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PARALLEL METHODS IN IMAGE RECOVERY BY PROJECTIONS 

ONTO CONVEX SETS 

G. CROMBEZ, Ghent 

(Received June 13, 1990) 

1. INTRODUCTION 

In a recent paper [2] we paid attention to the problem of using parallelism in image 
recovery in a Hilbert space setting. The problem of image recovery may be stated as 
follows: the original unknown image / is known a priori to belong to the intersection 
Co of r well-defined closed convex sets Ci, ..., Cr in a complex Hilbert space H, i.e., 

r 
/ G C o = f |C«! given only the projection operators P, onto the individual sets C, 

i= i 
(i = 1, .,., r), recover / (i.e., find a point in Co) by an iterative scheme. 

The usual method [1; 6] to solve this problem is as follows: from each projection 
Pi an operator 7} = 1 -f A,(P, — 1) is formed with 1 the identity operator on the 
Hilbert space H, and A, a positive relaxation parameter; then the operator T = 
TrTr-\ .. .T2T1 is constructed and it is shown that, starting from an element x in H, 
under suitable conditions the sequence {T^XJ^LQ is weakly convergent to an element 
of C0. 

The sequential manner in which T is constructed from the different TJ (T\x has 
to be calculated before T2 can be working, and so on) may give rise to a rather long 
computing time. In [2] we presented a method which may speed up the recovery 
process if some type of parallel computer is available; it was shown [2, theorem 3] 

r 
that, when T has the form T = a0l + £ aiTi with a0 > 0,a ; > 0 for 1 ^ j ^ r, 

»=i 

J2 a, = 1, 7J; = 1 + Xi(Pi - 1) and 0 < A, < 2 for all i, then {T'x}^ is weakly 
j=o 
convergent to an element of C0. 
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In this paper we continue our investigation on parallel methods by considering the 
operator S which is a convex combination solely of the operators 7J, i.e., 

S = V a l - 7 i , a , > 0 for 1 ^ i ^ r, £ a< = 1. 
7=? ••=! 

2. MATHEMATICAL PRELIMINARIES 

H is a complex Hilbert space with norm || || and identity operator 1; C\, . . . , Cr are 
r closed convex sets in H with nonempty intersection Co; for t = 1, . . . , r, P, is the (in 
general non-linear) projection operator onto the set C,-. Each such projection opera
tor has the following properties: for x G Hy z G C, we have Re (x — P,x, z — P,x) .$ 0, 
and for x G / / , y 6 H it is also true that 

||P,.* - P,y||2 ^ Re (x - y, P,x - Piy). 

We refer to [6] for the following definition and for a proof of theorem 1: 

Definition. A mapping A: H —• H is said to be nonexpansive iff \\Ax — Ay\\ ^ 

||x - y|| for all x , y G H . 

Theorem 1. Let A: H —• H be a nonexpansive mapping whose set of fixed points 
F C H is nonempty. Then, for any x G H such that Anx — _4n+1x —> 0 for n —• oo 
the sequence {Anx}%L0 is weakly convergent to an element of F. 

3. MAIN RESULTS 

3.1 Proposition 1. Let S = £ aft, where for I ^ i ^ r: Ti = 1 + A,(P, - 1), 
t=i 

r 
A,- > 0, 0 < a,- < 1, 53 a,- = 1. Then the set of fixed points of S coincides with CQ. 

i = l 

P r o o f . For y G Co we have Piy = y for all t, and so Sy = y. Conversely, if for 
r 

some y G H we have Sy = y then ]P a,A.;(P.:y — y) = 0. Putting a*Aj = Qj > 0 we 
t=i 

r 
prove that ]jjT ai(PiV ~ y) = 0 implies Piy = y for all i. Indeed, from the assumption 

t=i 
r -1 r 

we first derive that Pry-y = — Yl ^ ( ^ t l l - y)- Taking an element z in Co = H C* 
t=i r »=i 
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we have 

r - l r - l 

Re (y - Pry, z - Pry) = Re ( £ ^iñy - y), z - y + £ ^(Piÿ - y)) 

and the last term may be rewritten as 

r - l 

£ Re (£-(Ay - У), * - PiУ + PiУ - У)) 
<«1 k a 

r-1 r-1 

= £т-ll«»-Иla + E7-R*<P<y-y,*-fl»>. 
<-íïa' ~ a ' 

Hence 

R e ( y - P r y , z - P r y ) = 

= I £ -(Piy - »)f + £ r-"p^ - *"2+£ r ** <*» - *2 - p*> 
i=l i=l r t'=l 

where on the right hand side considered as a sum of three terms both the first and 
the last term are nonnegative. We conclude that if at least one of the vectors P,y — y 
is different from zero for some t with 1 ^ i ^ r - 1, then Re(y — Pry, z — Pry) 
would be strictly positive; this is clearly a contradiction due to the properties of 
projections. So it must be true that Pty — y = 0 for all t = 1,2, ..., r — 1; but then 
also Pry — y = 0; hence Pty = y for all t, 1 ̂  t ^ r, which proves that y 6 Co- • 

A glance at the proof of the foregoing proposition reveals that it goes through 
unchanged when we replace in it the operator 5 by the operator T, where T = 

a 0 l + J2 <*iTi> w i t h 7i = 1 + MP* ~ *) f or 1 ^ «'^ r, a0 > 0, at > 0 and At > 0 
t = i 

r 
for all t in 1 -̂  t ^ r, and Yl aj = !• So also for the operator T the set of its fixed 

i=o 
points is the nonempty set Co; this result may also be stated as follows: Ty = y if 
and only if Tiy = y for all a. 

In view of this result we can now state our proposition 2, which gives a reformu
lation of theorem 2 in [2] but under its minimal conditions. Since the proof is the 
same as in [2] we do not repeat it here. For a given element x in H and a positive 
integer n we put xn = T'x = T ^ " 1 * ) , with x0 = T°x = x. 
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Proposition 2. Let T: H —• H be the operator given by T = aol + ^T, <*&, 

r 

0 < orj < 1 for j = 0, 1, . . . , r, XT a ; = 1. ^e* ^ be a fixed point of T and iefc x be 

an e/ement in / / such that the following conditions are true: 

(A) \\x - ti|| > \\xx -u\\>...> \\xn - t i | | ^ . . . 

(B) ||z, - x\\ > \\x2 - *i | | £ . . . ^ \\xn - Xn-x\\ >.. 

(C) || t T=^(TiXn - II)|| ^ ||«„ - till for all n. 
•=i 

T h e n T n x - T n + 1 x — 0 . 

• 
3.2 To obtain conclusions about the weak convergence of the sequence {Snx}n

<L0 

or {7lflx}^cL0 on the base of theorem 1, we need the rather strong assumption of 
nonexpansivity of S or T. So we first investigate the Lipschitz properties of the 
operators 7}. 

Proposition 3. Let T{ = 1 + A,(Pf - 1) with X{ > 0. Then 
(i) for 0 < At ^ 2, 7J is nonexpansive, 

(ii) for Xi > 2 we have ||7^ar - 7Jy|| ^ (A. - l)\\x - y\\. 

P r o o f . The fact that 7i is nonexpansive for 0 < At-^ 2 is well known (e.g., see 
[6, Th. 2.4.L]). So we just prove (ii), using the properties of projections. For At > 2 
we then have 

\\TiX - Tiy\\
2 = (1 - At)

2||* - y\\2 + 2At(l - At) Re (x - y, P{x - PiV) + A,2||Ptx - Ptt/||
2 

< (1 - At)
2||x - y\\2 + At(2 - At)||Ptx - Pty||2 

^ ( l - A t ) 2 | | x - y | | 2 . 

D 

We remark that in (ii) equality is obtained for two elements x and y such that 
Pfx = Ptt/; hence for A, > 2, TJ is never nonexpansive. 

If all Ti appearing in the expression of S or T are nonexpansive, then 5 and T 
are themselves nonexpansive. Turning first our attention to T we see that under this 
assumption the conditions (A), (B), (C) in proposition 2 are fulfilled, even for all 
fixed points u and all points x in H. So we conclude that, if 0 < A, ^ 2 for all i, then 
for the operator T as given in proposition 2 the sequence {Tnx}^L.0 weakly converges 
to a point of Co, whatever the starting point x. To obtain analogous results for the 
operator 5, it might be tempting to consider 5 as a limit case of the operator T when 
<*o —• 0. However, a taking of the limit may cause difficulties (double limit theorem) 
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in proving that for the limit operator S it is still true that Snx — Sn+lx •—> 0. Instead 
we prove the following result. 

r r 
Propos i t ion 4. Let S = YL <*&, with Ti = 1 4 A,(P, — 1) for all i, ^ a, = 1 

i = i t = i 

with 0 < a, < 1. When 0 < A, ^ 2 for all but one index j for which 0 < Xj < 2, 
then starting from an arbitrary x in H the sequence {5 n x}~ = 0 is weakly convergent 
to a point of Co. 

P r o o f . From what has been said above we know that any operator T, given 

by T = a 0 l 4- £ <*& w i t h 0 < Af- ^ 2 for 1 ^ i < r, 0 < a> < 1 for 0 ^ j t$ r 
t = i 

r 

and ^2 aj — -•> g i v e s rise for any x in H to a sequence {Tnx}%L0 which is weakly 
i=o 

convergent to a fixed point of T, i.e., to a point of Co. 
Substituting 1 4- A,(P, — 1) for Ti and expanding we find that T may also be 

/ r \ r r 

written as T = (1 — J2 ai^i) 1 + Yl ai^iPi, where in particular ^2 ai < 1-
»=i ' i = i t = i 

On the other hand, the operator S in proposition 4 gives on expanding 

r r 

S = ( l - £ a , A , ) l 4 X > , A , P t . , 
• = i »=i 

T 

which is "formally" like T, except that now ^2 a, = 1. We can give S the exact 
i=i 

form of T by introducing small changements in the coefficients a, and At; in fact, 

it is sufficient in the expression of S to keep, e.g., a<i, . . . , a r , A2, . . . , Ar, and to 

introduce a\, X\ such that «iAi = ot\X\ with 0 < a\ < a\; determining then a 0 
r 

such that ao 4- ot\ 4- ^2 a* = * a n ^ substituting in the expanded version of S we 
* = 2 

immediately see, by running through the expanding steps in reversed order, that S 

has exactly the same form as T. This means that, starting from an arbitrary x in 
H, the sequence {Snx}%L0 will be weakly convergent to a point of Co as soon as 
0 < Aj ^ 2 and 0 < A* $J 2 for 2 ^ k ^ r. To finish the proof it is sufficient to show 

r 
that, when in the expression of S we have ^ a, = 1 with 0 < a, < 1, 0 < Ai < 2 

t = i 
and 0 < A* ^ 2 for k = 2, .. ., r, we can choose a\ and X\ as stated in the proof. 
This is rather easy; indeed, since 2 — Ai = 6 > 0, choose an integer N ^ 2 such that 
N - 1 > fy and put a\ = ^-auX\ = ^ y A i ; then 0 < a\ < au X\ ^ 2, and 
a^A'j = o^A]. D 

3.3 We finally comment on the nonexpansivity conditions of 5 (or T). 
The nonexpansivity of S leads to a particular manner of convergence for the se

quence {5 n x}^_ 0 . Indeed, for any point y of Co, i.e., a fixed point of 5, we then 
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have 
! | 5 n + 1 i - y | | < | | s n a : - t / | K . . . ^ | | a ; - y | | ; 

denoting by Fo the projection operator onto Co we have in particular 

US"*1* - Po*|| ^ \\Snx - P0x|| <$ . . . ^ ||x - P0*||. 

Both properties together show intuitively that for a nonexpansive S (or T) conver

gence happens "by staying on one side of Pox", the point of Co closest to the starting 

point x . Moreover, there is convergence independent of the starting point. 

We can however imagine that also without nonexpansivity conditions of the op

erators Ti and S or T, for suitable starting points x the sequence {5 n x}£° = 0 (or 

{Fnx}£°_0) may be weakly convergent to a point of Co- Another manner of conver

gence which may arise in such a case is somewhat induced by conditions (A) and (B) 

in proposition 2: the sequence {Snx}%L0 might "circle around and come closer to 

Co", while the distances between successive points of the sequence are diminishing 

(we remark that in the limiting case of a0 —• 0, i.e., for the operator 5 , condition 

(C) in proposition 2 gives rise to condition (A)). 

Although we are not aware of a mathematical proof that weak convergence for 

suitable starting points may exist when not all Ti are nonexpansive, experimental 

investigations show that fast convergence may result for the sequences {Snx}^L0 and 

{Tnx}^L0 when some relaxation parameters in the operators Ti are bigger than 2. 

The practical applicability is a direct consequence of proposition 1: as soon as for 

some N 6 Z+ we have that S(SNx) = SNx, we have reached a point of Co. 
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