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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 45 (2009), 125–135

ON SOME PROPERTIES OF THE PICARD OPERATORS

Lucyna Rempulska and Karolina Tomczak

Abstract. We consider the Picard operators Pn and Pn;r in exponential
weighted spaces. We give some elementary and approximation properties of
these operators.

1. Introduction

1.1. The Picard operators

(1) Pn(f ;x) := n

2

∫
R
f(x− t)e−n|t| dt = n

2

∫
R
f(x+ t)e−n|t| dt ,

x ∈ R and n ∈ N, (N = {1, 2, . . .}, R = (−∞,+∞)) are investigated for functions
f : R → R from various classes in many monographs and papers (e.g. [2]–[8]
[10, 11]).

G. H. Kirov in the paper [9] introduced the generalized Bernstein polynomials
Bn;r for r-times differentiable functions f ∈ Cr

(
[0, 1]

)
and he showed that Bn;r

have better approximation properties than classical Bernstein polynomials Bn.
The Kirov method was used in [12] to the generalized Picard operators

Pn;r(f ;x) := Pn(Fr(t, x);x) , x ∈ R, n ∈ N, r ∈ N0 ,(2)

Fr(t, x) :=
r∑
j=0

f (j)(t)
j! (x− t)j ,(3)

(N0 = N ∪ {0}) of r-times differentiable functions f : R→ R. Obviously Pn;0(f) ≡
Pn(f).

In this paper we examine the Picard operators Pn (in Section 2) and Pn;r (in
Section 3) for functions f belonging to the exponential weighted spaces Lpq(R) and
Lp,rq (R) which definition is given below. We present some elementary properties, the
orders of approximation and the Voronovskaya – type theorems for these operators.
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1.2. Let q > 0 and 1 ≤ p ≤ ∞ be fixed,

(4) vq(x) := e−q|x| for x ∈ R ,

and let Lpq ≡ Lpq(R) be the space of all functions f : R → R for which vqf is
Lebesgue integrable with p-th power over R if 1 ≤ p <∞ and uniformly continuous
and bounded on R if p =∞. The norm in Lpq is defined by

(5) ‖f‖p,q ≡ ‖f(·)‖p,q :=


(∫

R
|vq(x)f(x)|pdx

)1/p
if 1 ≤ p <∞ ,

sup
x∈R

vq(x)|f(x)| if p =∞ .

Moreover, let r ∈ N0 and Lp,rq ≡ Lp,rq (R) be the class of all r-times differentiable
functions f ∈ Lpq having the derivatives f (k) ∈ Lpq , 1 ≤ k ≤ r. The norm in Lp,rq is
given by (5). (Lp,0q ≡ Lpq). The spaces Lpq and Lp,rq are called exponential weighted
spaces ([1]).

As usual, for f ∈ Lpq and k ∈ N we define the k-th modulus of smoothness:

ωk(f ;Lpq ; t) := sup
|h|≤t

‖∆k
hf(·)‖p,q for t ≥ 0 ,(6)

∆k
hf(x) :=

k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh) .(7)

The above ωk has the following properties:

ωk(f ;Lpq ; t1) ≤ ωk(f ;Lpq ; t2) for 0 ≤ t1 < t2,(8)
ωk(f ;Lpq ;λt) ≤ (1 + λ)kekqλtωk(f ;Lpq ; t) for λ, t ≥ 0 ,(9)

lim
t→0+

ωk(f ;Lpq ; t) = 0 ,(10)

for every f ∈ Lpq and k ∈ N (see [6, Chapter 6] and [13, Chapter 3]).
By ωk we define the Lipschitz class

(11) LipkM (Lpq ;α) :=
{
f ∈ Lpq : ωk

(
f ;Lpq ; t

)
≤Mtα for t ≥ 0

}
for fixed numbers: 1 ≤ p ≤ ∞, q > 0, k ∈ N, M > 0 and 0 < α ≤ k.

2. Some properties of Pn
2.1. By elementary calculations can be obtained the following two lemmas.

Lemma 1. The equality

(12)
∫ ∞

0
tre−st dt = r!

sr+1

there holds for every r ∈ N0 and s > 0.

Lemma 2. Let e0(x) = 1, e1(x) = x and let ϕx(t) = t− x for x, t ∈ R. Then

(13) Pn(ei;x) = ei(x) for x ∈ R, n ∈ N, i = 0, 1 ,
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and

Pn
(
ϕkx(t);x

)
=
(
1 + (−1)k

)
k!

2nk ,(14)

Pn
(
|ϕx(t)|k exp (q |ϕx(t)|) ;x

)
= k!n

(n− q)k+1 ,(15)

for x ∈ R, n ≥ q + 1 and k ∈ N0.

Using the above results and arguing analogously to the proof of Lemma 2 in
[10] we can obtain the following basic lemma.

Lemma 3. Let f ∈ Lpq with fixed 1 ≤ p ≤ ∞ and q > 0. Then

(16) ‖Pn(f)‖p,q ≤ (1 + q)‖f‖p,q for n ≥ q + 1 .

The formula (1) and (16) show that Pn, n ≥ q + 1, is a positive linear operator
acting from the space Lpq to Lpq .

2.2. By (6), (7), (11) and (16) can be derived the following geometric properties
of Pn given by (1).

Theorem 1. Let f ∈ Lpq with fixed 1 ≤ p ≤ ∞ and q > 0 and let q + 1 ≤ n ∈ N.
Then

(i) if f is non-decreasing (non-increasing) on R, then Pn(f) is also non-decreasing
(non-increasing) on R,

(ii) if f is convex (concave) on R, then Pn(f) is also convex (concave) on R,
(iii) for every k ∈ N there holds the inequality

ωk
(
Pn(f);Lpq ; t

)
≤ (1 + q)ωk

(
f ;Lpq ; t

)
, t ≥ 0 ,

(iv) if f ∈ LipkM
(
Lpq ;α

)
with fixed k ∈ N, 0 < α ≤ k and M > 0, then also

Pn(f) ∈ LipkM∗
(
Lpq ;α

)
with the same k and α and M∗ = (1 + q)M ,

(v) If f ∈ L∞,rq with a fixed r ∈ N, then Pn(f) ∈ L∞,rq and for derivatives of
Pn(f) there holds∥∥P(k)

n (f)
∥∥
∞,q =

∥∥Pn(f (k))∥∥
∞,q ≤ (1 + q)

∥∥f (k)∥∥
∞,q

Proof. For example we prove (iii). From the formulas (1) and (7) there results
that

∆k
hPn(f ;x) = Pn

(
∆k
hf ;x

)
for x, h ∈ R, k ∈ N .

Next, by (5) and (16), we have∥∥∆k
hPn(f ; ·)

∥∥
p,q

=
∥∥Pn (∆k

hf, ·
)∥∥
p,q
≤ (1 + q)

∥∥∆k
hf(·)

∥∥
p,q

for h ∈ R and n ≥ q + 1, and using (6), we get the statement (iii). �
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2.3. Arguing similarly to [5] and [10] and applying (6)–(9), (12) and (16) we can
prove the following approximation theorem.

Theorem 2. Suppose that f ∈ Lpq with fixed 1 ≤ p ≤ ∞ and q > 0. Then

‖Pn(f)− f‖p,q ≤
5
2(1 + 3q)3ω2

(
f ;Lpq ;

1
n

)
for every n ≥ 3q + 1.

From Theorem 2 and (8), (10) and (11) there results the following

Corollary 1. If f ∈ Lpq , 1 ≤ p ≤ ∞, q > 0, then
(17) lim

n→∞
‖Pn(f)− f‖p,q = 0 .

In particular, if f ∈ Lip2
M

(
Lpq ;α

)
with fixed 0 < α ≤ 2 and M > 0, then

‖Pn(f)− f‖p,q = O(n−α) as n→∞ .

Applying Corollary 1, we shall prove the Voronovskaya-type theorem for Pn.

Theorem 3. Let f ∈ L∞,2q with a fixed q > 0. Then

(18) lim
n→∞

n2[Pn(f ;x)− f(x)] = f ′′(x)

for every x ∈ R.

Proof. Choose f ∈ L∞,2q and x ∈ R. Then, by the Taylor formula, we have

f(t) = f(x) + f ′(x)(t− x) + 1
2f
′′(x)(t− x)2 + ψ(t;x)(t− x)2 for t ∈ R ,

where ψ(t) ≡ ψ(t, x) is a function belonging to L∞q and limt→x ψ(t;x) = ψ(x) = 0.
Using operator Pn, n ≥ 2q + 1, and (13) and (14), we get
(19) Pn(f(t);x) = f(x) + n−2f ′′(x) + Pn

(
ψ(t)ϕ2

x(t);x
)

and by the Hölder inequality and (14):∣∣Pn (ψ(t)ϕ2
x(t);x

)∣∣ ≤ (Pn (ψ2(t);x
)
Pn
(
ϕ4
x(t);x

))1/2

= n−2 (24Pn
(
ψ2(t);x

))1/2
.

From properties of ψ and (17) there results that lim
n→∞

Pn
(
ψ2(t);x

)
= ψ2(x) = 0.

Consequently,
(20) lim

n→∞
n2Pn

(
ψ(t)ϕ2

x(t);x
)

= 0

and by (19) and (20) follows (18). �

Now we estimate the rate of convergence given by (18).

Theorem 4. Let f ∈ L∞,2q with a fixed q > 0. Then

(21)
∥∥n2 [Pn(f)− f ]− f ′′

∥∥
∞,q ≤ 4(1 + q)4ω1

(
f ′′;L∞q ; 1

n

)
for n ≥ q + 1.
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Proof. For f ∈ L∞,2q and x, t ∈ R there holds the Taylor-type formula

f(t) = f(x) + f ′(x)(t− x) + 1
2f
′′(x)(t− x)2 + (t− x)2I(t, x) ,

where

(22) I(t, x) :=
∫ 1

0
(1− u) [f ′′(x+ u(t− x))− f ′′(x)] du.

Using operator Pn, n ≥ q + 1, and (13)-(15), we get

Pn(f(t);x) = f(x) + n−2f ′′(x) + Pn
(
ϕ2
x(t)I(t, x);x

)
,

which implies that

(23)
∣∣n2 [Pn(f ;x)− f(x)]− f ′′(x)

∣∣ ≤ n2Pn
(
ϕ2
x(t)|I(t, x)|;x

)
,

for x ∈ R and n ≥ q + 1. Now, applying (6), (8) and (9), we get from (22):

|I(t, x)| ≤
∫ 1

0
(1− u)ω1

(
f ′′;L∞q ;u|t− x|

)
eq|x| du

≤ 1
2ω1

(
f ′′;L∞q ; |t− x|

)
eq|x|

≤ 1
2ω1

(
f ′′;L∞q ; 1

n

)
(1 + n|t− x|) eq|x|+q|t−x| .

and next by (4) and (15) we can write

n2vq(x)Pn
(
ϕ2
x(t)|I(t, x)|;x

)
≤ n2

2 ω1

(
f ′′;L∞q ; 1

n

)
×
{
Pn
(
(t− x)2eq|t−x|;x

)
+ nPn

(
|t− x|3eq|t−x|;x

)}
= ω1

(
f ′′;L∞q ; 1

n

)( n3

(n− q)3 + 3n4

(n− q)4

)
≤ 4(1 + q)4ω1

(
f ′′;L∞q ; 1

n

)
for x ∈ R , n ≥ q + 1 .

Now the estimate (21) is obvious by (23), the last inequality and (5). �

Theorem 5. Suppose that f ∈ L∞,rq with fixed q > 0 and r ∈ N. Then

(24) ‖P(r)
n (f)− f (r)‖∞,q ≤

5
2(1 + 3q)3ω2

(
f (r);L∞q ; 1

n

)
for n ≥ 3q + 1.

Proof. If f ∈ L∞,rq , then for the r-th derivative of Pn(f) we have by Theorem 1,
(13) and (7):

P(r)
n (f ;x)− f (r)(x) = n

2

∫
R

[
f (r)(x+ t)− f (r)(x)

]
e−n|t| dt

= n

2

∫ ∞
0

[
∆2
tf

(r)(x− t)
]
e−nt dt .
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From this and by (6), (9) and (12) we deduce that

‖P(r)
n (f)− f (r)‖∞,q ≤

n

2

∫ ∞
0

ω2

(
f (r);L∞q ; t

)
e−(n−q)t dt

≤ ω2

(
f (r);L∞q ; 1

n

)n
2

∫ ∞
0

(1 + nt)2e−(n−3q)t dt

= ω2

(
f (r);L∞q ; 1

n

){ n

2(n− 3q) + n2

(n− 3q)2 + n3

(n− 3q)3

}
for n ≥ 3q + 1, which yields the estimate (24). �

3. Some properties of Pn;r

3.1. The formulas (1)–(3) show that the operators Pn;r, r ∈ N0, generalize Pn
and Pn;0(f) ≡ Pn(f) for f ∈ Lp,0q . By this fact and Section 1, we shall consider
Pn;r for r ∈ N only.

Lemma 4. Let 1 ≤ p ≤ ∞, q > 0 and k ∈ N be fixed numbers. Then for every
f ∈ Lp,rq and n ≥ q + 1 there holds

(25) ‖Pn;r(f)‖p,q ≤ (1 + q)
r∑
j=0
‖f (j)‖p,q .

The formulas (1)–(3) and the inequality (24) show that Pn;r, n ≥ q + 1, is a linear
operator acting from Lp,rq to Lpq .

Proof. Let 1 ≤ p <∞. Then, by (1)–(3), the Minkowski inequality and (12), we
get for f ∈ Lp,rq and n ≥ q + 1:

‖Pn;r(f)‖p,q ≤
r∑
j=0

1
j!‖Pn

(
f (j)(t)ϕjx(t); ·

)
‖p,q

≤
r∑
j=0

1
j!

(∫
R

∣∣∣e−q|x|n2
∫

R
tjf (j)(x+ t)e−n|t| dt

∣∣∣pdx)1/p

≤
r∑
j=0

n

2j!

∫
R
|t|je−n|t|

(∫
R

∣∣∣e−q|x|f (j)(x+ t)
∣∣∣pdx)1/p

dt

≤
r∑
j=0

n

2j!‖f
(j)‖p,q

∫
R
|t|je−(n−q)|t|dt

=
r∑
j=0
‖f (j)‖p,q

n

(n− q)j+1 ≤ (1 + q)
r∑
j=0
‖f (j)‖p,q .

The proof of (25) for p =∞ is similar. �
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3.2. First we shall prove an analogy of Theorem 2.

Theorem 6. Suppose that f ∈ Lp,rq with fixed 1 ≤ p ≤ ∞, q > 0 and r ∈ N. Then

(26) ‖Pn;r(f)− f‖p,q ≤M1n
−rω1

(
f (r);Lpq ;

1
n

)
for every n ≥ q + 1, where M1 = (r + 2)(1 + 2q)r+2.

Proof. For every f ∈ Lp,rq and x, t ∈ R there holds the following Taylor-type
formula:

(27) f(x) =
r∑
j=0

f (j)(t)
j! (x− t)j + (x− t)r

(r − 1)! Ir(t, x) ,

where

(28) Ir(t, x) :=
∫ 1

0
(1− u)r−1

[
f (r)(t+ u(x− t))− f (r)(t)

]
du .

From (27), (28) and (3) there results that

Fr(t, x) = f(x)− (x− t)r

(r − 1)! Ir(t, x) ,

and next by (2), (13) and (7) it follows that

Pn;r(f ;x)− f(x) = (−1)r+1

(r − 1)! Pn ((t− x)rIr(t, x);x)

= (−1)r+1n

2(r − 1)!

∫
R

(
tr
∫ 1

0
(1− u)r−1∆1

−utf
(r)(x+ t)du

)
e−n|t|dt(29)

for x ∈ R and n ≥ 2q + 1.
If 1 ≤ p <∞, then using the Minkowski inequality and (5)–(9) and (12), we get

from (29):
‖Pn;r(f)− f‖p,q

= n

2(r − 1)!

(∫
R
|e−q|x|

∫
R
tre−n|t|

(∫ 1

0
(1− u)r−1∆1

−utf
(r)(x+ t) du

)
dt|pdx

)1/p

≤ n

2(r − 1)!

∫
R
|t|re−(n−q)|t|

(∫ 1

0
(1− u)r−1‖∆1

−utf
(r)(·)‖p,qdu

)
dt

≤ n

2(r − 1)!

∫
R
|t|re−(n−q)|t|

(∫ 1

0
(1− u)r−1ω1

(
f (r);Lpq ;u|t|

)
du
)
dt

≤ n

2r!

∫
R
|t|re−(n−q)|t|ω1

(
f (r);Lpq ; |t|

)
dt

≤ n

r!ω1

(
f (r);Lpq ;

1
n

)∫ ∞
0

tr(1 + nt)e−(n−2q)t dt

= ω1

(
f (r);Lpq ;

1
n

)( n

(n− 2q)r+1 + (1 + r)n2

(n− 2q)r+2

)
for n ≥ 2q + 1, which implies (26) for 1 ≤ p <∞.
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The proof of (26) for f ∈ L∞,rq is analogous. �

From Theorem 6 we can derive the following

Corollary 2. If f ∈ Lp,rq , 1 ≤ p ≤ ∞, q > 0 and r ∈ N, then

lim
n→∞

nr ‖Pn;r(f)− f‖p,q = 0 .

Moreover, if f (r) ∈ Lip1
M

(
Lpq ;α

)
with some 0 < α ≤ 1 and M > 0 then

‖Pn;r(f)− f‖p,q = O
(
n−r−α

)
as n→∞ .

Arguing analogously to the proof of Theorem 2 given in paper [12] and applying
Corollary 1, we can obtain the following Voronovskaya-type theorem for operators
Pn;r.

Theorem 7. Let f ∈ Lα,rq with fixed r ∈ N and q > 0. Then

Pn;r(f ;x)− f(x) = (−1)r − 1
2nr+1 f (r+1)(x)

+ (r + 1)[1 + (−1)r]
2nr+2 f (r+2)(x) + o(n−r−2) as n→∞ ,

at every x ∈ R. In particular, if r is even number, then

(30) lim
n→∞

nr+2 [Pn;r(f ;x)− f(x)] = (r + 1)f (r+2)(x)

at every x ∈ R.

Similarly to Theorem 4 now we shall estimate the rate of convergence given by
(30).

Theorem 8. Let q > 0 and even number r ∈ N be fixed. Then for every f ∈ L∞,r+2
q

and n ≥ 2q + 1 there holds

(31) ‖nr+2 [Pn;r(f)− f ]− (r + 1)f (r+2)‖p,q ≤M2ω1

(
f (r+2);L∞q ; 1

n

)
,

where M2 = (1 + 2q)r+4(r + 4)2.

Proof. Similarly to the proof of Theorem 6 we use the Taylor-type formula of
f ∈ L∞,r+2

q :

(32) f(x) =
r+2∑
j=0

f (j)(t)
j! (x− t)j + (x− t)r+2

(r + 1)! I1(t, x) ,

for x, t ∈ R, where

(33) I1(t, x) :=
∫ 1

0
(1− u)r+1

[
f (r+2)(t+ u(x− t))− f (r+2)(t)

]
du .

Analogously for f (r+1) ∈ L∞,1q and x, t ∈ R we have

f (r+1)(t) =f (r+1)(x) + f (r+2)(x)(t− x) + (t− x)I2(t, x)(34)
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with

I2(t, x) :=
∫ 1

0

[
f (r+2)(x+ u(t− x))− f (r+2)(x)

]
du .(35)

By (3) and (34) the formula (32) can be rewritten in the form:

f(x) = Fr(t, x) + (x− t)r+1

(r + 1)! f (r+1)(x)

+
( 1

(r + 2)! −
1

(r + 1)!

)
f (r+2)(x)(x− t)r+2

− (x− t)r+2

(r + 1)! I2(t, x) + (x− t)r+2

(r + 2)!

[
f (r+2)(t)− f (r+2)(x)

]
+ (x− t)r+2

(r + 1)! I1(t, x) for x, t ∈ R .(36)

Let now x ∈ R be a fixed point. Using operator Pn and (1)–(3) and (13)–(15), we
get from (36):

f(x) = Pn;r(f ;x)− r + 1
nr+2 f

(r+2)(x) +
3∑
i=1

Ti(x) for n ≥ 2q + 1 ,

where

T1(x) := 1
(r + 1)!Pn

(
(t− x)r+2I2(t, x);x

)
,

T2(x) := 1
(r + 2)!Pn

(
(t− x)r+2

[
f (r+2)(t)− f (r+2)(x)

]
;x
)
,

T3(x) := 1
(r + 1)!Pn

(
(t− x)r+2I1(t, x);x

)
.

Consequently we have

(37) ‖nr+2 [Pn,r(f)− f ]− (r + 1)f (r+2)‖∞,q ≤ nr+2
3∑
i=1
‖Ti‖∞,q .

From (35) and (6)–(9) it follows that

vq(x)|T1(x)| ≤ e−q|x|

(r + 1)!Pn
(
|t− x|r+2|I2(t, x)|;x

)
≤ 1

(r + 1)!Pn
(
|t− x|r+2ω1

(
f (r+2);L∞q ; |t− x|

)
;x
)

≤ 1
(r + 1)!ω1

(
f (r+2);L∞q ; 1

n

)
×
[
Pn
(
|t− x|r+1eq|t−x|;x

)
+ nPn

(
|t− x|r+2eq|t−x|;x

)]



134 L. REMPULSKA AND K. TOMCZAK

and further by (15) we have

(38) ‖T1‖∞,q ≤
1

(r + 1)!ω1

(
f (r+2);L∞q ; 1

n

)[ n(r + 2)!
(n− q)r+3 + n2(r + 3)!

(n− q)r+4

]
.

Analogously, by (6)–(9) there results that∣∣f (r+2)(t)− f (r+2)(x)
∣∣ ≤ ω1

(
f (r+2);L∞q ; |t− x|

)
eq|x|

≤ eq|x|+q|t−x|
(
1 + n|t− x|

)
ω1

(
f (r+2);L∞q ; 1

n

)
and from (33):

|I1(t, x)| ≤
∫ 1

0
(1− u)r+1ω1

(
f (r+2);L∞q ;u|t− x|

)
eq|t| du

≤ eq|t|ω1

(
f (r+2);L∞q ; |t− x|

)∫ 1

0
(1− u)r+1 du

≤ 1
r + 2e

q|t|+q|t−x| (1 + n|t− x|)ω1

(
f (r+2);L∞q ; 1

n

)
.

Using the above inequalities and (15), we deduce that

‖T2‖∞,q ≤ ω1

(
f (r+2);L∞q ; 1

n

)[ n

(n− q)r+3 + (r + 3)n2

(n− q)r+4

]
(39)

and

‖T3‖∞,q ≤ ω1

(
f (r+2);L∞q ; 1

n

)[ n

(n− 2q)r+3 + (r + 3)n2

(n− 2q)r+4

]
,(40)

for n ≥ 2q+1. Summarizing (37)–(40), we immediately obtain the desired inequality
(31). �

Remarks 1. Theorem 6 shows that the order of approximation of function f ∈ Lp,rq
by Pn;r(f) is dependent on r and it improves if r grows. Moreover, Theorem 6 and
Theorem 2 show that the operators Pn;r with r ≥ 2 have better approximation
properties than Pn for f ∈ Lp,rq .

We mention also that the similar theorems can be obtained for the Gauss-Weierstrass
operators

Wn(f ;x) :=
√
n/π

∫
R
f(x− t)e−nt

2
dt, x ∈ R, n ∈ N ,

defined in exponential weighted spaces Lpq(R) with the weighted function vq(x) =
e−qx

2
, q > 0.
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