber product FTY ×FTM JrTM .
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In [4] the second author introduced a map

µF
Y : FTY ×FTM JrTM → TFY

with the following property. If η is a projectable vector field on Y over a vector field

ξ on M and Fη : FY → F (TY → M) is its functorial prolongation, then the flow

prolongation Fη : FY → TFY satisfies

(24) Fη = µF
Y ◦ (Fη ×M jrξ).

Moreover, the map

(25) µ̃F
Y : FTY ×FTM JrTM → TFY ×TM JrTM, µ̃F

Y (A,B) = (µF
Y (A,B), B)

is a diffeomorphism.

To clarify the basic ideas, we start with the case of a projectable tangent valued

one-form ϕ : TY → TY over ϕ : TM → TM . We have the induced map

Fϕ×Fϕ J
rϕ : FTY ×FTM JrTM → FTY ×FTM JrTM.

Consider the diagram

(26)

FTY ×FTM JrTM
Fϕ×F ϕJrϕ

//

µ̃F
Y

��

FTY ×FTM JrTM

µF
Y

��

TFY ×TM JrTM // TFY

Since µ̃F
Y is invertible, the bottom arrow defines

(27) Fϕ = µF
Y ◦ (Fϕ×Fϕ J

rϕ) ◦ (µ̃F
Y )−1 : TFY ×TM JrTM → TFY.

If η is a projectable vector field on Y , then ϕ(η) is also a projectable vector field

on Y .

Proposition 5. We have F (ϕ(η)) = Fϕ ◦ (Fη ×TM jrξ).

P r o o f. If we interpret ξ as the morphism ξ̃ of M → M into TM , we have

jr
xξ = Jr ξ̃(x). Hence jr

x(ϕ ◦ ξ) = (Jrϕ ◦ Jr ξ̃)(x). By functoriality,

F (ω(η)) = µF
Y ◦ (Fϕ ◦ Fη ×M Jrϕ ◦ Jr ξ̃) = µF

Y ◦ (Fϕ×Fϕ J
rϕ) ◦ (Fη ×M jrξ)

= µF
Y ◦ (Fϕ×Fϕ J

rϕ) ◦ (µ̃F
Y )−1 ◦ µ̃F

Y ◦ (Fη ×M Jrξ)

= Fϕ ◦ (Fη ×TM jrξ).

�
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In [5], it is deduced that Fϕ is a bilinear morphism.

Definiton 3. For every linear r-th order connection Λ: TM → JrTM , the

tangent valued one-form on FY

F (ϕ,Λ) := Fϕ ◦ (idTFY ×TMΛ): TFY → TFY

will be called the F -prolongation of ϕ with respect to Λ.

Consider a projectable morphism Φ: Y ×M TM → TY linear in the second factor

and the corresponding semibasic one-form ω(Φ) on Y . Write q : FY → M . For

FΦ: FY ×M JrTM → TFY we define analogously

(28) ω(FΦ): TFY ×TM JrTM → TFY, ω(FΦ)(Z,X) = Φ(z,X),

where Z ∈ TzFY , X ∈ Jr
xTM , Tq(Z) = βX ∈ TxM .

Lemma. We have ω(FΦ) = F
(

ω(Φ)
)

.

P r o o f. By definition, ω(Φ)(η) = Φ(ξ) is the same projectable vector field on

Y . Hence

(29) F (ω(Φ)(η)) = F (Φ(ξ)).

By Proposition 3, F
(

ω(Φ)(η)
)

= Fϕ ◦ (Fη ×TM jrξ). Then (29) implies that

F
(

ω(Φ)(η)
)

depends on jrξ only and the induced map FY ×M JrTM → TFY

coincides with FΦ. � �

If we add Λ: TM → JrTM , the above lemma implies

Proposition 6. We have F
(

ω(Φ),Λ
)

= ω
(

F (Φ,Λ)
)

. �

8. As an example, we discuss the case F = J1 in detail. If F = Jr, then

JrTY ×JrTM JrTM = JrTY and the map µJr

Y : JrTY → TJrY coincides with

that introduced by L.Mangiarotti and M.Modugno, [11], see [4]. Thus, we can use a

result from [6] to find the coordinate expression of µ̃J1

Y : J1TY → TJ1Y ×TM J1TM .

Let xi, yp, X i, Y p be the above coordinates on TY and yp
i , X

i
j , Y

p
i the induced jet

coordinates on J1(TY →M). Further, let xi, yp, y
p
i be the standard coordinates on

J1Y and dxi, dyp, dyp
i the induced coordinates on TJ

1Y . Moreover, write xi, dxi, ξi
j

for the corresponding coordinates on J1TM . By [6], p. 340, the equations of µ̃J1

Y are

xi = xi, yp = yp, yp
i = y

p
i and

(30) dxi = X i, dyp = Y p , dyp
i = Y

p
i −X

j
i y

p
j , ξ

i
j = X i

j ,
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while in the coordinate form of µJ1

Y the last equation of (30) is missing. Hence the

only nontrivial equation for (µ̃J1

Y )−1 is

(31) Y
p
i = dyp

i + ξ
j
i y

p
j .

Thus, if xi = xi, yp = yp and

(32) X i = ai
j(x)X

j , Y p = a
p
i (x, y)X

i + ap
q(x, y)Y

q

is the coordinate expression of ϕ, then the additional equations of J1ϕ are

X i
j =

∂ai
k

∂xj
Xk + ai

kX
k
j ,(33)

Y
p
i =

(∂a
p
j

∂xi
+
∂a

p
j

dyq
y

q
i

)

Xj + a
p
jX

j
i +

(∂ap
q

∂xi
+
∂ap

q

∂yr
yr

i

)

Y q + ap
qY

q
i .(34)

In the case F = J1 we have J1ϕ×J1ϕ J
1ϕ = J1ϕ. Using (30) and (31), we deduce

that the coordinate expression ofJ 1ϕ = µJ1

Y ◦J1ϕ◦ (µ̃J1

Y )−1 : TJ1Y ×TM J1TM →

TJ1Y is

dxi = ai
j dxj , dyp = a

p
i dxi + ap

q dyq,(35)

dyp
i =

(∂a
p
j

∂xi
+
∂a

p
j

∂yq
y

q
i

)

dxj + a
p
jξ

j
i +

(∂ap
q

∂xi
+
∂ap

q

∂yr
yr

i

)

dyq(36)

+ ap
q

(

dyq
i + ξ

j
i y

q
j

)

− y
p
j

∂a
j
k

∂xi
dxk − y

p
j a

j
kξ

k
i .

Now one can observe even from the coordinate expressions that if ϕ is semibasic, i.e.

ap
q = 0, and if we substitute ξi

j = Γi
kj dxk into (36), then the result is equal to (10)

with k = 1.

9. The case of a projectable k-form. Such a k-form ϕ on Y can be interpreted

as a map

ϕ : TY ×Y . . .×Y TY → TY over ϕ : TM ×M . . .×M TM → TM.

The induced maps are

Fϕ : FTY ×FY . . .×FY FTY → FTY, Fϕ : FTM ×M . . .×M FTM → FTM,

Jrϕ : JrTM ×M . . .×M JrTM → JrTM.

Then we can construct

Fϕ×Fϕ J
rϕ : (FTY ×FTM JrTM)×FY . . .×FY (FTY ×FTM JrTM)

→ FTY ×FTM JrTM
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and a diagram analogous to (26) defines a map Fϕ. The antisymmetry of ϕ induces

the antisymmetry of Fϕ, so that the latter can be interpreted as a map

(37) Fϕ : ∧kTFY ×∧kTM ∧kJrTM → TFY.

If we add the k-th exterior power of Λ: TM → JrTM to the second factor, we obtain

a tangent valued k-form F (ϕ,Λ) on FY , which will be called the F -prolongation of

ϕ with respect to Λ.

If ϕ = ω(Φ), we deduce analogously to Proposition 6

(38) ω
(

F (Φ,Λ)
)

= F
(

ω(Φ),Λ
)

.
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