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VARIETIES OF SEMIGROUPS 
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(Received October 7, 1991) 

Let A be an algebra. By Sub(>l) we denote the lattice of all subalgebras of A, 
including the empty set, under inclusion. A variety Y is said to be subalgebra modular 

(distributive) if every algebra A from Y has a modular (distributive) lattice Sub(A) 
(see [1] and [2]). Characterizations of semigroups S having the modular (distributive 
or boolean) lattices Sub(S) are well known (see [3]). 

The aim of this paper is to describe all varieties of semigroups 5 whose subsemi-
group lattices Sub(5) are modular, distributive or boolean. We shall use the results 
on tolerance modular (distributive, boolean) semigroup varieties. Recall that a tol­

erance on a semigroup 5 is a reflexive and symmetric subsemigroup of the direct 
product S x S. By Tol(5) we denote the lattice of all tolerances on S with respect 
to set inclusion (see [4] and [5]). A variety Y of semigroups is called tolerance modu­

lar (distributive, boolean) if every semigroup S from Y has a modular (distributive, 
boolean) lattice Tol(S). 

By Ref(5) (Sym(5)) we denote the lattice of all reflexive (symmetric, respectively) 

subsemigroups of 5 x 5 for arbitrary semigroup S, See [6]. 

By W(i = j) we denote the variety of all semigroups satisfying the identity i = j . 

Terminology and notation not defined here may be found in [7] and [8]. 

It is easy to show the following: 

Lemma 1. Let S be a semigroup. Then the lattices Tol(5). Ref(5) and Sym(S) 

are sublattices of lattice Sub(5 x 5) and Tol(S) = Ref(5) n Sym(S). 

Lemma 2. Let S be a semigroup. Then the lattice Sub(S) is embedded into the 
lattice Sym(S). 
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P r o o f . For each A e Sub(S) we put ip(A) = {(a,a)]a G A}. Clearly 
(p(A) = Sym(S) and so <p: Sub(S) —• Sym(S). It is easy to show that <p is a 
lattice isomorphism. D 

Lemma 3. Let G be a semigroup which is a periodic group. If the lattice Sub(G x 
G) is modular, then G is commutative. 

P r o o f . This follows from Theorem of [9] and from the well known fact that 

every subsemigroup of a periodic group is a subgroup. D 

Let S be a semigroup. By E(S) we denote the set of all idempotents of S . For 
any element x of S, by (x) we denote the subsemigroup of S generated by x. Denote 
by V or A the join or the meet, respectively, in the lattice Sub(S). 

Lemma 4. Let S be a semigroup. If the lattice Sub(S) is modular, x e S and 

e e E(S), then (x) V (e) = (x) U (e). 

See Lemma V.2.8 of [10]. 

For every semigroup S we put S2 = {a&; a, 6 G S}. 

Lemma 5. Let S be a semigroup. If S2 is a commutative periodic subgroup of 

S, then the lattice Sub(S) is modular. 

P r o o f . It is clear that a semigroup S is an ideal extension of a commutative 
periodic group S2 , for which Sub(S2) is modular, by a nilsemigroup S/S2, in which 
every subsemigroup generated by any two subsemigroups of S/S2 coincides with their 
set theoretic union. It follows from Lemma V.2.15 of [10] that Sub(S) is modular. 

D 

Lemma 6. Let S be a semigroup from y^(xy = x2) U W(yx = x2) U y^(xy = uv). 

Then the lattice Sub(S) is distributive. 

P r o o f . Let S G W(xy = x2)\jW(yx = x2)\jW(xy = uv). It is easy to show 

that for A, Be Sub(S) we have A A B = AD B and A\/ B = AU B. D 

T h e o r e m 1. For a variety y of semigroups the following conditions are equiva­

lent: 

1. Ref(S) is modular for each S G V; 

2. Tol(S) is modular for each S G V'; 
3. y C W((xy)n+X = xy) C\W((xyx)n = xn) for a positive integer n. 

P r o o f . 1 => 2. This follows from Lemma 1. 

2 => 3. See Theorem 3 of [11]. 

3 => 1. This follows from Part II of the proof of Theorem 3 in [11] if we replace 

Tol(S) by Ref(S). • 
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Theorem 2. For a variety V of semigroups the following conditions are equiva­
lent: 

1. Sym(S) is modular for each S G r,-
2. Sub(S') is modular for each S G r ; 
3. r g W(xy = x2) orVQ W(yx = x2) or r g ^ ( x j / = yz)C\W(xy = xy(fiv)n) 

for a positive integer n. 

P r o o f . 1 <-> 2. This follows from Lemma 2 and Lemma 1. 
2 => 3. Let r be a subalgebra modular variety of semigroups. It follows from 

Lemma 1 that r is tolerance modular and so according to Theorem 1 we have 

(1) r Q W((xy)n+1 = xy) DW((xyx)n = xn) 

for a positive integer n. It is clear that E(S) ^ 0 for every semigroup 5 from r . 

C a s e 1. card E(S) = 1 for every S^V. 

It follows from (1) that S2 is a periodic subgroup of a semigroup 5 from r . 
Evidently S2 x 5 2 G r and so according to Lemma 3, S2 is commutative. We have 

r £ yP(xyuv = tit/xy) n 1^(xy = xt/(t/t/)n) 

for a positive integer n. Then we obtain 

xy = xy(xy)n = xy(xy)2n = (xyx)(yx)2n~1y = (yx)2n~1y(xyx) = yx(yx)2n = jyx. 

Consequently, we have 

(2) r g ^(xy = yx) n W (xy = *y(tit;)n) 

for a positive integer n. 

C as e 2. In r there is a semigroup T such that card E(T) ^ 2. 

Let e, / G .E(T), e # / . It follows from Lemma 4 that ef G {e, / } = F. 

C a s e 2a. ef = e 

According to Lemma 4, we have / e G F. If ft = e, then by (1) we obtain 
that / = fn = ( / e / ) n = (e / ) n = e, which is a contradiction. Therefore / e = / . 

Consequently, F E *V. 
We shall show that 

(3) r g ^(x2 = x3). 
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Let S be a semigroup from y and let a £ S. By virtue of (1), we have h = a2n £ 

E(S) and fta2 = a2. Evidently S x F £y and so, by Lemma 4, we obtain 

<(a,e))V<(h ,/)) = <(a,e))U <(/. , /)) . 

Hence we have (ft,/)(a,e) = (fta,/) = (ft,/) . Therefore ha = ft and so a2 = fta2 = 

fta = ft. Consequently, a3 = fta = ft = a2. 

Now, we shall prove that 

(4) y g W(x2y2 = x2). 

Let S be a semigroup from y and a,b £ S. It follows from (3) that a2, b2 £ E(S) 
and so from Lemma 4 and (3) we have a262 £ {a2 ,62}. On the contrary, suppose 
that a262 ^ a2. Then a263 = 62 and a2 ± b2. Evidently S x F £ r and so, by 
Lemma 4, we have 

((a2 ,e))v((62 , /)) = ((a2 ,e))u((62 , /)) . 

Hence (a262,e) = (a2 ,e)(62 , / ) = (a2 ,e), a contradiction. Thus we obtain a262 = a2. 
It follows from (4) and (3) that x2y = (x2y2)y = x2^/3 = x2y2 = x2. By virtue of 

(1) and (3), we have x2 = x2 n = (xyx)2n = (xyx)2 = xyx2yx = xyx3 = xyx2 and so, 
by (4), x2 = xyx2 = (xy)2x2 = (xy)2. Using (1) we can get xy = (xy) n + 1 = (xy)2 

and so xy = x2. Thus we have 

(5) yQW(xy=x2). 

C a s e 2b. ef = / . 

This is dual to Case 2a and so we obtain that 

(6) y C W(yx = x2). 

3 => 2. Let y be a variety of semigroups satisfying (2). According to Lemma 5, 

1^ is subalgebra modular. Let f be a variety of semigroups satisfying (5) or (6). 

Then, by Lemma 6, y is subalgebra modular. • 

Theorem 3. For a variety y of semigroups the following conditions are equiva­

lent: 

1. Ref(S) is distributive for each S £ y; 

2. Tol(S) is distributive for each S £ y; 
3. y C W(xyz = xz). 

P r o o f . l - ->2. This follows from Lemma 1. 

2 ^ 3 . See Theorem 1 of [12]. 

3 => 1. This follows from Part II of the proof of Theorem 1 in [12] if we replace 

Tol(S) by Ref(S). • 
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Theorem 4. For a variety y of semigroups the following conditions are equiva­
lent: 

1. Sym(5) is distributive for each S £ Y; 

2. Sub(5) is distributive for each S G^ ' ; 

3. y g W(xy = x2) orYQ W(yx = x2) or Y Q W(xy = uv). 

P r o o f . 1 <-> 2. This follows from Lemma 2 and Lemma 1. 
2 => 3. Let Y be a subalgebra distributive variety of semigroups. According to 

Lemma 1, Y is tolerance distributive and so, by Theorem 3, we have 

(7) Y C W(xyz = xz). 

Using Theorem 2 we can suppose that Y Q ^(xy = yx) C\ W(xy = xy(uv)n) for 

a positive integer n. It follows from (7) that xy = xy(uv)n = (uv)nxy(uv)n = uv. 

3 => 2. Let Y be a variety of semigroups satisfying (5) or (6) or 

(8) Y Q W(xy = uv). 

It follows from Lemma 6 that Y is subalgebra distributive. • 

We shall say that a variety Y of semigroups is subalgebra boolean if every semigroup 

5 from Y is subalgebra boolean, i.e. the lattice Sub(5) is boolean. 

Theorem 5. For a variety Y of semigroups the following conditions are equiva­
lent: 

1. Ref(5) is boolean for each S £ Y; 

2. Tol(5) is boolean for each S £ Y; 

3. Y C W(xyx = x) orYC W(xy = uv). 

P r o o f . l-=>2. Suppose that Ref (5) is a boolean lattice. If follows from Lemma 
1 that Tol(5) is a distributive lattice. For each A £ Ref(5) we put ip(A) = {(a, b); 
(6, a) £ A}. It is easy to show that rp is a lattice automorphism on Ref(5). 

Now, we shall prove that Tol(S) is boolean. Let A £ Tol(S) C Ref(5). Clearly 
\1>(A) = A. There is B £ Ref(5) such that A A B = ids and A V B = S x S. Hence 
we have A A ̂ (JB) = V(-<-s) = ids and A V %I>(B) = V>(5 x S) = S x S. Therefore 
B = tp(B) and so B £ Tol(5). 

2 => 3. This follows from Theorem 2 of [12]. 

3 => 1. First, we shall show that the variety of all rectangular bands 8t&8 = 

W(xyx = x) satisfies 

(9) &® Q W(xyz = xz) 
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and 

(10) @<3<gW(x2 = x). 

Indeed, we have xyz = xy(zxz) = x(yz)xz = xz and x2 = x3 = x. It follows from 
(9) and Theorem 3 that Ref(5) is distributive for each 5 £ 2%3§. 

Now, we shall prove that Ref(5) is boolean for each 5 £ &t&. Let A £ Ref(5). Put 
B = ( ( 5 x 5 ) \ ^ ) u i d 5 a n d C = {(a, 6); a, 6 £ 5 , where (a, 6a) £ 5 a n d ( a , a 6 ) £ B). 

Evidently id5 -$ C. Let (a,6),(c, d) £ C. Suppose that (a,6)(c, d) = (ac,bd) £ C. 

Then, by (9), we have (ac, 6c) = (acybdac) £ B or (acyad) = (acyacbd) £ B. If 
(ac, 6c) £ By then (ac, 6c) £ A and ac ^ be. It follows from (9) and (10) that 
(a, 6a) = (acybc)(aya) £ A and a -̂  6a. Thus we get (a, 6a) £ B and so (a, 6) £ Cy 

which is a contradiction. Analogously we can show that (acy ad) £ B implies (c, d) £ 

Cy a contradiction. Therefore we have (acy bd) £ C. Hence we obtain C2 ^ C and 
so C £ Ref(5). 

Let a, 6 £ 5. By virtue of (9) and (10) we have (a, 6) = (a, 6a)(a,a6). We shall 
show that (a, 6) £ A V C. We have the following possibilities: 

C a s e 1. (a, 6a) £ B and (a, a6) ^ B. Then we get (a, 6a) £ A and (a, a6) £ A. 

C a s e 2. (a, 6a) ^ B and (a, a6) £ 5 . Then we have (a, 6a) £ A. By virtue of (9) 

and (10), we obtain (a,a(a6)) = (a,a6) £ B and (a, (a6)a) = (aya) £ B. Therefore 

( a , a 6 ) £ C . 

C a s e 3. (a,6a) £ B and (a,a6) ^ B. This is dual to Case 2. 

C a s e 4. (a, 6a) £ B and (a, a6) £ B. Then (a, 6) £ C. 

Consequently, A V C = S x 5. 

Suppose that (a, 6) £ A A C = A D C. Then (a, 6a), (a, a6) £ B. By virtue of (9) 

and (10), we have (a, 6a) = (a,6)(a,a) £ A and so a = ba. Analogously we have 

a = ab and so a = a2 = (6a)(a6) = 6. Therefore A A C = id5. 

Consequently, the lattice Ref(5) is boolean for every rectangular band 5. 

It follows from Theorem 3 that Ref(5) is distributive for each 5 £ 2? = ^(xy = 
uv). Let 5 £ 2?. Evidently, 5 is a zero-semigroup. Let A £ Ref(5). Put B = 
(S x 5 \ A) U id5 . Clearly B £ Ref(5). We have A A B = id5 and A V B = S x 5. 
Therefore Ref(5) is boolean. • 

Theo rem 6. For a nontrivial variety Y of semigroups the following conditions 
are equivalent: 

1. Sym(5) is boolean for each S £ f; 
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2 . Sub(5) is boolean for each S G y; 

3. y = W(xy = x)ory = W(yx = x). 

P r o o f . 1 =-> 3 and 2 => 3. According to Theorem 4, we have (5) or (6) or (8). 

Therefore y satisfies (3) . We shall show tha t 

(11) y gW(x2 = x). 

On the contrary, suppose tha t a is an element of a semigroup 5 from y such tha t 

a2±a. 

C a s e 1. Suppose tha t Sym(5) is boolean. It follows from (3) tha t A = 

{(a2 , a 2 )} G Sym(5) . According to one of (5), (6) and (8), there exists B G Sym(5) 

such tha t AUB = AVB = SxS and AC)B = AAB = il\. Therefore (a, a) G B and 

so (a2, a2) G B, a contradiction. 

C a s e 2. Assume tha t Sub(5) is boolean. Then (putting A = {a2}) we analo­

gously obtain a contradiction. 

It is easy to show tha t from (11) we have y C W(xy = x) = ££ or y C W(yx = 

x) = &i. It is well known (see [13]) tha t S£ and @ are minimal varieties. 

3 => 1 and 2 . Let y G {-^, ^ } . It is easy to show that for every semigroup 5 from 

y the lattice Sub(5) is the lattice of all subsets of 5 . Therefore y is subalgebra 

boolean. Analogously we can show that the lattice Sym(5) is the lattice of all 

symmetric subsets of 5 x 5 and so it is boolean. • 
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