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1. INTRODUCTION

This paper continues [1] and we shall keep the corresponding notation. Let N > 0,
k > 0 be integers, let €, p be real numbers, 1 < p < co. Denote by p’ the conjugate
Lebesgue exponent, i.e. p' = ;%. Let Q be a non-empty, open, bounded subset
of RV. Let M be a closed subset of Q and let dp(z) be the distance function,
dym(z) = dist(z, M). Given an integer m, 1 < m < N, the symbol Q,, stands for
the cube (0, 1)™.

Definition 1.1. We shall write (2, M) € B(k,N) for 1< k<N -1, N > 2if
and only if there exists a bilipschitz mapping

B:QN-—>Q

such that B(Q,) = M.

By C>®(f2) we denote the set of real functions u defined on € such that the
derivatives D®u can be continuously extended to Q for all multiindices a. Set
CR(Q) = {u € C°(Q): suppun M = 0}. Define the weighted Sobolev space
W1P(Q,d5,) as the closure of C* () with respect to the norm

N 1/p
[ulW'P (@, diy)|| = ( [ [u(@)Pdy(2)de+ [ Y [Diu(z)Pdsy(z) de
“ /% )

where D;u = a%“—. stands for the generalized derivative of the function u, W;,‘p(Q, dsy)
as the closure of C7(Q) in the space W1P(Q,d5,) and H'P(Q,d5,) as the class of
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lulX

all functions u with a finite norm
N 1/p
lulH (@, &) = (/|u(z)|Pd“P(z)dz /Z|D,-u(x)|f’d;,(z)dz) .
Q i=1

Now, let (2, M) € B(k,N). Define X7 ,/(0R) as the class of all real functions u
on 0N vanishing on M with a finite norm

? m(09)]
=( / ()P (2) da + // [u(x)dy" (@) — u@d W dy)””.

|z — y|N+r=2
an-M (39-M)?

For 0 < s < 1 we recall the definition of the Slobodeckij space W*P(M) as the set
of all functions u defined on M with a finite norm

ufwer(m)| = (/lu(x)ll’ dz+//|_”_yll‘%dz dy)l/p.

Maz’ja and Plamenevskij [5] proved the following decomposition lemma:

Lemma 1.1. Let Q have a Lipschitz boundary, i.e. @ € C°%' in the sense of
Definition 5.5.6 in [6]. Let zq € 0Q, M = {zo} and ~N < e <p— N. Then

Wir(Q,d5,) = HYP(Q, d5) & R!

and the norms in the spaces W'F(Q,d5,) and H'?(Q,d5,) ® R! are equivalent.
The paper extends this result to the case (2, M) € B(k, N).

2. DECOMPOSITION OF W'P(Q,d5,)
Let us recall four assertions we shall need in this paper.

Theorem 2.1 (see [2]). Let Q have a Lipschitz boundary and let M be a non-
empty closed subset of Q. Then C33(Q) is dense in H P(Q, d5,).

Theorem 2.2 (see [3]). Let Q have a Lipschitz boundary and let M be a non-
empty closed subset of 9. Then

(i) there exists a unique bounded linear operator
T: H'?(Q,d}y) — X! ,,(99)
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such that
Tu= “|an\M

for all functions u € C(Q),

(i1) there exists a bounded linear operator

R: Xf,M(BQ) — H'?(Q,d%)
such that
TRu=wu

for all functions u € X? ,,(09).

Theorem 2.3 (see [1]). Let N 22, 1<k N-1,k—-N<e<p+k—-N and

let (2, M) € B(k,N). Then
(i) there exists a unique bounded linear operator

N-k+te

T: WHP(Q,d5) = W=7 P(M)
such that

Tu=1u

for all u € C*(9),

(i1) there exists a bounded linear operator

R: W55 P (M) — whe(Q, d5,)

such that
TRu=u

for all functions u € W1~ P(M).

Theorem 2.4 (see [4]). Let N 22, 0< k< N-1l,e<k—Nore>p+k—-N
and (Q, M) € B(k,N). Then

HYP(Q,d3) = W'P(Q, diy)

and the norms in the two spaces are equivalent.

According to Lemma 1.1 we can restrict ourselves to the case N > 2 and 1 <k <
N -1
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Lemma 2.5. Let N > 2,1 < k< N-lande < p+k—N. Let (2, M) € B(k,N).
Then the bounded imbedding

Wi (Q, diy) — LP(9,d3r")

holds.

Proof. Without loss of generality we can assume Q@ = Qn and M = Q.
Let u € CE(Qy). We shall write z = (2/,z"), where 2/ = (z1,...,2%), 2" =
(Zk+1,---,2n). Obviously, d(z) = |z"| on Q. Hence, using the general cylindrical

coordinates (z',7, ) (see the proof of Lemma 2.10 in [1]) we have

/ lu(2)Pd5;? (2) de
QN

a(y)
:/ / [/ Iu(a:’,r,<p)|”r‘"p+N_k"ldr]J(cp)d<pdx'.:I,
M (0,5)N-k-1 "0

where a(¢p) is the function corresponding to the set {(z’,z"): ' € M,0 < z; < 1 for
j=k+1,...,N}and J(p)r~V+k+1 is the Jacobian. Note that J(¢) > 0. Obviously,
from the Hardy inequality (note that u = 0 on M) we obtain

a(yp)

<] [ [l

M (0, )N+ 0
< a|lulWhP(Qn, diy)IIP-

TNkl dr] J(p) dp dz’

This completes the proof. a

Lemma 2.6. Let N 22, 1< k< N-1,e<p+k—N andlet (2, M) € B(k,N).
Then
Wy (Q,dy) = H'P(Q, djy).

Moreover, the norms in the two spaces are equivalent.

Proof. Again, we can assume 2 = Qn, M = Qi. The imbedding
Wi (Q,d5y) — H'P(Q, d5y)

follows from Lemma 2.5. Due to the imbedding H'P(Qn,d5;) — W1P(Qn,d5,) it
suffices to prove that any function u € H'P(Qn,d$) can be approximated in the

716



space W1P(Q,d5,) by functions from the set C§5(Q). This will prove the inverse
imbedding. Let {®,: h > 0} be a family of real functions defined on [0, 00) and
satisfying the following conditions:

(2.1) ®,(t)=0 for t€[0,h),

(2.2) Bu(t)=1 for te€ (2h,00),
(2.3) ®y € C°(0,00), 0< &y <1,
(2.4) |® (8)] < % h>0, t>0,

where ¢ is a positive constant independent of h and t. Let u € H'?(Q,d5,). For
every h > 0 define a function uj by

up(z’,2") = u(a’, z")®n(|z"]).
Then up, € WHP(Qn, d5) for every h > 0. Put
Th = llun — u|WHP(@Qn, dip)|IP-

The properties of ®4(t) yield

(2.5) Jn < c(/

u(z’,z")(1 - <I>h(|:c"|)) P|z"|¢ dz" dz’

QN
N
+ / IZ Diu(z’,z") (1 — ®4(|z"]))|P|z"|°dz" da’
Qn i=1
/ [u(z’, z")[P Z @4, (|="])|P|="|° dz”dz)

i=k+1
= C(th + Jon + Jan).

Set Q(2h) = {(z',2"): ' € M,|z"| < 2h} and Q(h,2h) = {(z',2"): z € M,h <
|z”] < 2h}. Using (2.1)-(2.4) we obtain the estimates

Jin € / |u(a:',z")]”|1'"|‘ dz" dz’,
Q2

N P
Jan < / Y Diu(a’,z")

Qan i=1

lzlllt dzll dxl’
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Jan < Ne / lu(z’, z")P|2"|~P.
Q(h,2h)

Since H'?(Qn,dS,) — W'P(Qn,d5,) and u € H'P(Qn,dS,), the absolute conti-
nuity of the Lebesgue integral yields

(2.6) lim Jiy, = 0.
Now, (2.5) and (2.6) imply
limJy=0 and ue WP (Qn, dy),

which completes the proof. a
As a consequence of Lemma 2.6 we have
Theorem 2.7. Let N 22, 1<k N-1,e<p+k—N. Let (2, M) € B(k,N).
Then H'?(Q,d%,) is a closed subspace of W1P(Q,d5,).

Note that H'?(,d5,) # WP(Q,dS) for k— N < e < p+k — N. We can take
u(z) =1 on Q to prove it.

Definition 2.1. Let N 2 2, 1<k N-1,k-—N<e<p+k—-N. Let
(2, M) € B(k,N). Let

N-k+e
1 4

R: W'~ P(M) = WP(Q,d%)

be the linear bounded extension operator from Theorem 3.4 in [1]. We denote the
range of the operator R by D} ,/(2). On Df’M(Q) we define the norm by

ul D2 (@)l = | TulW! =552 (M),

where T is the trace operator from Theorem 2.11 in [1].

The space Df,M(Q) is isometrically isomorphic to the space W'~ e P(M).

Lemma 2.8. Let N 22, 1<k N—-1,k—N<e<p+k—N. Then the linear
operator A defined by

(2.7) Au=u— RTu
is a bounded linear mapping of W'?(Qn, d3,) to HVP(Qn, d5;).
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Proof. Obviously, it suffices to prove only that
A: WP (Qn,diy) — LP(Qn, dyr ")

is bounded. Let u € C*®(Qy). Let S be the bounded linear operator from Lemma
3.2 in [1]. We have

(28) lAu|LP(Qn, di *)IIP
= / lu(z’, ") = (RSTu)(z',z")[P|z"|*"Pdz" da’
QN
1
QN lz'-y'I<]"|

g2r! [/ / lu(z’, ") — u(z’,0)|P|z"|*"Pdz" dz’
M (0,1)N=-k

P

u(xl’zll) - lzlllt—pdzll d:ﬂl

P
+/ / l / ®(s")(u(z’,0) — Su(z' — 5'|z"|,0)) ds'l |z"|¢~Pdz" dz']
M (0,1)N-F |s’i<1
= QP_I(Jl + J2)
As in the proof of Lemma 2.5, we obtain

a(y)

(29) L :/ / [/ |u(x’,r,<p)—u(r',0,<p)|pr“”+N'k_ldr]J(go)dgodx'

M (0,)N-*-1 " 0

<c1/ / [/|a(zr<ﬂ)

M (0,3)N-*-1
< el [ulWHP(Qw, diy) 1P

H'N‘k'ldr] J(p)dpda’

Obviously, using the general cylindrical coordinates we have

! — ! p
Jz S o / / IS‘U(I ’0) Su(z s, O)] rN—k—1+EdsI dT’d.’L'I,

rP

(-K,K)k 0<r<b(z")|s'|<1

where b(z') = K — max |z;| and K is the real number from the proof of Lemma
i=1,2,...,

3.3 in [1]. This integral can be estimated in a similar way as the integral I; in the
proof of Lemma 3.1 from [1] to obtain

(2.10) J2 < callulWHP(Qn, diy)IIP-
The imbedding (2.7) now follows from (2.8), (2.9) and (2.10). a

719



Lemma 2.9. Let N 22, 1< k< N-1L,k-N<e<p+k-N,M=]0,1]*
Then
WHP(Qn,dy) = H'P(Qn, diy) © DY 4 (Qn).

Moreover, the norms in the spaces W'P(Qn,d5,) and H'P(Qn,d5) & Df 4 (QN)
are equivalent.

Proof. Letue WY?(Qn,d5). We can write
u=(u— RTu)+ RTu = u; + us.

From Lemma 2.8 we obtain u; € Hl"’(QN,djw) and according to Definition 2.1 we
have uz € D? /(Qn). In [2] and [4] it is proved that H'P(Qn,d};) is the closure
of the set C$3(Qx) in the norm of the space W'?(Qn, d3,). It immediately implies
that the functions from H!P(Qn, dyy) have zero traces on M. From the linearity of
the opearator R we get R(0) = 0. This yields

H'"™(Qn,d3) N DY 3 (Qn) = {0}.

Now, let uy € H'?(Qn,d}y), ua € D? \(Qn). Taking into account the trivial
imbedding H'P(Qn,d5;) — W1P(Qn,d5,) and Theorem 3.4 in [1] we get

[luy + u2|[WP(Qn, diyp)l|

< WP (Qu, dip)ll + IRTu|W P (Qu, 5 )|

< et (Jlual HYP(Qn, di)l| + [ITulW =557 (1))
= e ([lua| B2 (@, i)l + w2l DF p (@u)1)),

which proves
HLP(QN) d;'l) @ DE,AI(QN) — Wl’p(QNa d;'l)
On the other hand, let u € W1P(Qn,d5,). We can write

u=(u— RTu)+ RTu.
Lemma 2.8 yields
llu — RTu|H'P(Qn, diy)l| < collul WP (Qn, i)l
and by Theorems 3.4 and 2.11 in [1] we have
IRTu|Df 5 (Qw)Il < csllul WP (Qn, djp)Il-

Thus,
WP (Qn,diy) = H'P(Qn, diy) ® D 4 (Qn).
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It is not difficult to extend Lemma 2.9 in the following way.

Theorem 2.10. Let N > 2, 1 < k< N-1,k—-—N<e<p+k— N and let
(2, M) € B(k,N). Then

WhP(Q,d5) = HYP(Q,d5y) @ D ()

and the norms in the spaces W1?(Q, d5,) and H'P(RQ, i) ® DY 5(() are equivalent.

Definition 2.2. Let the assumptions of Theorem 2.10 be satisfied. Since the
trivial imbedding
WhP(Q,d5,) — WhHi(Q)

holds, there exists a trace operator T such that
T: WHP(Q, d5,) — L'(0Q).

Define the space Y;/(09) as the range of the operator

TR: W57 (M) — L'(89),

endowed with the norm

_ _ N—kie
1U|W1 >

101YZ 5 (0Q)11 = I(T'R) P(M)].

Theorem 2.11. Let N 22, 1<k N-1,k—N<e<p+k—-N,(Q,M)e
B(k,N). Then

(i) there exists a unique bounded linear operator
T: Who(Q,d5) — Xf'M(GQ) & Ye’fM(aﬂ)
such that

Tu=u
an

for every u € C™(Q),
(ii) there exists a bounded linear operator

R: X 0, (09) @ Y7 5, (09) — WP (Q, dy)

such that
TRu=u on O0N.

Proof. The theorem follows easily from Theorems 2.2 and 2.10. O
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