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GENERALIZED GREEN'S RELATIONS 

SHANGJUN YANG, Hefei, GEORGE P. BARKER, Kansas City 

(Received October 23, 1990) 

1. INTRODUCTION 

We wish to extend the concept of Green's relation which plays an important role 
in the algebraic theory of semigroups [cf. [2], [3], and [4]). Let Tbe a set and W 
a monoid whose identity is denoted by 1 or lw if necessary. We say that W acts on T 
from the left (right) iff there is a map 0: W x T ^ T such that for all t e T and 
Wj, w2 e W we have 

0(1, t) = t, 

</>(wiW2, t) = 0(w1? (f)(w2, t)) [<£(w,w2, t) = (j)(w2, 0(w1? t))] . 

If W is a group this definition reduces to the usual concept of a group acting on a set 
[5, p. 70]. It is convenient to denote </>(w, t) by wt (tw) if IV acts on Tfrom the left 
(right) and to call the operation left (right) multiplication of t by w. If two monoids 
U, Vact on the same set Tfrom the left and right, respectively, then for t e T, ut e U, 
v, E V(i = 1, 2) we have 

(1.1) iut=t=tly, 

(1.2) (u\U2)t = ul(u2t)9 

(1.3) t(Vlv2) = (tv,) v2 . 

Further, if 

(1.4) u(tv) == (ut) v, ueU, veV, teT, 

then we say that U and Vact associatively on T, and we call T a U — V combine. 
There are numerous examples of this kind of algebraic structure. For instance, 

(a) Any monoid M is obviously an M — M combine. 

(b) Let Mst(R) denote the set of all s x t matrices with entries from a com
mutative ring R with unity. Then MS(R) = MSS(R) is a monoid under matrix mul
tiplication, and for any positive integers m, n the set Mmn(R) is a Mm(R) — Mn(R) 
combine if the left (right) action is defined as left (right) matrix multiplication. 

(c) Let Z[i] = {a + bi\ a, b e Z] be the ring of Gaussian integers. Then Z[i] 
is a Z[i] — Z[i] combine where the left multiplication is ordinary multiplication of 
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complex numbers but the right multiplication is defined by 

(a + bi)(vi + iv2) = i\a + ivxb . 

It is easy to verify that (1A) through (1.4) hold. 

(d) A matrix S = [s0] in MmM(R+) is called substochastic if £ " = 1 su = i 
(i = 1,..., n) and stochastic is equality holds for all i. S is called doubly substochastic 
if both S and ST are substochastic. The set of all (square) substochastic (resp. doubly 
substochastic) matrices in Mn(R

+) forms a compact Hausdorff semigroup which is 
denoted by Sf n \J$n resp.] under matrix multiplication [cf. [7]]. Let Sf be the set of 
all substochastic matrices in Mmn(R

+). It is easy to check that 

SA e Sf for AG Sf and S G Sf m ; 

ASeSf for A G - ^ and S e ^ „ . 

Therefore Sf is an ^ m — Sfn combine. Similarly, the set of all doubly substochastic 
matrices in Mmn(R

+) is a 3 m — 3 n combine. If we consider the semigroup S„ 
of stochastic matrices in Mn(R + \ then the set of all stochastic matrices in Mmjl(R

+) 
is an 3„, — 3,, combine. 

The following propositions indicate ways to construct new combines from given 
ones. Since the proofs are immediate, they are omitted. 

Proposition 1.1. If U and Vare monoids and T{, ..., Tk are U — Vcombines, then 
the direct product T = Tl x ... x Tk is a U — V combine if the multiplications 
are defined coordinatewise. 

Proposition 1.2. If the monoid acts from the left on a set T{ and the monoid V 
acts from the right on a set T2, then the direct product T = Tx x T2 is a U — V 
combine if the multiplications are defined by 

u(tx,t2) = (utx,t2), {tx,t2)v = (tx,t2v) 

for tx e Tj, t2 G T2, u G U, and v e V. 

As an example let Tx be the set of all m-dimensional stochastic column vectors, 
T2 be the set of all n-dimensional stochastic row vectors, V = S„, the set of all n x n 
(row) stochastic matrices, and V = 3 T the set of all m x m column stochastic 
matrices. Then Tx x T2 is an S j — 3,, combine if the left and right multiplications 
are defined as 

P(x, y) = (Px, y) and (x, y) Q = (x, yQ) 

f o r P G S j , QGS,,, xeT{, yeT2. 
If T is a U - V combine the Green's relations &, S£, / , 0 , and Jf on T are 

defined as follows: for any two elements a, b e T 

(i) a&b iff a = bvi and b = av2 for some vt, v2 G V; 
(ii) aSfb iff a = uxb and b = u2a for some ul9 u2 e U; 

(iii) afb iff a = u1bvl and b = u2av2 for some ul9 u2 e U, v{, v2 G V; 
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(iv) atfb iff am and aS£b\ 
(v) a^b iff a&c and cS£b for some c e T. 
Again by way of example suppose that Tmn(F), the set of m x n matrices over 

a field F and that U, Vare the general linear groups of the appropriate orders. Then 
aMb iff a and b are column equivalent. Similarly, aS£b iff a and b are row equivalent, 
and afb iff a and b are (row-column) equivalent. 

In Section 2 we investigate the Green's relations on a U — V combine T with 
special reference to the question "When does Q) = S£Ty In Section 3 we investigate 
the Green's relations on the set of m x n nonnegative matrices Mmt„(R + ) as an 
Mm(R+) — Mn(R

+) combine. In Section 4 we study the regular elements in Mmn(R
+). 

2. GREEN'S RELATIONS A N D TOPOLOGY ON A G E N E R A L COMBINE 

Throughout this section we assume U and V are monoids acting associatively on 
a set T, in other words T is a U — V combine. The equality of @ with $ for the 
stochastic matrices (cf. [2]) or more generally for a compact topological semigroup 
(cf. [3]) is known. We transfer the latter development to the case of a combine, and 
refer to [3] for the notions of topological semigroups. 

Definition 2.1. A U — V combine T is stable iff 

(a) a e T, v e V, and Ua cz Uav imply that Ua = Uav; and 
(b) a e T, u e U, and aV cz uaV imply that aV = uaV. 

Lemma 2.2. Let T be a stable U - Vcombine, and let a, b e T. Then 

(a) aV cz bV cz UaV implies aV = bV\ and 
(b) Ua cz Ub cz UaV implies Ua = Ub. 

Proof. If aV cz bV cz UaV, then b = uav for some u eU, v e V. Thus aV cz bV = 
= uavV cz uaV. Since T is stable we have aV = uaV, whence aV= bV. Thus (a) 
holds. The proof of (b) is analogous. 

Theorem 2.3. If T is a stable U — V combine, then Q) = f in T. 

Proof. It suffices to prove that for any a, b e T, a#b implies a&b. If a#b, 
then UaV = UbV, and a = ubv for some ueU, veV. Hence aV= ubVby Lemma 
2.2(a). So atf(ub). On the other hand we have 

Uub cz Ub cz UbV = UaV = UubV cz UubV, 

whence Uub = Ub by Lemma 2.2(b). The latter equality yields (ub)S£b. Therefore, 
afb implies that a&(ub) and (ub)S£b, or a^b. 

Theorem 2.4. Let T be a U — V combine. If U is a compact monoid such that 
for any a, b e T, {x eU\ bV cz xaV} is a closed subset of U, and if V is a compact 
monoid such that for any a, b e T, {ye V| Ub c Uay) is a closed subset of V, 
then T is stable and Q) = # in T. 
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Proof. Suppose aV cz uaV for some a e Tand u e U. By hypothesis 

A = {xGUIuaVc: xaV} 

is a closed, hence compact, subset of U. For any x, y e A we have 

uaV cz xaV cz xuaV cz xyaV, 

which yields xy e A. Thus A is a compact subsemigroup of U, and so (cf. Theorem 1.8 
of [3, p. 13]) there exists an idempotent e e A. So from the definition of A we obtain 
that aV cz uaV c eaV, or for any v e V there exists a v' e V such that av = eav'. 
Now eav = e2av' = eav' = av, whence aV = eaV. Thus aV = uaV. This proves 
that aV cz uaV implies aV= uaV Similarly, we can show that Ua cz Uav implies 
Ua = Uav. Therefore the U — V combine T is stable, and the remaining assertion 
follows from Theorem 2.3. 

Let us return to example (d) of Section 1 of the Sfm — Sfn combine 

T = {ae Mm§n(R+)\ a is substochastic} . 

We wish to show that T is stable. As noted previously Sf m and Sf'„ are compact 
monoids. For any a, b e T, the set 

x = {xesrn\bsrn<zxasrn} 

is closed. To see this observe that if {xn} cz X is a sequence which converges to 
x e Sfm, then for a fixed z e Sfn and for each k, there is a vk e Sfn such that 

(*) bz = xkavk . 

Since {vk} is a sequence in the compact set Sf n it has a subsequence which we again 
denote by {vk} which converges to v e Sfn. Pass to the limit in (*) to obtain 

(**) bz = xav . 

But z e Sfn is arbitrary so that bSfn cz xaSfn. Thus X is closed. Similarly, the set 
{y e Sfn | Sfmb cz Sfmay} is closed. Thus the hypotheses of Theorem 2.4 are satisfied. 

Clearly aQ)b in a general combine T is equivalent with afb plus some other con
dition. Such a condition is given in the next theorem. 

Theorem 2.5. Let a and b be elements of the U — V combine T Then a(/b iff 
there u, u e U, v, v' e V such that 

(i) a = ubv , b = u'av' 

and 

(ii) av'v = a . 

Proof. If a^b, then for some c e T we have a$c and cS£b. Thus there exists 
u, u' e U, v, v e V such that 

a = cv , c = av' , c = ub , b = u'c , 
whence 

a = ubv , b = u'av' , and av'v = a . 
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Conversely, (i) and (ii) imply 

u'a = u'av'v = bv , and b = u'av' = bvv' . 
Therefore 

av' = ubvv' = ub and b = u'(av'), 
while 

a = (av') v and (av') = a(v') . 

Consequently, aM(av') and (av')S£b. Thus aQ)b. 

Remark. Condition (i) is of course the statement that afb. The additional con
dition (ii) could be replaced in Theorem 2.5 by any one of the five equalities 

uu'a = a , u'ub = b , bvv' = b , ub = av' , or u'a = bv . 

In fact if (i) and any one of these six equalities holds, the remaining are true. 

Corollary 2.6. The relation Q) in T is an equivalence relation. 
Proof. We consider only transitivity. By Theorem 2.5, a^b and b@c in T imply 

a = u!bv! , b = u2av2 , av2 = u{b ; 

b = u3cv3 , c = u4bv4 , and bv4v3 = b , 
whence 

a = u,u3cv3v1 , c = u4u2av2v4 , and 

a(v2v4v3vi) = ui(bv4v3) vt = uibvi = a . 

Therefore aQc. 

Corollary 2.7. a&b in Tiff 

(iii) av' = ub , av'v = a , 

(iv) u'a = bv , bvv' = b , 

where u, u' e U and v, v' e V. 
Proof. Use Theorem 2.5 and the observations that (iii) implies a = ubv, while (iv) 

implies b = u'av'. 
Note that we can, of course, replace av'v = a by uu'a = a and bvv' = b by 

u'ub = b. 
A U — Vcombine Thas several kinds of subobjects. If a subset Tx of Tis a U — V 

combine we call it a U — Vsubcombine of T If Ui(Vi) is a submonoid of U(V) then 
the U — V combine T is also a. Ux — Vi combine, the latter is called a sub U — V 
combine of the former. When a and b in Thave some Green's relation relative to 
a sub U — V combine, they obviously have the same relation in the original U — V 
combine. Since each monoid has a special submonoid — its maximal subgroup, 
which is the set of all invertibl elements, each U — Vcombine has a special sub U — V 
combine, namely a U° — V° combine where U°(V°) is the maximal subgroup of 
U(V). Denote the Green's relation on the U° - V° combine by ^ ° , J*?0 , /0 , Jf°, 
and (3°. We have the following summary. 
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Proposition 2.8. 
(a) M° c #, if0

 c JS?, / ° c / , JT° c j r , ^° c 0. 

(b) a^°b iff a = bv for some v e V°. 
(c) aJ^°b iff a = ub for some u e U°. 
(d) a/°b iff b = uav for some u e U°, v e V°. 
(e) aJ^°b iff a = bv and a = ub for some u e U° and v e V°. 
(f) a9°b iff b = uav fOr some u e U°, ve V°. 
Proof, (a) —(e) are immediate. For (f) note that if b = uav, then a3?°(av) and 

(av)&°b by (b) and (c). whence aQ°b. Conversely, a@°b implies a/°b by Theorem 
2.5, so that b = uav by (d). 

Corollary 2.9. 9° = / ° . 

3. G R E E N S RELATIONS ON Mm>n(R + ) 

In the remainder of this paper we shall concentrate on a particularly important 
combine, namely the ^Vm — Ar

n combine Mm M(/J?+), where .Vfc = Mk(R
 + ) is the 

multiplicative monoid of k x k nonnegative matrices and the left and right actions 
are the usual matrix multiplications. We shall investigate the generalized Green's 
relations on Mmjl(R

+) 
First let us note how we are employing the terms nonsingular and invertible. 

If A e «yVfc, then A is nonsingular iff det A =j= 0. However, A is invertible (in A"k) 
iff A~' exists and is an element of Jr

k. If A is invertible, then A is a monomial matrix 
(cf. [2, p. 67]), that is 

A = Pdiag(aj,..., ak) 

where a} > 0 (j = 1, ..., k) are the nonzero entries of a diagonal matrix and P 
is a permutation matrix. 

Following [2] and [7] we shall say that a (finite) set S of vectors in (!R + )n is cone 
independent iff no vector in S lies in the polyhedral cone generated by the remaining 
ones. Equivalently, S is cone independent iff no vector of S is a nonnegative linear 
combination of the remaining. If S consists of the columns of A e Mm<n(R

 + ) , then 
we denote by d(A) the maximum number of cone independent columns of A. Con
sequently, d(AT) is the maximum number of cone independent rows of A. Let A' 
denote an m x d(A) submatrix of A with cone independent columns: A' denotes 
a d(AT) x n submatrix of A with cone independent rows; and A0 denotes the d(AT) x 
x d(A) submatrix of A which is a submatrix of both A' and A'. Such an A'(A') is 

called a greatest column (row) cone independent submatrix of A, while A0 is called 
a greatest cone independent submatrix of A. An important fact is that each A e 
e Mmtn(R

+) is uniquely determined by A' and A' (cf. [8, p. 97]). 
It is easily seen that AiMB in M,„tn(R

+) iff the polyhedral cone G(A) m Rm generated 
by the columns of A coincides with the polyhedral cone G(B) generated by the columns 
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of B. Equivalent^, A$B iff d(A) = d(B) and A' = B'M where A'(B') is a greatest 
cone independent submatrix of A(B) and M is a d(A) x d(A) (nonnegative) monomial 
matrix . Therefore the next two results concerning the structure of J \ 5£\ Jf classes 
in MmJR+) follow. 

Theorem 3.1. The following statements are equivalent: 

(i) A.#B [A&B] in Mmn(R
+): 

( i i ) G ( A ) = G ( B ) [ G ( A T ) = G(BT)] ; 

(iii) There exists an invertible matrix M in Jr
d(A) [^V^T)] such that 

A' = B'M [A' = M B ' ] ; 

(iv) A'.*°B' [A'J?°B'A in Mlud{A)(®
 + ) | > Md(AThn(R

+)A . 

Theorem 3.2. The following are equivalent: 

(i) AJTB in Mnun(R
 + Y 

(ii) G(A) = G(B) and G(AT) = G(BT); 

(iii) There exist invertible matrices M e Jr
d{A) and N e Vj(j4T) such that 

B' = AM , B' = NA' , B0 = A0M = NA0 ; 

(iv) A\^°B', A'^°B', and A0Jf0B0. 

These two results are generalizations of Theorem 2.2 and Theorem 3.1 of [8] 

on which the other results in [8] are based. Therefore all the results obtained in [8] 

are true for the generalized Green's relations on Mmn(R
 + ) . For instance we have 

(a) d(A) = d(B) and d(AT) = d(BT) if AQB in Mm^(R+). 

(b) Let Vk be the maximal subgroup of Jr
k whose elements are all the invertible 

(monomial) matrices; let W = Vd(A) x Vd(Al) be the group direct product of Vd(A) 

and Vd(Al). The set 

WAo = {(M,N)eW\A0M =NA0] 

is a subgroup of W. The Jf class containing A, «#%, consists of all matrices Be 
eMmjt(R

+) such that 

B' = AM , B' = NAP , and (M, N) e WAo . 

Finally, the m a p p i n g / : WAo -> JtifA w i t h / ( M , N) = B is bijective. 

The following two theorems concerning the structure of f and Q classes in the 

combine Mmjl(R
+) are generalizations of Theorem 3.2, Proposition 3.3 and Corollary 

3.4 of [ i ] . We can prove them by almost the same arguments as used in [1] . 

Theorem 3.3. A#B in Mnun(R
+) iff there exist nonnegative matrices Kt, Y,, X\, Y[ 

of sizes d(AT) x d(BT), d(B) x d(A), d(BT) x d(AT), and d(A) x d(B) respectively 

such that 

A0 = K^o^i - Bo = X\A0Y[ . 

Theorem 3.4. The following are equivalent: 

(i) AQB in Mnun(R
 + ) ; 
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(ii) Aomo in Md(ATU(BT)(R
+); 

(iii) There exist Xu X\ e ./VjMT), Yt, Y[ e Jr
d(A) such that 

A0=X1B0Y1, B0 = X[A0Y1, 

and any one of the following equalities holds: 

XiXlAo = A0 , A0Y[Y, = A0 , X[X{B0 = B0 , 

BoYiYi = 5 o » -^I-^O = ^o*7 * ^1^0 = #o^i ; 

(iv) A0£?B0 in Md(AThd(A)(R
 + ); 

(v) There exist invertible matrices Xe i~d{AT), YeJr
d(A) such that 

B0 = X A 0 Y . 

Remark. If A0 is a greatest cone independent submatrix of A e M,n n(/^
 + ) then 

any greatest cone independent submatrix A* of A can be expressed as 

A* = M,A0M2 

where M . e J"d(AT) and M2 e A'"d(A) are monomial (cf. Theorem 3.1 of [1]). Thus 
A*/°A0 or A*@°A0 in Md(/4T),d(A)(R

+). Therefore Theorems 3.3 and 3.4 remain 
true if A0, B0 there are replaced by any other greatest cone independent submatrices 
A*, B* respectively. 

Proposition 3.5. If A e M„un(R
 + ) and rank A = n = nu then 

(i) AMB iff A.#°B; 
(ii) if A has a nonnegative left inverse, so does any B in MA. 
Proof. Since 

n = d(A) = rank A = /? , 

we have d(A) = /?, A' = A, and B' = B. Then by Theorem 3.1, AMB implies A'J>°_', 
or A/#°B. This proves (i). 

Let Z G MmM(R+) be a left inverse of A so that ZA = In. Then for any B e JAA 

there is by (i) an invertible matrix M e Jr
d{A) such that B = AM. Therefore M~XZ 

is a nonnegative left inverse of B, and the proof is complete. 

The next two results follow immediately. 

Proposition 3.6. If A e Mmn(R
 + ) and rabk A = m = /., then 

(i) AJ^B iff A^°B; 
(ii) If A has a nonnegative right inverse, so does any B in ££A. 

Proposition 3.7. If A e Ar
n is nonsingular, then the following are equivalent: 

(i) A£?B; 
(ii) A^°B; 

(iii) There exist invertible matrices K, Yin A"n such that B = XAY. 

Note that Proposition 3.7 contains the known result given in Corollary (3.4.7) 
of [2, p. 73]. 
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4. REGULAR ELEMENTS IN Mmt„(R+) 

Recall that an element a of a semigroup T is regular iff axa = a is solvable for 
some x e T Regularity is an important concept in the theory of semigroups, especially 
in the study of Green's relations. Regularity in Jr

n has been studied in [1] and [2]. 
We restate the main results as: 

Theorem 4.1. Let A e Jr
n be of rank r. The following are equivalent: 

(a) A is regular in Jr
n. 

(b) A has a semi-inverse in Jr
n of the form DtA

TD2, where Dx, D2e Jr
n are 

diagonal. 
(c) A has a semi-inverse in Jr

n which is r — monomial, that is, the largest 
nonzero submatrix of the semi-inverse is a monomial matrix of order r. 

(d) A has a monomial submatrix of order r. 
(e) A£?Fr, where Er is the canonical idem potent of rank r given by 

5 = М = / e o. 
(0 -4/-V 
(g) d(A) = d(AT) = r and A0 is regular in J"r, where A0 is a greatest cone 

independent submatrix of A. 

To formulate regularity in a general U — V combine we need to add to the struc
ture, specifically, we require Tto have a conjugate combine, that is, a V — U combine 
T' which satisfies the following condition: there exist surjective maps X: T x T' -» U 
and \i\ T x T-> Vsuch that 

(txt\)t2 = tY(t\t2), ( t i t x ) t 2 - t i ( t , t 2 ) 

for any tx, t2 e T, t\, t2 e T, where t xti and t\t{ denote X(t{, t\) and /*(ti, tt) respec
tively. The V — U combine T' is called a conjugate of the U — V combine T. As 
examples we may take Mnm(R+) as a conjugate of Mmtn{R+), and each semigroup 
which is considered as a combine may be considered as a conjugate of itself. 

We now define regular elements in a combine T which has a conjugate T'. This 
definition reduces to the original one when T is a self conjugate semigroup. 

Definition 4.2. The element a e Tis regular iff axa = a is solvable for some x e T'. 
Further, if axa = a and xax = x for some x e T' and a e T, then a and x are said 
to be semi-inverses of each other. 

It is easily seen that each regular element in a general combine has a semi-inverse. 
It can be shown that in a general combine if one element of a Q) class is regular, then 
all the elements in the Q) class are regular (cf. exercises (3.6.1) and (3.6.3) of [2, 
p. 83]). On the other hand elements in a general combine T which has a conjugate T' 
may have one sided invertibility. If ax = l c : [xa = \v~\ is solvable for some a e T 
and x e T\ then x e T' is said to be a right [left] inverse of a e T An element in T 
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is half invertible if it has a right or left inverse. For example, 

[L 0 I 

0 1 1 
є M , ) 

is half invertible because it has a right inverse 

EM3JR+). 

Proposition 4.3. If U = V and an element a in a U — V combine T has a right 
inverse x and a left inverse y, then x = y; that is, the half inverse in unique. 

Suppose a U — U combine T is self cpnjugate. An element a e T is said to be 
invertible iff there exists an x e Tsuch that 

"1 0" 
0 1 
0 0 

(4.1) ax = xa Һ 

By Proposition 4.3 the element satisfying (4.1) is unique. We call this unique x the 

inverse of a. When a semigroup T is considered as a T — T combine, the concept 

of invertibility comforms to the common one. 

The next result is immediate. 

Proposition 4.4. If an element a e Thas a left [right~\ inverse, and if b#°a [b2?0a^ 
in T, then b has a left \righf\ inverse. 

We return to considetation of the A'~m — A'n combine MmjR + ) whose conjugate 
we take to be MnjjR

+). In the remainder of this paper we assume, without loss of 
generality, that m ^ n. 

Lemma 4.5. Let A e MmjR+). Then 
(i) A is regular in MmjR+) iff [A 0] is regular in Ar

m, where 0 denotes the 
m x (m — n) zero matrix. 

(ii) A has a semi-inverse in MnJR + ) iff\_A 0] has a semiinverse in . \ 'm. Further A 
has a semi-inverse which is r — monomial, where r = rank A, iff [A 0] 
has a semi-inverse which is r — monomial. 

Proof. By Theorem 4A it suffices to prove (ii). If K, e Mn^jR+) is a semi-inverse 
of A, that is, AXXA = A and X1AX1 = Xx, then the two m x m nonnegative 
matrices 

satisfy 

(4.2) 

and 

(4.3) 

[A 0] and ~XĄ 

[A 0] ~f~ [A 0] = [A 0] , 

[o'H[o'Ho'I 
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Therefore [A 0] has a semi-inverse l in A"m. It is clear that if Kj is r — mono-

mial, then so is 

On the other hand if [A 0] has a semi-inverse 

in . Vm, where X, is /? x m and K2 is (m — n) x H, then 

(4-4) [4 0] [*J [A 0] = [A 0] , 

and 

<** [ í ^ [£]-[-.] 
Since (4.4) and (4.5) obviously imply (4.2) and (4.3), X{ e Mn,m(R+) is therefore 
a semi-inverse of A e Mmjl(R

 + ) . If 

K2 

is r-monomial, then Xx must be r-monomial, otherwise rankKi < r = rank A, 
which contradicts A = AXXA. 

Lemma 4.6. A eMmi„(lf+) has a semi-inverse in Mn^m(R + ) of the form 
diag (c,, ..., c;i) A

T diag (J1? ..., dm) iff [A 0] e J/''m has a semi-inverse of the form 
diag(sj sm) [A 0]T diag (tj, ..., tm), where all the diagonal matrices are non-
negative. 

Proof. If X = diag (cj, ..., cn) A
T diag (dt, dn) satisfies 

(4.6) AKA = A and XAX = K , 

then we have 

(4-7) [A 0] [ f ] [A 0] = [A 0] and [ * ] [A 0] [ * ] = [ * ] , 

where 

P ] = diag(c1 , . . . ,c„, 0 , . . . ,0) [A 0]Tdiag(rf„. . . ,dm) 

is a semi-inverse of [A 0] in Jr
m. Conversely, if [A 0] hsa a semi-inverse 

~X 
0 

diag(S!, ..., sm) [A 0]Tdiag(t1 , ..., tm) = 

in jVm where K denotes diag (su ..., sn) A diag (t t , ..., tm) e MKtm(R + ) , then (4.7). 
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holds. Since (4.6) is implied by (4.7), the matrix X is a semi-inverse of A which satisfies 

the desired conditions. 

Lemma 4.7. Let A e Mmtn(R+), r = rank A, and Ir e J/\ be the identity matrix. 
Then 

in Л' 

in Лr 

(i) ^ [ o o ] in M-(^+) iff ^°^[oo] 
(ii) ^ [ o o ] in M"»^+) iff ^ ° ] ^ [ o o ] 

Proof, (i) By Theorem 3.4(h), A0(Ir © 0) implies that d(A) = r = d(AT) and 
A0Q)lr in Jr

r, where A0,Ir are greatest cone independent submatrices of A and 
Ir © 0 respectively. But A0, Ir are also greatest cone independent submatrices of 
[A 0] and Ir © 0 in J/m, whence (A © 0) / ( I r © 0) are in Jr

m by Theorem 3.4. 
This proves the „only if" statement. The „if" statement is proved similarly. 

(ii) By Theorem 3.3, A/(Ir © 0) is equivalent to 

(4.8) A0 = XiIrYi and Ir = XiA0>7 -

where X1? Yi,Xi, Y[ are nonnegative of respective sizes d(AT) x r, r x d(A), 
r x d(AT), and d(A) x r. It is clear from Theorem 3.3 that (4.8) is equivalent to 
( A ® 0 ) / ( I r © 0 ) i n ^ m . 

Lemma 4.8. If AeMm^n(R+) has a monomial of order r = rank A, then this 

submatrix is a greatest cone independent submatrix of A. 

Proof. We have 

PAQ = 
B3 B4y 

where P and Q are permutation matrices, M eJr

r is monomial with M " 1 e Jr

r. 

Let B2 = MC2, B3 = C3M\ then C2 = M~1B2 and C3 = B3M~l are nonnegative. 

Since r = rank A = rank (PAQ) we have 

[P3, P4] = X[M, B2] , 

where X is some real but not necessarily nonnegative matrix. Now B3 = XM and 
B3 = C3M yield X = C3MM~l = C3, whence 

PAO-\M MC> 1 

This shows that M is a greatest cone independent submatrix of A. 
Finally Theorem 4A and the lemmas of this section imply the following gener

alization of Theorem 4.L 

Theorem 4.9. Let A e Mmtn(R+) be of rank r and let A0 be a greatest cone in
dependent submatrix of A. The following are equivalent. 

(a) A iS regular in MmfTl(R + ) . 
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(b) [A 0] is regular in Jr

m. 
(c) A has a semi-inverse in Mnm(R+) of the form DlA

TD2, where D, e Jfn and 
D2 e jVm are diagonal. 

(d) A has a semi-inverse in Mnftn(R+) which is r-monomial. 
(e) A has a monomial submatrix of order r. 
(f) AQ)Er, where 

E • - Lo o_ є M m . 
n (« + ) (Eo- = 0 ) . 

(%) A/Er. 
(h) d(Ä) = ĄA*) -: Г and A 0 ís regular in JГT. 
(i) A0©°/r in Jír. 

(j) AoSX in Jír. 

Remark. Using the same argument as stated in the remark after Theorem 3.4, 
we claim that if A e Mm,n(R

+) of rank r is regular, then any greatest cone independent 
submatrix A0 is regular in ^Vr, is monomial, and satisfies A0@°Ir and A0t/°Ir in Jfr. 

Corollary 4.10. If Ae Mm^n(R
+) is regular, then the 9) class containing A and 

the # class containing A are the same; that is Q)A = _/A. Further, all the elements 
of Q)A = #4 are regular. 

We call a @(f) class in a combine a regular @(#) class iff all its elements are 
regular. 

Corollary 4.11. Let b = min {m, n). The combine Mmttt(R
+) has exactly b + 1 

regular # classes: $Er (r = 0, 1, ..., b) and hence b -f 1 regular 3f classes. 

The next theorem shows that half invertibility and regularity for a matrix in 

Mmt„(R+) of full rank are actually the same. 

Theorem 4.12. Let A e Mm^(R+) be of rank min {m, n). Then A is regular iff A 
has a nonnegative left inverse when m > n, or a nonnegative right inverse when 
m < n, or a nonnegative inverse when m = n. 

Proof. It suffices to prove this when m > n. If A is regular, then A has a monomial 
submatrix M of order n = rank A by Theorem 4.9(e). Then there is an n x n 
permutation matrix P such that 

PA -И-
whence X = [ M _ 1 0] P"1 e M„tj(R+) is obviously a left inverse of A. 

Conversely, if A has a left inverse X e Mnffn(R+) so that XA = In, then AKA = A, 
and A is regular. 
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