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MINIMAL PRIME IDEALS IN AUTOMETRIZED ALGEBRAS 

MARY E. HANSEN,* Kokomo 

(Received April 23, 1992) 

1 . INTRODUCTION 

Swamy [5] introduced the concept of an autometrized algebra which is a gener

alization of, for example, abelian lattice ordered groups and Brouwerian algebras. 

Ideals of autometrized algebras were studied by Swamy and Rao [7] and this work 

has been continued by Rachunek [2, 3, 4] who has studied prime ideals, polars and 

regular ideals in autometrized algebras. In this paper minimal prime ideals are stud

ied both for autometrized algebras, and for representable dually residuated lattice 

ordered semigroups. 

A system (_4,-f, ^ , * ) is an autometrized algebra if and only if 

1) (-4,-f) is commutative semigroup with 0; 

2) ^ is a partial ordering on A such that Va, b, c £ A 

a, <C b = > a -{- c <Z. b + c; 

3) * is a metric operation on A, that is, *: A x A —* A is a mapping such that for 

all a, b, c £ A, 

(i) a * b ^ 0 and a * b = 0 <==> a = b, 

(ii) a * b = b * a, 

(iii) a * c ^l (a*) -f (b * c). 

An autometrized algebra (A , -f, ^ , *) is called normal if and only if for all a, b, 

c, d £ A, 

(i) a <C a * 0, 

(ii) (a -f c) * (b + d) ^ (a * 6) + (c * d), 

(iii) (a * c) * (b * d) ^ (a * b) -f (c * d), 

(iv) a <C b implies that there exists x ^ 0 such that a + x = b. 

' This research was funded in part by an Indiana University at Kokomo Summer Faculty 
Fellowship, 1991. 
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An autometrized algebra (A, + , ^ , *) is called semiregular if for all a £ A, a >̂ 0 

implies a * 0 = a. 

An autometrized algebra is called an £-algebra if and only if ^ is a lattice order 

and for all a, b, c £ A, 

a + (b\/ c) = (a + b) V (a + c) and a + (b A c) = (a + b) A (a + c). 

Note that semiregular normal autometrized ^-algebras include all Brouwerian al

gebras and abelian lattice ordered groups. 

If A = (A, + , ^ , *) is an autometrized algebra then a non-empty subset I of A is 

called an ideal of A if and only if 

(i) Va, b £ I, a + b G 1, 

(ii) V a £ f, x £ A, x * 0 ^ a * 0 implies x £ f. 

For a normal autometrized algebra A, ^ ( A ) , the set of all ideals of A, ordered by 

set inclusion, is a complete algebraic lattice [7]. For B C A, 1(B) is used to denote 

the ideal of A generated by 13. f({a}) is written simply as 1(a), and 1(a) = {x £ 

A | x * 0 ^ 7ti(a * 0) for some m ^ 0 } , [7]. 

An ideal I of an autometrized algebra A is a prime ideal if for all J, A' in ^/(A), 

J f\ K •=• I implies J = I or A' = I. 

For a semiregular normal autometrized «?-algebra A, Rachunek [2] has shown that 

an ideal I is a prime ideal of A if and only if for all a, b £ 1, 0 ^ a A b £ I implies 

a £ I or b £ I, and that every prime ideal contains a minimal prime ideal. 

Elements a and b of an autometrized ^-algebra A are said to be orthogonal (denoted 

a Lb) if (a * 0) A (b * 0) = 0. For any subset B of A the polar of B is 

BL ={x£A\x l b for all be B}. 

{aL} is denoted aL and C C A is called a polar in A if C = BL for some B C A. 

The collection of all polars in A is denoted &(A). 

It is clear tha t for subsets B and C of A, 13 0 BL = {0} and if B C C then B 1 D 

C_L. Rachunek [3] has shown that any polar in a semiregular normal autometrized 

^-algebra A is an ideal of A. Also if B C A, then B C B11 and H1 = BLLL. 

The following lemma due to Swamy [5] will be needed. 

L e m m a 1.1. Let x, y, c be elements of an autometrized £-algebra. If c A x = 

c A y — 0, then c A (x + t/) = 0. 

More generally the following result holds. 

L e m m a 1.2. If a, b, c are elements of an autometrized t-algebra and a, b, c ^ 0 

til en 

a A(b + c) ^ (a Ab) + (bAc) . 
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P r o o f . If a, 6, c ^ 0, then a A 6 A c ^ 0 and a ^ a + (a A 6 A c). Therefore 

a A (6 + c) ^ [a + (a A 6 A c)] A (6 + c) 

= [(a + a) A (a + 6) A (a + c)] A (6 + c) 

= [(a + a) A (a + 6)] A [(c + a) A (c + 6)] 

= [a + (a A6)] A [c + (a A 6)] 

= (a A 6) + (a Ac) . 

D 

For an autometrized algebra A, the set of positive elements of A if A+ = {x £ A \ 

0 0}. 

2. M I N I M A L P R I M E IDEALS IN A U T O M E T R I Z E D ALGEBRAS 

Let A = (A, + , ^ , *) be a autometrized ^-algebra. A nonempty subset F of A+ 

is called a filter on A+ if 

(i) 0 £ F ; 
(ii) a and 6 £ F implies a A 6 £ F; 

(iii) a £ F and 6 ^ a, implies 6 £ F. 

A maximal filter on A+ is called an ultrafilter, and a filter F on A+ is called a 

prime filter if, for x, g £ A+, x + y E F implies x* £ F or y £ F. 

P r o p o s i t i o n 2 .1 . Lei A be a normal semiregular autometrized £-algebra. A non

empty subset F of A+ is a prime filter if and only if A+ \ F = / + for a prime ideal 

1 of A. Thus the mapping I —> A+ \ I is a one-to-one map of the prime ideals of A 

onto the prime filters on A+; the inverse map is F —* / ( A + \ F). 

P r o o f . Let F be a prime filter on A+ and let / = / ( A + \ F). It must be shown 

that / + = A+ \ F and that / is prime. Clearly A+ \ F C I+. Suppose A+ \ F £ I+, 

then 3 x £ / + O F , and x £ / + implies that x*0 ^ 77ii(ai*0) + 7772(a2*0) + . . .77ijt(a^.*0) 

for some positive integers 7771, . . ., 777̂  and some a\) . . ., a^ £ A+\F. Then, since F is 

a prime filter on A+ and x £ F, aj * 0 £ F for some j . But this gives a contradiction 

since A is semiregular implies aj * 0 = a ; ^ F. Therefore A+ \ F = / + . Suppose 

0 ^ a A 6 £ I, then a, 6 £ A+, a A 6 ^ F and since F is a filter on A+, either a £ F or 

6 ^ F and therefore, since A+ \ F = I+, either a £ / or 6 £ / and thus / is a prime 

ideal of A. 

Conversely suppose that / is a prime ideal of A and let F = A+ \ / . Then 

i) 0 £ / = > 0<£ F; 

ii) Since 0 £ / , and / is convex it is clear that a £ F and 6 ^ a implies 6 £ F; 
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iii) Let a, b G F. Then a, b £ I and / a prime ideal implies a A 6 ^ / , and thus 

a A 6 G F; 

iv) Since / is a subsemigroup of A, if x, y G -4+ and x -\- y £ F then x* G F or 

yeF. 

Therefore F is a prime filter on A+. • 

P r o p o s i t i o n 2 .2 . Let A be a normal autometrized (-algebra. Every ultrafdter 

on A+ is a prime filter. 

P r o o f . Let °?/ be an ultrafilter on A+ and let x, y G A+ \°?/. Since °?/ is an 

ultrafilter, 3 a G °?/ with a A a: = 0 (otherwise a A x* > 0 for each a G °?/, and {x}Uu?/ 

generates a filter on A+ that properly contains fy). Similarly 3 b G °?/ with bAg = 0. 

Let c = a A b, then c G ^ / and c A x* = c A g = 0, so by Lemma I T , c A (x -f g) = 0. 

Therefore x -f y ^ f/ and ^ is a prime filter. D 

The following result is a direct consequence of Propositions 2.1 and 2.2. 

P r o p o s i t i o n 2 .3 . Let A be a normal semiregular autometrized (-algebra. An 

ideal I of A is a minimal prime ideal if and only if A+ \ I is an ultrafdter on A +. 

P r o p o s i t i o n 2.4. Let A be a normal semiregular autometrized (-algebra. For a 

proper prime ideal I of A, the following are equivalent: 

(a) 1 is a minimal prime ideal, 

(b) / = IK* 1 I * « - ' } , 
(c) \/xei, x L £ i . 

P r o o f , (a) = > (b). 

If / is a minimal prime ideal, then by Proposition 2.3, u?/ = A+ \ I is an ultrafilter. 

Let g G °?/, then gL = {x G A \ (x * 0) A (g * 0) = 0} and (gL)+ = {x G A+ \ 

(x * 0) A (g * 0) = 0} = {x G A+ \ x A g = 0} (since A is semiregular). Now J* A g = 0 

and g G °?/ an ultrafilter, implies x £ u?/ = A+ \ / . Therefore (gL)+ C / and so 

gL C / . Let J = \J{gL \ g £ 1} = \J{gL \ g G u?/} C / . It must now be shown that 

J is a prime ideal of A. 

i) Let a, b £ J. Then a G tf1, b G b1 for some g, h G °?/, and thus a + b £ 

/ ( g 1 U / t 1 ) . But g Ah E °?/ implies (g A h)1 C J and since g1 U hL C (</A /z) 1 , 

a - h b G /(tf1 U l* 1 ) C ( f /A/ i ) 1 C J. 

ii) Let a G J, 6 G /i and b * 0 ^ a * 0. Then a G tf1 for some g £ tf/, which implies 

b G g1 since g1 is an ideal of A, and therefore b G J. 

Thus J is an ideal. To show that J is prime let 0 ^ a A b G J. Then for some 

g E u?/, a Ab £ gL = > (a A b) A </ = 0 and, since °?/ is a filter, a Ab £ u?/ and either 

a £ °?/ or b ^ <?/. Now if 0 ^ x £ J, then x A g > 0 for all g G °?/ and since u?/ is 

an ultrafilter on A+, x G ^ . Therefore, since either a £ °?/ or b ^ u?/, it must be 
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the case that either a G J or b G J, and thus J is a prime ideal. Finally since J is a 

prime ideal contained in I, and I is a minimal prime ideal, I = J = \J{gL \ g £ I}. 

(b) = > (c). 

Let x E I, then 3g £ I such that x G </"L, which implies (</ * 0) A (x * 0) = 0 and 

g £xL. Thus x 1 g I. 

(c) = > (a) . 

Suppose J is an ideal properly contained in I, and let x G 1"1" \ J- Then a;1 $£ 1 

implies 3y £ I with x A g = 0. Then x A H = 0 and x £ J, y £ J implies that J is 

not a prime ideal. Therefore I is a minimal prime ideal. • 

Coro l lary 2.5. Let A be a normal semiregular autometrized l-algebra. Each 

polar P in A is the intersection of all those minimal prime ideals not containing PL. 

P r o o f . Let P be a polar in A and suppose M is a minimal prime ideal of 

A such that PL is not contained in M. Then there exists x G (PL)+ \ M. Since 

x G PL, xL D F)LL = P\ also x £ M, M a minimal prime ideal implies xL C M. 

Thus P C xL C M and the intersection of such minimal prime ideals contains P. If 

x £ P, then there exists y G PL with (x * 0) A (g * 0) > 0 and therefore there is an 

ultrafilter J?/ on A+ containing x * 0 and y * 0. Then M = 1(A+ \ <#<) is a minimal 

prime ideal tha t does not contain PL (since y £ M) and further x ^ M. Thus for 

each x (£ P, x is not in the intersection of all minimal prime ideals not containing 

PL. Therefore the intersection of all such minimal prime ideals is P. • 

P r o p o s i t i o n 2 .6 . Let A be a normal semiregular autometrized ^-algebra. Let 

a e A, let X = {x\Q^x^.a* 0} and let °?/ be an ultrafilter on X. Then 

M — J{xL | x G °?/} is a minimal prime ideal of A and a (£ M. Moreover each 

minimal prime ideal of A not containing a is obtained in this way. 

P r o o f . Let Y = {y G A \ y ^ x for some x G °?/}- Since 0 ^ x <C y implies 

yL C xL, J{yL | y G Y} C J{xL \ x G <?/}. However <% C Y, so the reverse 

inclusion also holds and J{yL \ y G 1'} =- U i ^ ' 1 I x 6 e%}- Clearly Y is a filter on 

A+. Further Y is an ultrafilter on A + , for if not there exists 0 < b G A+ \ 'Y sucli 

that b A y > 0 for all y G V, and then for each x G ^ C f , (b A (a * 0)) A x -

6A( (a*0 )A- r ) = bAx > 0. Then since "2/ is an ultrafilter on X, bA(a*0) G °?/ C '>", 

whence b j> b A (a * 0) implies b G T/', a contradiction. 

Now since 7' is an ultrafilter on A+, there is a minimal prime ideal M of A with 

A+ \ M = f , and then a 0 A/ = J{yL | g £ A/} - Ui^ l 1 I </ € -4+ \ A/} = !J{yX I 

2/6 n^iK*1 i ^ n 
Conversely suppose that M is a minimal prime ideal of A and a £ M. Then 

y = .4+ \ M is an ultrafilter on A+, a * 0 G Y, and Af = \J{xL | x G '7'}. Let 

A = {x | 0 ^ x ^ a * 0} and let °?/ = f f l A'. Clearly <?/ is a filter on X. If 

0 ^ b ^ a * 0 and b £ °?/, then 6 g f and so b A y = 0 for some g G T . Let 



x G f , then 0 < x A y G 'Y and 0 < - c A y ^ x ^ a * O s o that x A y G ^ . Also 

b A (ar A u) = x A (b A y) = 0, and thus if b G N \ ? / then b A c = 0 for some c G '?/ 

and therefore ^ is an ultrafilter on K. 

Then from above M' — [j{xL | x G ^ / } is a minimal prime ideal of A. Further 

°l/ C V implies M' C U j t / 1 | y G y} — M, and since AI is a minimal prime ideal 

M — M1 — \}{xL \x £<?/} as required. D 

An argument similar to that above gives the following result. 

P r o p o s i t i o n 2.7. Let A be a normal semiregular autometrized d-algehra. Let 

I be an ideal of A and °?/ an ultrafilter on I+. Then M = (Ji^"1" I x £ ^ } -s a 

minimal prime ideal of A not containing I. Moreover each minimal prime ideal of A 

not containing I is obtained in this way. 

3. R E P R E S E N T A T I V E D R / ' - S E M I G R O U P S 

The notation of a dually residuated lattice ordered semigroup (DRf-semigroup) 

was introduced by Swamy [6]. 

A system A = (A, -f, ^ , —) is a DR/'-semigroup if 

(i) (A, -f, $5) is a commutative lattice ordered semigroup with a zero element 0; 

(ii) for each a, b G A there exists a least element x G A such that b -f x >̂ a, and 

this element x is denoted by a — b; 

(iii) for all a, b G A, (a - b) V 0 -f b ^ a V b; 

(iv) for all a G A, a — a ^ 0. 

If we define a * b = (a — b) A (b — a) for each a, b G .4, then (A, -f, ^ , *) is a 

semiregular normal autometrized ^-algebra. 

A DR^-sernigroup is called re-presentable if Va, b G A, (a — b) A (b — a) <C 0. 

Examples of representable DR^-sernigroups include abelian /'-groups and Boolean 

algebras . 

P r o p o s i t i o n 3 .1 . An ideal I of a DRC-semigroup A is a prime ideal if and only 

if for all a, b G A, a A b = 0 implies a G / or b G / . 

P r o o f . Clearly if / is a prime ideal of A, then a A b = 0 implies a A b G I and 

therefore a G / or b G /• 

Conversely suppose that / satisfies the condition a A b = 0 implies a G / or b G / 

and let 0 ^ x'Ag G /• Then by Lemma6 of Rachunek [2], (x — (x/\y))/\(y— (x/\y)) = 0 

which implies x — (x A y) G / or y — (x A y) G /. Without loss of generality assume 

x — (x A y) G / . Then 0 ^ x <^. (x A y) + (x — (x A y)) G / and by the convexity of / , 

x G / . Therefore / is a prime ideal. • 
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Coro l lary 3.2 . If I C J are ideals of a DRi-semigroup A and I is prime, then J 

is a prime ideal. 

P r o o f . Since 1 is a prime ideal, if a A 6 = 0 then a E 1 or 6 6 1. But 1 C J 

and thus a A 6 = 0 implies a G J or 6 G J; therefore J is a prime ideal of A • 

One consequence of Proposition 3.1 is that for a DR^-semigroup A, Proposition 

2.4 ca be strengthened in the following way. 

P r o p o s i t i o n 3 .3 . For a proper ideal I of a representable DKi-semigroup A, the 

following are equivalent: 

(a) I is a minimal prime ideal; 

(b) A+ \ 1 is an ultrafilter on A+; 

(c) / = U { a - | « £ / } ; 
(d) 1 is prime and for all x G 1, x~ <£ I. 

P r o o f . From Propositions 2.3 and 2.4, all that remains to be shown is that if 

I = U{ f / ~ I a £ I}* t n e n ^ *s prime. Suppose x, y G A with x A y = 0. Then t / G x 1 

and if .r. ^ 1, x,j~ C I, therefore x £ I or y E I, and thus I is prime. • 

D e f i n i t i o n . For each a G -4, define the positive part of a to be a+ = (a —0)V0 = 

a V 0 and define the negative part of a to be a~ = (0 — a) V 0. 

The properties of a+ and a~ are given in the following proposition . 

P r o p o s i t i o n 3.4 . Let A be a representative DFU-semigroup and let a, b G A. 

Then 

(i) a = a+ <=> a ^ 0; 

(ü) a~ = 0 <=> a ^ 0; 

(ІÜ) a+ = 0 <=> a ^ 0; 

(ІV) a + Л c " = 0; 

(v) a+ \/ a~ = a * 0 = a+ + a~; 

(VІ) a + a~ = a+; 

(VІІ) (a + 6)+ ^ a+ + 6+. 

P r o o f . 

(i) a = a+ <í=> a = a V 0 <=> a ^ 0. 

(ü) a~ = 0 <=> (0 - a) V 0 <=-> 0 - a ^ 0 

(iü) a+ = 0 <==> a V 0 = 0 <=> a ^ 0. 

a > 0. 
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(iv) a+ A a" = [(a - 0 V 0] A [(0 - a) V 0] 

= [ ( a - O ) A ( O - a ) ] VO 

= 0 since A is a representable DR^-semigroup. 

(v) a+ V a" = [(a - 0 V 0] V [(0 - a) V 0] 

= [(a - 0) V (0 - a)] VO 

= (a*0) VO 

= a * 0. 

a+ -\-a~ = (a+ V a") + (a+ A a") 

= (a+ Va") + 0 

= a+ Va" 

= a * 0 . 

(vi) a-{-a~ = a + [(0 - a) V 0] 

= [a + (0 - a)] V [a + 0] 

= [a + ( 0 - a ) ] Va 

^ 0 Va 

= a+ 

and also a + a" = a + [(0 - a) V 0] ^ a V 0 = a+; 

therefore a -\- a~ = a+ . 

(vii) a ^ a V 0 = a+ , 6 ^ 6 V 0 = 6+ and thus a + 6 ^ a+ + 6+. 

Therefore (a + 6)+ = (a + 6) V 0 ^ (a+ + 6+) V0 = a+ + 6+ . 

a 
Let 0 / a G i4. An ideal 1 of A is a value of the element a if 1 is maximal with 

respect to not containing a. The set of all values of a is denoted by val(a). Rachunek 
[4] has shown that if I is an ideal of A and a £ I then the is a value of a containing 
I, and also that every ideal which is the value of some element a G -4, is a prime 
ideal. 

Proposition 3.5. Let A be a representable DKi-semigroup. Then for each 0 ^ 
a G A, val(a) = val(a * 0) = val(a+) U val(a~) and val(a+) C\ val(a~) = 0. 

P r o o f . For each a G -4, and each ideal 1 of A, a G 1 <=-> a * 0 G 1, therefore 
val(a) = val(a * 0). Let I G val(a+). Then a+ ^ I, a+ A a~ = 0 and, since 1 is a 
prime ideal, a~ G I, therefore I ^ val(a~) and val(a+) D val(a~) = 0. 

If I G val(a+) then a+ ^ I, a~ G 1 and since a+ = a + a~, a ^ 1. Therefore 
there is a value V of a such that I C I'. If 1 ^ 1' then a^ £ I1, a~ £ I and since 
a+ = a + a~ , by Lemma 2 of [1], a G V contradicting that / ' is a value of a. Therefore 



V = I and val(tt+) C val(tt). A similar argument shows that val(tt~) C val(tt) and 

therefore val(rt+) U val(tt~ ) C val(tt). To show the reverse inclusion let / £ val(a). 

Since a + = a + a~ and a £ / , by Lemma 2 of [1], either a + ^ / or a~ (fc I. If 

a+ <£ / , there is a value / ' of a4" with / ' D / , and if / ' ~\ / , then a~ £ F, a £ F 

and thus a+ = a + a~ £ / ' contradicting that I £ va l (a + ) . Therefore If = I 

and / £ val(a+). Similarly if a~ £ I it can be shown that / £ val(a~), and thus 

val(a) C val(«+ ) U val(a~), as required. D 

An element of a normal autorrietrized algebra, A is called special if it has a unique 

value. 

Coro l lary 3 .6. Each special element of a DRJ- semigroup A is positive or negative. 

P r o o f . If a is special element of A, then by Proposition 3.5, val(a) = va l (a + )U 

val(tt~) and val(fl+) Pi val(tt~) = 0, so either val(tt+) = 0 or val(tt~) = 0. Therefore 

either a+ = 0 or a~ = 0 which implies that either a <C 0 or a J> 0 so that every 

special element of A is positive or negative. D 

P r o p o s i t i o n 3 .7 . Let A be a representative DRC-semigroup. Then A is totally 

ordered if and only if x A y = 0 implies x = 0 or y = 0. 

P r o o f . If A is totally ordered the condition is obviously satisfied. Conversely 

suppose A satisfied x A y = 0 implies x = 0 or y = 0. For each x £ A, x+ A x~ = 0 

and thus x+ = 0 or x~ = 0 and so either x <C 0 or x ^ 0. Therefore every element 

of A is comparable to 0. Let a, b £ A, then either a — b <C 0 or b — a <C 0, for 

otherwise a — b > 0 and b — a > 0 implies (tt — b) A (b — a) > 0 which contradicts that 

(a — b) A (b — a) <C 0. Therefore a <C b or b <C a and thus A is totally ordered. • 

P r o p o s i t i o n 3 .8 . Let P ^ {0} be a polar in A. Then the following are equivalent: 

(a) P is totally ordered; 

(b) P~ is prime; 

(c) P~ is a minimal prime; 

(d) P~ is a maximal polar; 

(e) P is a minimal polar. 

P r o o f . (a) = > (h). If P~ is not prime then there exist x, y £ A+ with 

0 <C x A y £ P- and x, y £ PL. Then x £ PL implies there is an a £ P with 

x A (a * 0) > 0. Similarly there exists b £ P with g A (b * 0) > 0. Then since P is 

totally ordered, 0 ^ ( - A (tt * 0)) A (y A (b * 0)) = (a: A y) A ((a * 0) A (b * 0)); hut 

(a * 0) A (b * 0) £ P and thus x Ay ^ P~, a contradiction. Therefore P 1 is prime. 

(b) ==> (c). Since P~ is a polar in A, by Corollary 2.5, H- is the intersection of 

the minimal primes not containing P~L = P. Also since P ~ is prime, P~ contains 

a minimal prime, M say, and then P C\ M C POP1 = {0} so that M does not 
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contain P . Then M C P 1 = P){niiniinal primes not containing P } C M. Therefore 

P 1 = M and P 1 is a minimal prime . 

(c) ==> (d) . Let Q be a polar in A with P 1 C Q, Since P 1 is a prime ideal, 

by Corollary 3.2, Q is also a prime ideal; since Q is also a polar, by applying the 

preceding implication, Q is a minimal prime ideal. Therefore P 1 = Q and P 1 is a 

maximal polar. 

(d) = > (e). For polars P and Q, Q C P <=-> P 1 C Q1 .Therefore if P 1 is a 

maximal polar, P must be a minimal polar. 

(e) ==> (a). Let P be a minimal polar and let x, y G P with x A y = 0. If J' > 0 

then y £ xL. Also 0 / i E P implies that {0} ^- x 1 1 C P and since P is a minimal 

polar, x ' 1 1 = P and y G x 1 1 . Therefore y £ x 1 f ix*1 1 = {0}. Thus for x, y G P , 

x A g = 0 implies x = 0 or g = 0 and by Proposition 3.7, P is totally ordered. • 
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