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ASYMPTOTIC INTERTWINING AND SPECTRAL INCLUSIONS 

ON BANACH SPACES 

K. B. LAURSEN, Copenhagen, and M. M. NEUMANN, Mississippi State 

(Received November 15, 1991) 

INTRODUCTION 

The question of the extent to which the spectrum of a continuous linear operator is 
an invariant under reasonable equivalence relations has received an enormous amount 
of attention, particularly within the scope of Hilbert spaces and for relations such 
as quasi-similarity. In this note, we shall develop some general results on spectral 
inclusions of the form <r(T) C <r(S) or <r(S) C <r(T)y where T and S are continuous 
linear operators on Banach spaces K, resp. Y, linked by a continuous linear mapping 
A from X to Y. A typical ancestor of this theory is the following result of Colojoara 
and Foia§ [8]. They show that <r(T) = <r(S) if both S and T are decomposable and 
A is injective, has dense range, and intertwines S and T in the sense that SA -= AT. 

Here we shall obtain theorems of this type for considerably more general classes 
of operators S and T and for a very weak notion of intertwining which also dates 
back to Foia§, cf. [8]. This provides a unified approach to a variety of situations, 
involving quasi-nilpotent equivalence, quasi-similarity, and related notions. Our re
sults will cover operators with Dunford's property (C), Bishop's property ((3), or 
certain rather weak spectral decomposition properties. Our principal tools are from 
local spectral theory, and we shall make essential and frequent use of the recent re
sults on restrictions and quotients of decomposable operators due to Albrecht and 
Eschmeier [3]. 

The relevant definitions and background material will be collected in Section 1. 
Section 2 contains the basic results on asymptotic intertwining. The development 
is mainly in the spirit of [8], but here we have to contend with two distinct classes 
of analytic spectral subspaces. Asymptotically intertwined operators will necessarily 
have overlapping spectra. In fact, the approximate point spectrum of one will touch 
the surjectivity spectrum of the other. In Section 3, the emphasis will be on surjective 
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intertwiners and the permanence of various spectral properties under asymptotic 

similarity . The main results on inclusions for the finer spectral structure will be 

obtained in Section 4 under the appropriate weak assumptions on the intertwiner. 

Among the consequences we shall record spectral inclusions for hyponormal operators 

and some of their generalizations. Even more significant examples of the applicability 

of the theory come from harmonic analysis where the Fourier transformation acts 

as an intertwiner for convolution operators and the corresponding multiplication 

operators. 

1. P R E L I M I N A R I E S FROM LOCAL SPECTRAL THEORY 

We first recall some basic notions and results from spectral theory; the monographs 

[8] and [24] contain further information. Given a complex Banach space X and the 

Banach algebra L(X) of all bounded linear operators on X, an operator T £ L(X) is 

called decomposable if, for every open covering {(ji, U2) of the complex plane C, there 

are T-invariant closed linear subspaces Y\ and Y^ of X such that Y\ + Y2 = X and 

cr(T|yfc) C Uk for k = 1, 2 where a denotes the spectrum, cf. [2]. If it is only required 

tha t the sum Y\ + Y2 be dense in K, one obtains the definition of the weak 2-spectral 

decomposition property (weak 2-SDP), cf. [10]. It follows from the example given by 

Albrecht [1] that , in general, this property is strictly weaker than decomposability. 

We shall also need some closely related notions . An operator T £ L(X) is said to 

have Bishop's property (/3) if, for every open subset U of C and for every sequence of 

analytic functions fn : U —• X for which (T —A)/n(A) converges uniformly to zero on 

each compact subset of {/, it follows that also / n (A) —• 0 as n —• 00, locally uniformly 

on [/, cf. [6]. Obviously, property (/3) implies that T has the single valued extension 

property, which means that , for every open U C C, the only analytic solution / : 

U - • X of the equation (T - A)/(A) = 0 for all X £ U is the constant / = 0, cf. [8]. 

Finally, an operator T £ L(X) is said to have the decomposition property (6) if, 

given an arbitrary open covering {Ui,U2} of C, every x £ X has a decomposition 

x = U1+U2 where 1/1,1/2 G X satisfy Uk = (T— X)fk(X) for all A £ C \ Uk and some 

analytic function fk : C \ Uk —» X for k = 1, 2; cf. [3]. Note that it follows from the 

example given in [1] and Theorem 1.4.5 of [11] that operators with the weak 2-SDP 

need not have property (<5). Conversely, we shall see at the end of this section tha t 

there are operators with property (6) which do not have the weak 2-SDP. 

It has been observed in [4] that an operator T £ L(X) is decomposable if and only 

if it has both properties (/?) and (<$). More significantly, Albrecht and Eschmeier [3] 

have recently completed the duality program for linear operators on Banach spaces 

initiated by Bishop [6]. They prove in [3] that the properties (/3) and (6) are dual 

to each other in the sense that an operator T £ L(X) satisfies (/?) if and only if the 
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adjoint operator T* on the dual space X* satisfies (S) and that the corresponding 

s ta tement remains valid if both properties are interchanged. It has also been shown 

in [3] that an operator T G L(X) has property (/?) if and only if T is similar to the 

restriction of a decomposable operator to one of its closed invariant subspaces and 

tha t T has property (S) if and only if T is similar to a quotient of a decomposable op

erator. These results have been very useful in recent work on the invariant subspace 

problem for operators on Banach spaces, see for instance [12]. 

Finally, given an arbitrary operator T G L(X) and a closed subset F of C, let 

XT(F) := {x G X: CT(X) C F} denote the corresponding analytic spectral subspace, 

where CTT(X) C C is the local spectrum of T at the point x G X, i.e. the complement 

of the set of all A G C for which there exist an open neighborhood U of A in C and 

an analytic function / : U —+ X such that (T — n)f(/.i) = x for all // G U, cf. [8]. 

Similarly, for each closed FCC, let XT(F) denote the space of all x G X for which 

there exists some analytic function / : C \ F —> X with (T — ft)f(/.i) = x for all 

H G C \ F , cf. [3]. Obviously, property (S) means precisely tha t X = XT(U)-\-XT(V) 

for every open covering {Uy V} of C. In the next proposition, the equivalence of (a) 

and (b) was observed by T . V. Petersen. 

P r o p o s i t i o n 1.1. 3CT(0) = {0}, XT(F) = XT(<r(T) O F) and XT(F) C XT(F) 

for all closed FCC. Moreover, the following assertions are equivalent: 

(a) T has the single valued extension property. 

(b) XT(F) = XT(F) for all closed FCC. 

(c) AV(0) is closed. 

(d) AV(0) = {0}. 

P r o o f . The first identity follows from Liouville's theorem, the second identity 

can be easily verified, and the inclusion XT(F) C XT(F) is obvious. The impli

cations (a) => (b) and (b) => (c) are trivial, and (d) => (a) has been obtained in 

Proposition IV.3.6 of [24]. Finally note that , by Proposition IV.3.4 of [24], we have 

( T - A)NT(0) = XT(0) for all A G C. Hence, if KT(0) is a Banach space, then it fol

lows from elementary spectral theory that KT(0) = {0}, see for instance Proposition 

1.3 below. Thus (c) implies (d). • 

Recall tha t an operator T G L(X) is said to have Dunford's property (C) if XT(F) 

is closed for each closed FCC. It is an intriguing open problem whether the 

properties (/J) and (C) are equivalent. The following implications hold in general. 

P r o p o s i t i o n 1.2. Bishops property (/3) implies Dunford's property (C), and 

property (C) implies the single valued extension property. 
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The first implication is well known and easily seen, and the second implication is 

clear from Proposition 1.1. In particular, by Proposition 1.3.8 of [8], it follows that 

an operator is decomposable if and only if it has both properties (6) and (C). 

As usual, let <rp(T) and <rap(T) denote the point spectrum and the approximate 

point spectrum of an operator T G L(X). Thus <rap(T) consists of all A G C for which 

there exists a sequence of unit vectors xn G X such that (T — A)xn —• 0 as n —• oo. 

Further, let <rsu(T) := {A G C : (T— A)K -^ X} denote the surjectivity spectrum of 

T. The following properties of the surjectivity spectrum will be useful. 

P r o p o s i t i o n 1.3. For each T G L(X), <rsu(T) = <rap(T*) and <rsu(T*) = <rap(T). 

Moreover, <rsu(T) is compact with d<r(T) C <rsu(T) C <r(T) = <rsu(T) U <rp(T) and 

<rsu(T) = | J <rT(x). 
x£X 

Finally, ifT has the single valued extension property, then <r(T) = <rsu(T), and ifT* 

has the single valued extension property, then <r(T) = <rap(T). 

P r o o f . The first two identities are standard, see for instance Corollary 57.17 

and Theorem 57.18 of [5]. The remaining assertions follow easily from these identities 

and from Lemmas 1 and 2 of [19], see also [25]. D 

As a consequence we obtain the following generalization of a classical result on 

decomposable operators, cf. Corollary 2.L4 of [8]. 

P r o p o s i t i o n 1.4. If the operator T G L(X) has either property (6) or the weak 

2-SDP, then <r(T) = <rap(T). 

P r o o f . By Proposition 1.3 it suffices to show that T* has the single valued 

extension property. If T has the weak 2-SDP, this follows from Corollary 1.2.8 of 

[11], and if T has (S), we know from [3] that T* has property (/?). D 

E x a m p l e 1.5. The left shift L on the Hilbert space ^2(N) has property (6), but 

not the weak 2-SDP. 

P r o o f . Since the right shift R on ^2(N) is subnormal as the restriction of the 

bilateral right shift on i2(2), it is clear that R has property (/?). Since L is the 

adjoint of R, it follows from [3] that L has property (6). Now suppose that L has 

the weak 2-SDP. Then, since <r(L) is the unit disc, there exist non-trivial and proper 

closed L-invariant subspaces Y and Z of ^2(N) for which Y + Z is dense in t2(N). 

But then YL fl ZL = {0}. Since YL and ZL are non-zero I?-invariant subspaces, 

this contradicts Beurling's characterization of these latter spaces, cf. Corollary 2 of 

Problem 126 in [14]. D 
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2 . ASYMPTOTIC INTERTWINING AND LOCAL SPECTRA 

In the following, let X and Y be complex Banach spaces, and let L(X, Y) de
note the space of all continuous linear operators from X to Y. For given opera
tors T G L(X) and S G L(Y), we consider the corresponding commutator C(S,T): 
L(X, Y) — L(X, Y) defined by C(S, T)(A) := SA-AT for all A G L(X, V). Clearly, 
for all n € N and all _4 G L(X, V) we have 

C(S,T)n(A) := Ct^T^-^SA - AT) = ̂  ("V-l)*^"^ T*. 
Jb=0 W 

An operator >1 G L(K, y ) is said to intertwine S and T asymptotically if 

\\C{S,T)n{A)\\l/n-+0 as n - o o . 

This condition has been investigated by Colojoara and Foia§ [8] and Vasilescu [24] 
in the context of decomposable operators. Here we shall extend some of their results 
to more general classes of operators. 

Lemma 2.1. Assume that the operator A G L(X, Y) intertwines S and T asymp
totically, let x G X, and consider an analytic function / : { / — • X on an open subset 
UofC such that (T — X)f(X) = x for all X G U. Then the infinite series 

g(X) :=^(-l)"C(S,T)n(A)<-+-!- forallXeU 
n = 0 

converges locally uniformly on U and hence defines an analytic function g: U —• Y. 
Moreover, we have (S — X)g(X) = Ax for all X G U. 

P r o o f . We follow the line of reasoning in the proof of Theorem 2.3.3 in [8]. 
Consider a pair of concentric closed discs E C D C U with radii 0 < s < r and 

choose a constant K ^ 0 such that ||/(A)|| t$ K for all A G D. Then, for each A G E, 

we obtain from Cauchy's integral formula 

/(")(A) 

n! 
= IIŠi//-A r"" / ( C H < ^ K r(r - s) - n - 1 for all n > 0. 

Also, by assumption, for € := ^(r — s) there exists some constant L ^ 0 such that 
\\C(S, T)n(A)| | ^ Len for all ?i ^ 0. An obvious combination of these estimates 
yields 

C(S,T)n(A) Ѓn)W 
П ! 

^ KLr(r-s)-l2-n foгall A Є £ and n ^ 0. 
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We conclude that the infinite series defining g(X) converges uniformly on E and 
hence locally uniformly on U. To prove the last assertion, we first observe that 
S C(S,T)n(A) = C(S,T)n+l(A) + C(S,T)n(A)T for all n 2> 0. Also, from 
(T-A) f(A) = x for all A G U we obtain by induction that (T - \)f{n)(\) = 
n f(n~l\\) for all A G U and n ^ 1. Consequently, for each A G U, we have 

(5-A) f f(A) = f ; ( - l ) " ( 5 - A ) C ( 5 ) r n ^ ) - ^ -
n=0 

= X^-1)" (C(5< r)n+1(i4) + C(S, T)n(A)(T - A)) --—\-± 

= f ; ( - i r (c(s,Tr+\A)?^ + c(s,TnA)^){v) 

+ C(S,T)(A)f(\) + A(T-\)f(\) 

and hence (S — A)</(A) = A(T — A)/(A) = ylx, which completes the proof of the 
lemma. D 

As an immediate corollary we obtain that asymptotic intertwining implies an in
clusion for local spectra, see also Theorem 2.3.3 of [8]. In terms of spectral subspaces, 
this result reads as follows. 

Propos i t ion 2.2. If A G L(X,Y) intertwines S and T asymptotically, then the 

inclusions AXT(F) C YS(F) and AXT(F) C tys(F) hold for all closed FCC. 

An easy consequence is the following generalization of Rosenblum's theorem, 
cf. [21] and [15]: if <r(T) O <r(S) = 0, then the zero operator is the only operator 
A which intertwines S and T asymptotically. Indeed, it follows from Propositions 
1.1 and 2.2 that A X = A XT(a(T)) C 2)s(<r(T)) = V)s(<r(T)n<T(S)) = 2)5(0) = {0} 
and hence A = 0. Actually we can do better: 

P ropos i t ion 2.3. If there exists a non-zero operator A G L(X,Y) which inter

twines S and T asymptotically, then <rsu(T) C\ <rap(S) / 0. 

P r o o f . By Theorem 4 of [9], if <rsu(T) 0 <rap(S) = 0, then 0 g <rap(C(S,T)) 
and hence there exists some constant M > 0 such that ||C(S, T)(A)|| ^ Mimi for 
every A G L(X,Y). If A intertwines S and T asymptotically, then ||A|| = 0 since 

| |C(S ,T) n(A) | | 1 / n :> MIIAH1/" for all n G N. 

D 

488 



With additional assumptions on the operators S and T, we obtain the converse of 

Proposition 2.2. This is included in the following theorem which generalizes Propo

sition IV.6.2 of [24] and Theorem 2.3.3 of [8]. 

T h e o r e m 2 .4 . Assume that T £ L(X) has property (6) and that S £ L(Y) has 

property (C) . Then the operator C(S,T) has the single valued extension property, 

and for each A G L(X, Y) the following statements are equivalent: 

(a) \\C(S,T)n(A)\\l'n -> 0 as n -> oo. 

(b) AXT(F) C YS(F) for all closed FCC 

(c) AXT(F) C fOs(F) for all closed FCC. 

(d) <rC(5.T)(-4) = {0}. 

P r o o f . To verify that C(S) T) has the single valued extension property, we 

adopt some techniques from the proof of Proposition IV.6.2 in [24]. First note that , if 

H G L(N, Y) and A G C satisfy ( C ( 5 , T)-\)H = 0, then S H = H(T+\) from which 

it is immediate that as(Hx) C aT+\(x) = aT(x) + \ and hence Hx G YS((TT(X) + \ ) ) 

for all x G X. Now let U C C be open and connected and H: U —• L(K, Y) be 

analytic such tha t ( C ( S , T ) - A ) H ( A ) = 0 for all A G U. Then H(A)x G y5(<TT(x)-hA) 

for all A G U and x £ X. We next choose a pair of non-trivial closed discs D\, D2 C U 

with positive distance £ > 0. For k = 1,2 and arbitrary x G X we conclude tha t 

H(\)x G Y5(0"T(.r) + Djb) for all A G A and therefore, by analytic continuation, for 

all A G c7, since YS(<TT(X) + Dk) is a Banach space by property (C) . Hence for all 

A G U we obtain 

H(\)x G Ys(<TT(x) + D i ) n y s ( ^ T ( x ) -f L>2) = y 5 ( ( O - T W + A ) n (<rT(x) + D2)). 

But (<TT(X) + D\)C\(CTT(X) + D2) = 0 whenever diamCTT(X) < e. Since Proposition 1.2 

shows that S has the single valued extension property, we conclude from Ys($) = {0} 

tha t H(\)x = 0 for all A G U and all x £ X with diam<rT(x) < e. Since T has 

property (6), every element in X can be written as a finite sum of elements x £ X 

with diamcr T (x) < e. Therefore H(A) = 0 for all A £ U, which proves that C(S,T) 

has the single valued extension property. By Corollary 2.4 of [16], this implies that , 

for each A £ L(X,Y), the conditions (a) and (d) are equivalent. The implication 

(a) => (b) is clear from Proposition 2.2, and (b) => (c) follows immediately from 

Proposition 1.1 and the inclusions AXT(F) C A XT(F) C YS(F) = 2)s(F) for all 

closed FCC Finally, assume that condition (c) holds. Since T has property (8), we 

know from [3] tha t there exists a decomposable operator R £ L(Z) on some Banach 

space Z and a continuous linear surjection Q £ L(Z, X) such that TQ = QR. From 

(c) we conclude that 

(AQ)ZR(F) = (AQ)3R(F) C A XT(F) C fQs(F) = YS(F) for all closed F C C 
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Since R is decomposable and S has property (C), the proof of Theorem 2.3.3 in 

[8] now shows that \\C(S\ R)n(AQ)\\^n — 0 as n — oo. But C(S,R)n(AQ) = 

C(S,T)n(A)Q for all n G N. Since, by the open mapping theorem for the surjection 

Q, there exists some constant M > 0 such that M\\B\\ ^ ||J3Q|| for all B G L(X,Y), 

we conclude tha t | |C (5 , T) n ( . /4) | | l / n —* 0 as n —• oo, which completes the proof. • 

3. S P E C T R A L CONSEQUENCES O F A S Y M P T O T I C SIMILARITY 

Again, let X and Y be complex Banach spaces. In this section, we shall inves

tigate the case of surjective and injective operators A G L(X,Y) which intertwine 

asymptotically two given operators S G L(Y) and T G L(X). 

P r o p o s i t i o n 3 . 1 . Assume that A G L(X,Y) satisfies \\C(S,T)n(A)\\^n -> 0 as 

n —» oo . If A is injective, then <rp(T) C <rap(S). If A is surjective, then crsu(S) C 

<rSu(T); in particular, cr(S) C cr(T) when S has the single valued extension property. 

P r o o f . First assume that A is injective. Since C(S — A,T — A) = C(S,T) for 

all A G C, it suffices to show that 0 G <rp(T) implies that 0 G crap(S). Choose a 

non-zero x G X so that Tx = 0 and suppose that 0 £ <rap(S). Then there exists a 

constant M > 0 such that \\Sy\\ ^ M| |y | | for all y G Y. From 

C(S,T)n(A)x = £ fyi-rfF-'A Tkx = SnAx for all n G N 
k=o ^ ' 

it follows tha t \\C(S,T)n(A)x\\l'n ^ M\\Ax\\l'n for all n G N. Since A intertwines 

5 and T asymptotically and since Ax ^ 0 by the injectivity of A, we conclude tha t 

M = 0. This contradiction shows that <rp(T) C <rap(5) whenever A is one-to-one. 

Now assume that A is surjective. Then it follows from Propositions 1.3 and 2.2 tha t 

crsu(S) = ( J as(y) = [J <TS(AX) C (J CTT(*) = (TJI4(T). 
yGV .rex -r€A' 

The final assertion is also a consequence of Proposition 1.3. • 

Coro l lary 3 .2 . Assume that there exist a surjective operator A G L(X, Y) such 

that | |C(S ' ,T) n (y l ) | | 1 / n -> 0 as n -> oo and an injective operator B G L(Y, X) such 

that | | C ( T , S ) n ( £ ) | | l / n -^0 asn-+oo. Then cr(S) C cr(T). 

P r o o f . From Proposition 3.1 we obtain crsu(S) C crsu(T) and crp(S) C crap(T) 

and therefore cr(S) C cr(T) by Proposition L3. D 
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R e m a r k 3 .3 . (i) If A G L(X, Y) is an injective operator with C(S,T)n(A) = 0 

for some n G N, it follows that ap(T) is actually contained in ap(S). Indeed, if x G X 

is an eigenvector for the eigenvalue A of T, then we obtain as before that 

0 = C(S,T)n(A)x = C(S - A , T - X)n(A)x = (S - \)nAx 

and therefore A G <rp(S). Similarly it can be shown that , under this stronger as

sumption on A, the single valued extension property carries over from S to T. 

(ii) Classical examples of quasi-similar operators with different spectra show tha t , 

even under the assumption that C(S,T)(A) = 0, the results of Proposition 3.1 cannot 

be improved in general. For instance by [13] or [15], there exist bounded linear 

operators A, S, T on a Hilbert space such that A and A* are injective, SA = AT, 

S is quasi-nilpotent, and the spectrum of T is the unit disc. Clearly, in this case 

asu(T*) <£. asu(S*), which shows that surjectivity of the intertwiner in Proposition 

3.1 cannot be relaxed to an assumption of dense range. Also aap(T) <£ aap(S)} which 

shows tha t the first part of Proposition 3.1 cannot be improved in general. 

(iii) Note, however, tha t in certain special cases the inclusion of approximate point 

spectra does hold. Indeed, if some surjective operator A G L(X,Y) intertwines 5 

and T asymptotically, then aap(T*) C aap(S*) by Propositions 1.3 and 3.1. In this 

case, A* is injective and intertwines T* and S* by the next lemma, which follows 

immediately from 

[C(S,T)n(A)]* = ( - l ) n C ( T * , S*)n(A*) for all n G N. 

L e m m a 3 .4 . An operator A G L(X, Y) intertwines S and T asymptotically if 

and only if its adjoint A* G L(Y*,X*) intertwines T* and S* asymptotically. 

We shall call the operators T G L(X) and S G L(Y) asymptotically similar if there 

exists a bijection A G L(X, Y) such that A intertwines S and T asymptotically and its 

inverse A~l intertwines T and S asymptotically. Asymptotic similarity generalizes 

slightly the notion of quasi-nilpotent equivalence where, in the above definition, 

X = Y and A — I is the identity operator on X, cf. [8]. It is easily seen tha t T 

and S are asymptotically similar if and only if T and A~XSA are quasi-nilpotent 

equivalent. In particular, it follows that asymptotic similarity is an equivalence 

relation. Moreover, if T and S are both decomposable, then Theorem 2.4 shows that 

T and S are asymptotically similar if and only if there exists an invertible operator 

A G L(X,Y) such that the identity AXT(F) = YS(F) holds for all closed FCC, 

see also Chapter 2 of [8]. 

T h e o r e m 3 .5 . The following are preserved under asymptotic similarity: spec

trum, surjectivity spectrum, approximate point spectrum, single valued extension 
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property, Dunford's property (C), property (8), Bishop's property (/?), and decom-

posability. 

P r o o f . Assume that T and S are asymptotically similar and choose a cor

responding bijection A G L(X,Y) for the asymptotic intertwining of (S,T) and 

( T , 5 ) . Clearly <r(T) = <r(S) by Corollary 3.2 and <rtu(T) = <rtu(S) by Proposition 

3.1. It then follows from Proposition 1.3 and Lemma 3.4 that crap(T) = <rtu(T*) = 

Csu(S*) = <rap(S). Moreover, by Proposition 2.2 we have AXT(F) = Ys(F) for 

all closed FCC. This shows that property (C) carries over from T to S and, by 

Proposition 1.1, the same is true for the single valued extension property. By Propo

sition 2.2, we also have AXT(F) = 2)s(F) for all closed FCC, which implies tha t 

property (8) is preserved. Since, by the results of [3], the properties (/3) and (8) are 

dual to each other and since T* and S* are asymptotically similar by Lemma 3.4, it 

follows tha t property (/3) is also retained by asymptotic similarity. Finally, since both 

properties (C) and (8) are preserved under asymptotic similarity, the same holds for 

decomposability. D 

The preceding theorem subsumes and unifies several classical theorems on quasi-

nilpotent equivalence, cf. Chapters 1 and 2 of [8]. The results involving (/?), (8), and 

the finer structure of the spectrum appear to be new. 

4 . QUASI-AFFINE TRANSFORMATIONS AND SPECTRAL INCLUSIONS 

We now come to spectral consequences of asymptotic intertwining under very 

mild assumptions on the intertwiner. Again, let T G L(X) and S G L(Y) be given 

operators on complex Banach spaces X and Y. The next theorem is the main result 

of this note. 

T h e o r e m 4 . 1 . Suppose that A G L(X,Y) intertwines S and T asymptotically. 

(a) If A has dense range and S has property (C), then <r(S) C <rtu(T). 

(b) If A is injective and T has the weak 2-SDP, then <r(T) C <r(S). 

(c) If A is injective and T has property (8), then <r(T) C <rap(S). 

P r o o f , (a) From Proposition 1.3 we know that <rtu(T) is closed and equal to the 

union of the local spectra <TT(X) over all x G X. This implies that X = XT(<TSU(T)) 

and therefore Y = (AX)~ = (A XT(<T$U(T)))- C Ys(atu(T))~ = Ys(<rtu(T)) by 

Proposition 2.2. From Propositions 1.2 and 1.3 we conclude that <r(S) — <rtu(S) C 

<Tsu(T). 

(b) Let U C C be an arbitrary open neighborhood of <r(S) and choose an open 

set V C C such that U U V = C and a(S) H V = 0. By the weak 2-SDP, there 
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exist T-invariant closed linear subspaces Y and Z of X such tha t cr(T|Y) C [/, 

(T(T\Z) C V, and Y + Z is dense in X. Then obviously Z C XT(V) and therefore 

AZ C AXT(V) C ^sCV ) = ? ) s ( ^ ( 5 ) H V) = 2)5(0) = {0} by Propositions 1.1 and 

2.2. Since A is injective, it follows that Z = {0} and hence Y = X. We conclude 

tha t cr(T) C U for every open neighborhood U of cr(5) and therefore (T(T) C cr(5). 

(c) Since T has property (6), we obtain from [3] a decomposable operator R £ L(Z) 

on some Banach space Z and a surjection Q £ L(zT, K) such tha t T Q = QR. In 

analogy with the preceding argument, we first show that (TSU(T) C [/, where U 

denotes an arbitrary open neighborhood of (Tap(S). Choose an open set V C C 

such that <rap(S) C\ V = 0 and U U V = C. By the decomposability of H, we 

have Z = Z/?(17) + ZR(V). It is clear that the restrictions Qv := Q\ZR(V) and 

IiV := # |ZR (V ) satisfy 

C(5 , J Rv) n ( -4Qv) = C(S,T)n(A)Qv for all n £ N, 

which implies tha t AQv intertwines 5 and Rv asymptotically. Since a(Rv) Q V and 

(Tap(S) n V = 0, it follows from Proposition 2.3 that ^4(5^ = 0 and hence Qv = 0, 

by the injectivity of A. We conclude that Q(ZR(V)) = {0} and consequently 

X = Q(Z) = Q(Z*(Z7)) C KT(U). 

This implies tha t asu(T) C U for every open neighborhood U of (Tap(S) and therefore 

^ u ( ^ ) ^ ^ ( 5 ) . But from Proposition 3.1 we also know that (TP(T) C crap(S). 

The desired conclusion follows from the observation in Proposition 1.3 that (T(T) — 

(TSU(T)U(TP(T). • 

Part (c) of the preceding result is, in several respects, an improvement of Lemma 1 

of [18], and part (b) generalizes Lemma 1 of [10]. These results have been very useful 

in the spectral theory of convolution operators and multipliers, cf. [17] and [18]. Both 

(b) and (c) contain Corollary 2 A 2 in [13] as a special case. We also have the following 

generalization of Theorem 2.4.4 in [8], which is immediate from Theorem 4.L Recall 

tha t an operator A £ L(XyY) is a quasi-affiniiy if A is injective and has dense range. 

Corol lary 4 .2 . Assume that the quasi-affinity A £ L(X, Y) intertwines 5 and 

T asymptotically. If 5 has property (C) and T has either property (6) or the weak 

2-SDP, then a(T) = a(S). 

R e m a r k 4 . 3 . (i) It is interesting to compare the statements in Theorem 4.1 

by dualizing. If we assume in part (a) that 5 has property (/?), and not jus t (C) , 

then this weaker result follows easily from part (c) by duality: in this case, A* is 

injective and, by [3], the adjoint 5* has property (6), hence from Lemma 3.4 and 
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part (c) we obtain cr(S*) C aap(T*) and therefore <r(S) C asu(T) by Proposition 1.3. 

An a t t empt to derive, analogously, part (c) from (a) immediately hits the obstacle 

tha t the adjoint A* of an injective operator A will have only weak *-dense, but not 

necessarily norm-dense range. Fortunately, the proof of assertion (a) shows that the 

result remains valid for operators on a dual space if the assumptions of dense range 

and closed spectral subspaces are fulfilled with respect to the weak *-topology. Now, 

if T G L(X) satisfies condition (6), then T* G L(X*) has property (/3) and hence 

norm-closed spectral subspaces. By Proposition 1.4.4 of [11], it follows tha t these 

spaces are also weak *-closed, but this is not easily established. Thus, using duality 

as above, it is possible to give a proof of part (c) based on assertion (a), but the 

details involve quite some additional machinery. However, we exhaust our luck when 

trying to prove also part (b) by this approach, since there are examples of operators 

with the weak 2-SDP for which the adjoint does not have norm-closed and hence not 

weak *-closed spectral subspaces, cf. Remark 1.4.6 of [11]. 

(ii) Any a t t empt to obtain general spectral inclusions by swapping the assumptions 

on S and T in Theorem 4.1 is doomed to fail. In Remark 3.3 (ii) we have mentioned an 

example where SA = AT, A is a quasi-affinity, a(T) is the unit disc, and a(S) — {0}. 

Thus <T(T) <£. <T(S) although S, as a quasi-nilpotent operator, is decomposable and 

hence has both property (6) and the weak 2-SDP. Therefore the analog of (b) or 

(c) in Theorem 4.1 with decomposability assumptions on S instead of T does not 

hold. Moreover, a glance at the dual operators in the same example shows that the 

spectral inclusion from part (a) of Theorem 4.1 need not hold if T is assumed to be 

decomposable and no particular assumptions are made on S. 

R e m a r k 4 .4 . There are interesting situations in harmonic analysis where the 

spectral inclusions from part (b) or (c) of Theorem 4.1 actually characterize the 

decomposability of the operator T. Indeed, let X := Li(G) denote the group algebra 

of a locally compact abelian group G, and consider the Banach algebra Y := G0(T) 

of all continuous complex-valued functions on the dual group T which vanish at 

infinity. Then the Fourier transformation A: X —• Y given by Af := / for all / G X 

is injective and has dense range, cf. [22]. Now, for a regular Borel measure /t on G, 

let T^ G L(X) denote the corresponding convolution operator given by T^f :— fi * / 

for all / G X, and let S^ G L(Y) be the operator of multiplication by the Fourier-

Stieltjes transform /7 on Y. Then obviously S^A = AT^. Also, using the regularity 

of the Banach algebra C 0 ( r ) , it is easily seen that the operator S^ is decomposable. 

Moreover, as an elementary fact, we always have /i(T) = (T(S^) C <T(T^). Note tha t 

this containment also follows from Theorem 4.L If the group G is non-discrete, then 

classical results from Fourier analysis show that the spectral inclusion will be strict for 

certain measures fi on G, cf. [26]. On the other hand, Theorem 4.1 proves the identity 
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<T(TH) = fi(r) whenever T^ has the weak 2-SDP or property (6). The converse holds 
if G is compact and /x vanishes at infinity. In this case, it has been shown in [17] and 
[18] that T^ is decomposable if and only if the measure /.i has a natural spectrum in 
the sense that cr(T^) — //(T) and that this property is also equivalent to property (6), 
to the weak 2-SDP, and to the countability of the spectrum of T^. Actually, these 
results hold in the more general context of multipliers on semi-simple commutative 
Banach algebras with scattered maximal ideal space, see [17] and [18]. In this case, 
the injective intertwiner is, of course, the Gelfand transformation. 

If the operators T G L(X) and S G L(Y) are intertwined asymptotically by quasi-
affinities A G L(X, Y) and B G L(Y, X), i.e. if A and B are quasi-affinities for which 
\\C(S,T)n(A)\\^n - - 0 and \\C(T,S)n(B)\\l/n -> 0 as n — oo, we say that T and 
S are asymptotically quasi-similar. In this situation, the invariance of the spectrum 
is valid under quite mild assumptions on the operators. Note that this covers the 
case of quasi-similar operators T and S where it is required that C(S, T)(A) = 0 and 
C(T,S)(B) = 0. 

Corollary 4.5. Suppose that T and S are asymptotically quasi-similar. IfT and 

S have any of the properties (6), (C) or the weak 2-SDP, then <r(T) = a(S) 

P r o o f . By symmetry, it suffices to show that cr(T) C <r(S). If T has either 
the weak 2-SDP or property (6), this follows from Theorem 4.1 applied to the quasi-
affinity A G L(X, Y). And if T has property (C), the inclusion follows from Theorem 
4.1 applied to the quasi-affinity B G L(Y,X). • 

In particular, Corollary 4.5 gives the spectral invariance for quasi-similar opera
tors with Dunford's property (C), a fact noted, for Hilbert space, by Stampfli [23]. 
Evidently, Corollary 4.5 covers not only the classical case of quasi-similar decom
posable operators from [8], but also the case of quotients and restrictions of these, 
since such operators are characterized by property (6), resp. property (/?), cf. [3]. 
In particular, quasi-similar subdecomposable operators have identical spectra, which 
generalizes a recently announced result of L. Yang in the Hilbert space setting. Note 
that it is shown in [20] that hyponormal operators are subscalar and hence subde
composable, and small changes of Putinar's argument will yield the same result for 
M-hyponormal operators. Thus we also capture, as a special case, a generalization 
of Clary's result [7] that, for quasi-similar M-hyponormal operators, the spectrum is 
invariant. Finally, [16] studies another class of Banach space operators, the totally 
paranormal operators, to which the present theory applies. It is shown that these 
operators have property (C) and that all hyponormal operators belong to this class. 

We would like to thank V. Miller for fruitful discussions on the topic of this note. 
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