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Let A be an algebra. By Sub(A) we denote the lattice of all subalgebras of A,
including the empty set, under inclusion. A variety ¥ is said to be subalgebra modular
(distributive) if every algebra A from ¥ has a modular (distributive) lattice Sub(A)
(see [1] and [2]). Characterizations of semigroups S having the modular (distributive
or boolean) lattices Sub(S) are well known (see [3]).

The aim of this paper is to describe all varieties of semigroups S whose subsemi-
group lattices Sub(S) are modular, distributive or boolean. We shall use the results
on tolerance modular (distributive, boolean) semigroup varieties. Recall that a tol-
erance on a semigroup S is a reflexive and symmetric subsemigroup of the direct
product S x S. By Tol(S) we denote the lattice of all tolerances on S with respect
to set inclusion (see [4] and [5]). A variety ¥ of semigroups is called tolerance modu-
lar (distributive, boolean) if every semigroup S from ¥ has a modular (distributive,
boolean) lattice Tol(S).

By Ref(S) (Sym(S)) we denote the lattice of all reflexive (symmetric, respectively)
subsemigroups of S x S for arbitrary semigroup S. See [6].

By # (i = j) we denote the variety of all semigroups satisfying the identity ¢ = j.
Terminology and notation not defined here may be found in [7] and [8].

It is easy to show the following:

Lemma 1. Let S be a semigroup. Then the lattices Tol(S), Ref(S) and Sym(S)
are sublattices of lattice Sub(S x S) and Tol(S) = Ref(S) N Sym(S).

Lemma 2. Let S be a semigroup. Then the lattice Sub(S) is embedded into the
lattice Sym(S).
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Proof. For each A € Sub(S) we put ¢(A) = {(a,a);a € A}. Clearly
©(A) = Sym(S) and so ¢: Sub(S) — Sym(S). It is easy to show that ¢ is a
lattice isomorphism. O

Lemma 3. Let G be a semigroup which is a periodic group. If the lattice Sub(G x
G) is modular, then G is commutative.

Proof. This follows from Theorem of [9] and from the well known fact that
every subsemigroup of a periodic group is a subgroup. O

Let S be a semigroup. By F(S) we denote the set of all idempotents of S. For
any element z of S, by (z) we denote the subsemigroup of S generated by r. Denote
by V or A the join or the meet, respectively, in the lattice Sub(S).

Lemma 4. Let S be a semigroup. If the lattice Sub(S) is modular, z € S and
e € E(S), then (z) V (e) = (z) U (e).

See Lemma V.2.8 of [10].
For every semigroup S we put S? = {ab; a,b € S}.

Lemma 5. Let S be a semigroup. If S? is a commutative periodic subgroup of
S, then the lattice Sub(S) is modular.

Proof. It is clear that a semigroup S is an ideal extension of a commutative
periodic group S?, for which Sub(S?) is modular, by a nilsemigroup S/S?, in which
every subsemigroup generated by any two subsemigroups of S/S? coincides with their
set theoretic union. It follows from Lemma V.2.15 of [10] that Sub(S) is modular.

O

Lemma 6. Let S be a semigroup from ¥ (zy = z?)U¥ (yz = 2?)U¥ (zy = uv).
Then the lattice Sub(S) is distributive.

Proof. Let S€ #(zy=2%)U¥(yz = z2) U ¥ (zy = uv). It is easy to show
that for A, B € Sub(S) we have AAB=ANBand AVB=AUB. O

Theorem 1. For a variety ¥ of semigroups the following conditions are equiva-
lent:

1. Ref(S) is modular for each S € V;

2. Tol(S) is modular for each S € ¥;

3. ¥ SH# ((zy)**! = zy) N # ((zyz)" = z™) for a positive integer n.

Proof. 1= 2. This follows from Lemma 1.

2 = 3. See Theorem 3 of [11].

3 = 1. This follows from Part II of the proof of Theorem 3 in [11] if we replace
Tol(S) by Ref(S). ]
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Theorem 2. For a variety ¥ of semigroups the following conditions are equiva-
lent:

1. Sym(S) is modular for each S € ¥

2. Sub(S) is modular for each S € ¥;

3V H(zy=zY)or ¥V SH#(yz =z2) or ¥V C ¥ (zy = yz)N¥ (zy = zy(uv)")
for a positive integer n.

Proof. 1< 2. This follows from Lemma 2 and Lemma 1.
2 = 3. Let ¥ be a subalgebra modular variety of semigroups. It follows from
Lemma 1 that ¥ is tolerance modular and so according to Theorem 1 we have

(1) Y ¥ ((zy)"t! = zy) N # ((zyz)" = ")
for a positive integer n. It is clear that E(S) # @ for every semigroup S from 7.
Case 1. card E(S) =1 for every S€ V.

It follows from (1) that S? is a periodic subgroup of a semigroup S from ¥.
Evidently S? x S? € ¥ and so according to Lemma 3, S? is commutative. We have
¥ C # (zyuv = uvzy) N ¥ (zy = zy(uv)")

for a positive integer n. Then we obtain
zy = zy(zy)" = zy(zy)™ = (zyz)(y2)>" "'y = (=)' y(zyz) = y2(yz)™" = yo.
Consequently, we have

(2) ¥ C ¥ (zy = yz) N ¥ (zy = zy(uv)")

for a positive integer n.
Case 2. In ¥ there is a semigroup T such that card E(T) > 2.
Let e, f € E(T), e # f. It follows from Lemma 4 that ef € {¢, f} = F.
Case 2a. ef=ce

According to Lemma 4, we have fe € F. If fe = e, then by (1) we obtain
that f = f* = (fef)" = (ef)" = e, which is a contradiction. Therefore fe = f.
Consequently, F € 7.

We shall show that

(3) ¥V W (22 = 2%).
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Let S be a semigroup from ¥ and let a € S. By virtue of (1), we have h = a?" €
E(S) and ha? = a?. Evidently S x F € % and so, by Lemma 4, we obtain

((a,€)) V{(h, f)) = ((a,€)) U((h, f)) -

Hence we have (h, f)(a,e) = (ha, f) = (h, f). Therefore ha = h and so a® = ha? =
ha = h. Consequently, a® = ha = h = a2.

Now, we shall prove that
4) ¥ C ¥ (Y = 2?).

Let S be a semigroup from ¥ and a,b € S. It follows from (3) that a2,b% € E(S)
and so from Lemma 4 and (3) we have a%b? € {a?b%}. On the contrary, suppose
that a%b? # a?. Then a?b? = b% and a® # b2. Evidently S x F € ¥ and so, by
Lemma 4, we have

((a?,€)) V((6, ) = ((a*,€)) U((¥", f)) -

Hence (a%b?,¢) = (a?,¢€)(b?, f) = (a?,¢), a contradiction. Thus we obtain a%b? = a?.

It follows from (4) and (3) that z%y = (z%y?)y = z%y® = z%y? = z%. By virtue of
(1) and (3), we have 22 = 22" = (zyz)?" = (zyz)? = zyz?yr = zyz3 = zyz? and so,
by (4), 2 = zyz? = (ay)?2? = (zy)?. Using (1) we can get zy = (zy)"*! = (zy)?
and so zy = z2. Thus we have

(5) Y S W (zy=z?).
Case 2b. ef = f.

This is dual to Case 2a and so we obtain that
(6) ¥ C ¥ (yz = z?).

3 = 2. Let ¥ be a variety of semigroups satisfying (2). According to Lemma §,
¥ is subalgebra modular. Let ¥ be a variety of semigroups satisfying (5) or (6).
Then, by Lemma 6, ¥ is subalgebra modular. a

Theorem 3. For a variety ¥ of semigroups the following conditions are equiva-
lent:

1. Ref(S) is distributive for each S € ¥;

2. Tol(S) is distributive for each S € V;

3. ¥V C #(zyz = z2).

Proof. 1= 2. This follows from Lemma 1.

2 = 3. See Theorem 1 of [12].

3 = 1. This follows from Part II of the proof of Theorem 1 in [12] if we replace
Tol(S) by Ref(S). O
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Theorem 4. For a variety ¥ of semigroups the following conditions are equiva-
lent:

1. Sym(S) is distributive for each S € ¥;

2. Sub(S) is distributive for each S € ¥;

3.V H(zy=2)or ¥V SH#(yz =2%) or ¥V S ¥ (zy = uv).

Proof. 1< 2. This follows from Lemma 2 and Lemma 1.
2 = 3. Let ¥ be a subalgebra distributive variety of semigroups. According to
Lemma 1, ¥ is tolerance distributive and so, by Theorem 3, we have

) Y C W (zyz = z2).

Using Theorem 2 we can suppose that ¥ C ¥/ (zy = yz) N # (zy = zy(uv)") for
a positive integer n. It follows from (7) that zy = zy(uv)” = (uv)*zy(uv)” = uv.
3 = 2. Let ¥ be a variety of semigroups satisfying (5) or (6) or

(8) ¥V C #(zy = uv).

It follows from Lemma 6 that ¥ is subalgebra distributive. O

We shall say that a variety ¥ of semigroups is subalgebra boolean if every semigroup
S from ¥ is subalgebra boolean, i.e. the lattice Sub(S) is boolean.

Theorem 5. For a variety ¥ of semigroups the following conditions are equiva-
lent:

1. Ref(S) is boolean for each S € ¥;

2. Tol(S) is boolean for each S € ¥ ;

3. VS #(zyz=z) or ¥V C W(zy = uv).

Proof. 1= 2. Suppose that Ref(S) is a boolean lattice. If follows from Lemma
1 that Tol(S) is a distributive lattice. For each A € Ref(S) we put ¥(A) = {(a,b);
(b,a) € A}. It is easy to show that ¥ is a lattice automorphism on Ref(S).

Now, we shall prove that Tol(S) is boolean. Let A € Tol(S) & Ref(S). Clearly
Y(A) = A. There is B € Ref(S) such that AAB =ids and AV B =S x S. Hence
we have A A Y(B) = 9¥(ids) = ids and AV ¢(B) = ¥(S x S) = S x S. Therefore
B = ¢(B) and so B € Tol(S).

2 = 3. This follows from Theorem 2 of [12].

3 = 1. First, we shall show that the variety of all rectangular bands Z# =
W (zyz = z) satisfies

9) RRB C W (zyz = z2)
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and
(10) RRBC W (z* =z).

Indeed, we have ryz = zy(zzz) = z(yz)zz = zz and z? = 23 = z. It follows from
(9) and Theorem 3 that Ref(S) is distributive for each S € Z%.

Now, we shall prove that Ref(S) is boolean foreach S € Z#. Let A € Ref(S). Put
B = ((SxS)\A)Uids and C = {(a,b); a,b € S, where (a, ba) € B and (a, ab) € B}.
Evidently ids < C. Let (a,b),(c,d) € C. Suppose that (a,b)(c,d) = (ac,bd) ¢ C.
Then, by (9), we have (ac,bc) = (ac,bdac) ¢ B or (ac,ad) = (ac,acbd) ¢ B. If
(ac,bc) ¢ B, then (ac,bc) € A and ac # be. It follows from (9) and (10) that
(a,ba) = (ac,bc)(a,a) € A and a # ba. Thus we get (a,ba) ¢ B and so (a,b) ¢ C,
which is a contradiction. Analogously we can show that (ac,ad) ¢ B implies (c, d) ¢
C, a contradiction. Therefore we have (ac,bd) € C. Hence we obtain C2 C C and
so C € Ref(S).

Let a,b € S. By virtue of (9) and (10) we have (a,b) = (a, ba)(a, ab). We shall
show that (a,b) € AV C. We have the following possibilities:

Case 1. (a,ba) ¢ B and (a,ab) ¢ B. Then we get (a,ba) € A and (a, ab) € A.

Case 2. (a,ba) ¢ B and (a,ad) € B. Then we have (a,ba) € A. By virtue of (9)
and (10), we obtain (a,a(ab)) = (a,ab) € B and (a,(ab)a) = (a,a) € B. Therefore
(a,ab) € C.

Case 3. (a,ba) € B and (a,ab) ¢ B. This is dual to Case 2.
Case 4. (a,ba) € B and (a,ab) € B. Then (a,b) € C.

Consequently, AVC =S x S.

Suppose that (a,b) € AANC = ANC. Then (a,ba),(a,ad) € B. By virtue of (9)
and (10), we have (a,ba) = (a,b)(a,a) € A and so ¢ = ba. Analogously we have
a = ab and so a = a% = (ba)(ab) = b. Therefore AAC = ids.

Consequently, the lattice Ref(S) is boolean for every rectangular band S.

It follows from Theorem 3 that Ref(S) is distributive for each S € 2 = #/(zy =
uv). Let S € 2. Evidently, S is a zero-semigroup. Let A € Ref(S). Put B =
(S x S\ A)Uids. Clearly B € Ref(S). We have AAB =ids and AVB =S x 8.
Therefore Ref(S) is boolean. O

Theorem 6. For a nontrivial variety ¥ of semigroups the following conditions

are equivalent:
1. Sym(S) is boolean for each S € ¥;
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2. Sub(S) is boolean for each S € ¥;
3. V=W(zy==z)or¥V =¥ (yz = z).

Proof. 1= 3 and 2= 3. According to Theorem 4, we have (5) or (6) or (8).
Therefore ¥ satisfies (3). We shall show that

(11) Y CH (22 =2).

On the contrary, suppose that a is an element of a semigroup S from ¥ such that
2
a‘ # a.

Case 1. Suppose that Sym(S) is boolean. It follows from (3) that A =
{(a? a?)} € Sym(S). According to one of (5), (6) and (8), there exists B € Sym(S)
such that AUB = AVB =S xS and ANB = AA B = 0. Therefore (a,a) € B and
so (a?,a?) € B, a contradiction.

Case 2. Assume that Sub(S) is boolean. Then (putting A = {a%}) we analo-
gously obtain a contradiction.

It is easy to show that from (11) we have ¥ S #(zy=z) = ZLor ¥ S ¥ (yz =
z) = Z. 1t is well known (see [13]) that # and % are minimal varieties.

3=>1and 2. Let ¥ € {&,#2}. It is easy to show that for every semigroup S from
¥ the lattice Sub(S) is the lattice of all subsets of S. Therefore ¥ is subalgebra
boolean. Analogously we can show that the lattice Sym(S) is the lattice of all
symmetric subsets of S x S and so it is boolean. O
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