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LOWER BOUNDS FOR EXPRESSIONS
OF LARGE SIEVE TYPE

Jan-Christoph Schlage-Puchta

Abstract. We show that the large sieve is optimal for almost all exponential
sums.

Let an, 1 ≤ n ≤ N be complex numbers, and set S(α) =
∑
n≤N ane(nα), where

e(α) = exp(2πiα). Large Sieve inequalities aim at bounding the number of places
where this sum can be extraordinarily large, the basic one being the bound∑

q≤Q

∑
1≤a≤q
(a,q)=1

∣∣∣S(a
q

)∣∣∣2 ≤ (N +Q2)
∑
n≤N

|an|2

(see e.g. [3] for variations and applications). P. Erdős and A. Rényi [1] considered
lower bounds of the same type, in particular they showed that the bound

(1)
∑
q≤Q

∑
(a,q)=1

∣∣∣S(a
q

)∣∣∣2 � N
∑
n≤N

|an|2 ,

valid for Q �
√
N , is wrong for almost all choices of coefficients an ∈ {1,−1},

provided that Q > C
√
N logN , and that the standard probabilistic argument fails

to decide whether (1) is true in the range
√
N < Q <

√
N logN . In this note, we

show that (1) indeed fails throughout this range.

Theorem 1. Let S(α) be as above. Then

(2)
∑
q≤Q

∑
(a,q)=1

∣∣∣S(a
q

)∣∣∣2 ≥ εQ2
∑
n≤N

|an|2

holds true with probability tending to 1 provided ε tends to 0, and Q2/N tends to
infinity.

Our approach differs from [1] in so far as we first prove an unconditional lower
bound, which involves an awkward expression, and show then that almost always
this expression is small. We show the following.
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Lemma 1. Let S(α) be as above, and define

M(x) = sup
m

∫
m

|S(u)|2 du

1∫
0
|S(u)|2 du

,

where m ranges over all measurable subsets of [0, 1] of measure x. Then for any
real parameter A > 1 we have the estimate

(3)
∑
q≤Q

∑
(a,q)=1

∣∣∣S(a
q

)∣∣∣2 ≥ (Q2

A

(
1−M

( 1
A

))
− 6πNA

) ∑
n≤N

|an|2 .

Proof. Our proof adapts Gallagher’s proof of an upper bound large sieve [2]. For
every f ∈ C1([0, 1]), we have

f(1/2) =
1∫

0

f(u) du+
1/2∫
0

uf ′(u) du−
1∫

1/2

(1− u)f ′(u) du .

Putting f(u) = |S(u)|2, and using the linear substitution u 7→ (α− δ/2) + δu, we
obtain for every δ > 0 and any α ∈ [0, 1]

|S(α)|2 = 1
δ

α+δ/2∫
α−δ/2

|S(u)|2 du+ 1
δ

α∫
α−δ/2

(
δ/2− |u− α|

)(
S′(u)S(−u)− S(u)S′(−u)

)
du

− 1
δ

α+δ/2∫
α

(
δ/2− |u− α|

)(
S′(u)S(−u)− S(u)S′(−u)

)
du .

We have |S(u)| = |S(−u)| and |S′(−u)| = |S′(u)|, thus |S′(u)S(−u)−S(u)S′(−u)| ≤
2|S(u)S′(u)|, and we obtain

|S(α)|2 ≥ 1
δ

α+δ/2∫
α−δ/2

|S(u)|2 du− 1
δ

α+δ/2∫
α−δ/2

2
(1

2 −
|u− α|
δ

)
|S(u)S′(u)| du

≥ 1
δ

α+δ/2∫
α−δ/2

|S(u)|2 du−
α+δ/2∫
α−δ/2

|S(u)S′(u)| du .
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We now set δ = A/Q2. We can safely assume that δ < 1
2 , since our claim would be

trivial otherwise. Summing over all fractions α = a
q with q ≤ Q, (a, q) = 1, we get

∑
q≤Q

∑
(a,q)=1

∣∣∣S(a
q

)∣∣∣2 ≥ Q2

A

1∫
0

|S(u)|2du(4)

− Q2

A

∫
m(Q,A)

|S(u)|2 du −
1∫

0

R(u)|S(u)S′(u)| du ,

where
R(u) = #

{
a, q : (a, q) = 1, q ≤ Q,

∣∣∣u− a

q

∣∣∣ ≤ A

Q2

}
,

and
m(Q,A) =

{
u ∈ [0, 1] : R(u) = 0

}
.

To bound R(u), let a1
q1
< a2

q2
< · · · < ak

qk
be the list of all fractions with qi ≤ Q,∣∣u− ai

qi

∣∣ ≤ A
Q2 . We have for i 6= j the bound∣∣∣ai

qi
− aj
qj

∣∣∣ ≥ 1
qiqj

≥ 1
Q2 ,

that is, the fractions a1
q1
, . . . , akqk form a set of points with distance > 1

Q2 in an
interval of length 2A

Q2 . There can be at most 2A+ 1 such points, hence, R(u) ≤ 3A.
Next, we bound |m(Q,A)|. By Dirichlet’s theorem, we have that for each real

number α ∈ [0, 1] there exists some q ≤ Q and some a, such that |α− a
q | ≤

1
qQ . If

α ∈ m(Q,A), we must have 1
qQ > A

Q2 , that is, q < Q/A. Hence, we obtain

|m(Q,A)| ≤
∣∣∣ ⋃
q<Q/A

⋃
(a,q)=1

[a
q
− 1
qQ

,
a

q
+ 1
qQ

]
\
[a
q
− A

Q2 ,
a

q
+ A

Q2

]∣∣∣
≤

∑
q<Q/A

ϕ(q)(2Q− 2Aq)
qQ2 ≤ 1

Q2

∫ Q/A

0

(
2Q− 2At

)
dt = 1

A
.

We can now estimate the right hand side of (4). The first summand is Q
2

A

∑
n≤N |an|2,

while the second is by definition at most Q2

A M(1/A). For the third we apply the
Cauchy-Schwarz-inequality to obtain

( 1∫
0

|S(u)S′(u)| du
)2
≤
( 1∫

0

|S(u)|2 du
)( 1∫

0

|S′(u)|2 du
)

=
( ∑
n≤N

|a2
n|
)( ∑

n≤N

(2πn)2|a2
n|
)

≤ (2πN)2
( ∑
n≤N

|a2
n|
)2
.
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Hence, the last term in (4) is bounded above by 3A(2πN)
∑
n≤N |an|2, and inserting

our bounds into (4) yields the claim of our lemma. �

Now we deduce Theorem 1. Let S(α) be a random sum in the sense that the
coefficients an ∈ {1,−1} are chosen at random. We compute the expectation of the
fourth moment of S(α).

E
1∫

0

|S(u)|4 du = E
∑

µ1+µ2=ν1+ν2
µ1,µ2,ν1,ν2≤N

aν1aν2aµ1aµ2

= #
{
µ1, µ2, ν1, ν2 ≤ N : {µ1, µ2} = {ν1, ν2}

}
= 2N2 −N.

If m ⊆ [0, 1] is of measure x, then
∫
m

|S(u)|2 du ≤
√
x
( ∫
m

|S(u)|4 du
)1/2, thus

EM(x) ≤
√

2x. In particular, we have M(x) ≤ 1/2 with probability ≥ 1 −
√

8x.
Let δ > 0 be given, and set A = 8δ−2. Then with probability ≥ 1 − δ we have
M(1/A) ≤ 1/2, and (3) becomes∑

q≤Q

∑
(a,q)=1

∣∣∣∣S (aq
)∣∣∣∣2 ≥ (Q2δ2

16 − 48δ−2πN

) ∑
n≤N

|an|2

≥ Q2δ2

32
∑
n≤N

|an|2 ,

provided that Q2 > 1536δ4N . Hence, for fixed ε, the relation (2) becomes true
with probability 1−

√
1024ε, provided that Q2/N is sufficiently large. Hence, our

claim follows.
I would like to thank the referee for improving the quality of this paper.
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