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The paper discusses interval orders and semnorders from the viewpoint of tolerance
relations on lattices. By concentrating on properties of the associated indifference re-
lations, it is possible to characterize iterval orders as meet tolerances and semiorders
as lattice tolerances on a chain. Some consideration is also given to partial interval
orders and partial semorders and they are related to certain kinds of poset toler-

ances.

[. INTRODUCTION

Preference theory abounds with instances where an individual may not be able to
decide between alternatives ) y or between alternatives y, 2, and yet may still be
able to decide between o and z. Luce ([11]) defined semiorders and Fishburn ([7])
mtroduced interval orders to provide mathematical descriptions of such situations.
Doignon ([4]) and Fishburn ([7], pp. 19-21) are good sources for references to even
earlier work involving these concepts. For example, interval orders are a special case
of a scale introduced by Guttman ([8]) and were recognized as an important concept
in a paper by Wiener ([16]). The theory of interval orders and semiorders has been
largely developed in the context of relational systems. Lattice tolerances on the other
hand have mainly been studied as generalizations of congruence relations. Our goal
here is to show that there is a natural one-one correspondence between semiorders
and lattice tolerances on a chain and to also establish a similar correspondence
between interval orders and semilattice tolerances on a chain. Note that some carly
work relating semiorders on a finite set to tolerances on a finite chain appears in {10].

Interval orders (sce Fishbura, [6], p. 144) are often defined to be irreflexive relations
P on a set .\ that satisly the interval order condilion:

If Py and z:Pw then xPw or zPy.

* The rescarch was supported in part by ONR Contract N-00014-87-K-0379.



A semiorder is taken to be an interval order satisfying the following condition:
If Py and yP: then xPw or wPz for each w € X.

It should be noted that this definition of semiorder is equivalent to the definition
originally given by Luce ([11]) when he fornally introduced and studied this con-
cept. Fishburn’s definition involves only the strict preference P associated with the
semiorder, while Luce uses both P and the indifference relation I defined by +Iy if
neither Py nor yPux is true. By concentrating primarily on I, we shall establish the
desired connection with tolerances on a chain, and show that inteval orders can be
profitably studied solely in terms of their associated indifference relations.

To accomplish our goals some preliminary notions are introduced in Section 2,
while Section 3 is devoted to an examination of the way that tolerances are induced by
certain types of mappings, and in Section 4 these results are extended to a semilattice
setting. Having developed this machinery, we can proceed in Section 5 to establish
the connection with interval orders and semiorders. Finally, in Sections ¢ and 7,
consideration is given to partial interval orders and partial seiiorders (sce [1], [5],

[11] and [15]).

2. PRELIMINARIES

A working knowledge of lattice theory will be assumed throughout the paper. The
reader is urged to consult any standard text ([3], for example) on lattice theory for a
definition of any unfamiliar term. Let P be a partially ordered set (poset). For cach
x €P,let J, = {t € L:t < x} denote the principal ideal generated by &, and I,
the principal filter it generates. 0. (P) will denote the order ideals of P partially
ordered by set inclusion, and 0. Z(P) the order filters of P partially ordered by the
converse of set inclusion. For P a lattice; #(P) will denote the (lattice) ideals of T,
and Z(P) its (lattice) filters, with both sets ordered as expected.

We shall also need the notion of a residuated mapping from a poset P into a poset
Q. We say that [: P — Q is residuated if f is isotone and there exists an isotone
mapping h: Q — P such that:

< h(f(p)) forallp e P, and
(R2) q>= f(h(q)) forall g€ Q.

The mapping h is called the residual mapping associated with f, and it is easy to
see that h uniquely determines and is uniquely determined by f. For that reasoun the
pair (f, h) is sometimes called a residuated-residual pair.

If P = Q, the residuated mapping f is called decreasing in case f(p) < p for

all p € P. This is equivalent to h being increasing in the sense that h(p) > p
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for all p € P. 1t will be convenient to let Res(P, Q) denote the set of all residuated
mappings from P into Q, with Rest(Q, P) denoting the corresponding set of residual
mappings from Q into P. When P = Q, this notation will be shortened to Res(P),
and Res™(P).

There is another type of mapping that turns out to be relevant to the upcoming
discussion. For join semilattices, we shall say that f is a partial join homomorphism
in case f(p V') < f(p)V [(p) for all p,p’ € P; the dual notion of a partial mect
homomorphism on a (meet) semilattice requires that f(p Ap') = f(p) A f(p'). As
expected, a partial homomorphism on a lattice is taken to be a mapping that is both
a partial join and a partial meet homomorphism. It should be noted that partial
homomorphisims need nol be isotone. Partial join homomorphisms are characterized
by the requirement that for cach ¢ € Q, f=!(J,) shall be a join subsemilattice of
P, while partial meet homomorphisis require the dual condition that f='(F,) be a
meet subsemilattice of P.

The notion of a lolerance dates back at least to Zeeman ([17]). Tolerances on
algebraic structures were introduced by Zelinka ([18]) and have been studied by
many authors. Our immediate interest lies with a (lattice) tolerance T on a lattice
L. This is a reflexive synimetric relation T on L that is compatible in the following

sense:
aTbh, ¢Td implies that aV eThV d and a AcThbAd forall a,b,c,d € L.

It will be convenient to siimply use the phrase “tolerance relation™ on a lattice to
refer to a lattice tolerance relation.

3. RESIDUATED-RESIDUAL SCHEMES AND TOLERANCES

Our goal in this section is to generalize [9], Theorein 12, p. 114 by establishing
a bijection between arbitrary lattice tolerances and a generalization of decreasing

residuated mappings. First we need some terminology.

Detinition 3.1, A residuated-residual scheme on a lattice L is a quadruple

(fogr.l,go) of mappings such that:

(SI) Fori=1,2 g; is an isotone mapping of L into the lattice L;.
(S2)  f s a partial join homomorphism of L into L.

(S3) h s a partial meet homomorphism of L into L.

(S1) f(2) < g91(y) in Ly & ga(x) < A(y) in Ly.

In the above definition, note in particular that f(x) < g1(x) < h(z) > ga(a). The
scheme (f, g1, N, g2) is called decreasing if these inequalities hold for all 2 € L. When
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L = L, = L,y and ¢g; = ¢go =the ideutity map, then a residuated-residual scheme
becomes a residuated-residual pair. OQur goal is to establish a connection between
lattice tolerances and decreasing residuated-residual schernes.

Remark 3.2. It is easy to show that any decreasing residuated-residual scheme
(f. g1, h, g2) defines a tolerance T on L by the rule 2Ty if and only if g2(x) < h(y)
and go(y) < h(x).

Definition 3.3. The residuated-residual scheme (f, g1, N, g2) will be called a
standard scheme in case:

gi1(z) = F, and go(2) = J, for all £ € L,
[: L — Z(L) is a join homomorphisimn,
I: L — (L) 1s a meet homomorphism, and

(fy g1, 1, g2) 1s decreasing.

It is of some interest to_note that if every ideal and every filter of L is princi-
pal, then standard schictnes may be identified with residuated-residual pairs on L.
We sunimarize the connection between tolerauces and decreasing residuated-residual
schemes with the following theorem. A related result establishing a bijection be-
tween tolerances on L and certain galois connections between . (L) and Z(L) was
established earlier in [2].

Theorem 3.4. Let L be a lattice. There is a natural onc-one correspondence

between tolerances on L and standard schemes.

Proof. Let T be a tolerance on L. For each & € L, define ¢y(¢) = Fr and
go(2) = Jr. Next define i: L — #(L) by

h(z) ={w € L: w < v for some v such that vTua}.
Similarly, define f: L — Z(L) by
f(e) = {w € L: w2 v for some v such that vTr}.

Thus h(z) is the ideal generated by {w € L: wTe}, and f(r) is the filter generated
by this set.

Evidently ¢y, go are both homomorphisins, so we next show that h is a meet
homomorphism. Hence let 2,2’ € L and note that w € h(c A £’) wuplies that
w < v for some v such that vTu A z'. But then vV eTe, ¢V 2'Te', and this shows
w € h(x) Ah(z'). Ou the other hand, w € h(z) A (") forces the existence of
elements v, v/ where w < v AV, vTe and v'Te’. It follows that w € h(x A +') since
(v AV )T(x Ax'). A dual arguiment establishes that f is a join homomorphism.
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Suppose now that f(z) < ¢1(y) in F(L). This says that y € f(x), soy > v for
some v such that ¢Tr. Then v A2Te, and & > 2 Ay > v Az implies 2Tae Ay, But
joining both sides of this equation with y tells us that z V yTy, whence x € h(y) or
in other words, ga(r) < h(y). A similar argument produces the reverse implication.
Evidently go2(2) < h(x) and ¢,(2) > f(x) for all z € L.

At this point we have established that (f,g).h,g2) is a standard scheme. We
must still show that it induces the original tolerance T. It will clearly suffice to
establish that aTbh is equivalent to the assertion that go(a) < h(d) and g2(b) < I(a).
If «Tbh. then clearly b € h(a) and a € h(b). Suppose conversely that a € h(h) and
b € h(a). There then exist elements v, w such that ¢« < vTh and b < wTa. Then
a=aANvTwAb=20, thus completing the proof. We leave to the reader the routine
proof that T can be induced by at most one standard schewe (f, g1, I, g2). O

We show next that tolerances may always be defined by a suitable pair of map-
pings. Let ¢ be a join homomorphism and /i a meet homomorphism of the lattice
L into the lattice M such that g(x) < h(x) for all z € L. Define T by the require-
ment that «Tb when g(a) < h(b) and ¢g(b) < h(a). Then T is easily shown to be a
tolerance. For if aTh and ¢Td, then

glaVve)=gla)Vyg(c)
g(ane) < gla) Agle)

h(b) v h(d) < h(bV d), and
h(b) A h(d) = h(bA d).

//\ //\

Simmilarly, g(eVd) < h(aVb) and g(cAd) < h(aAb), whence aVeThVd and aAcTOAd.
We shall denote this by saying that the tolerance T is induced by the L-pair (h,g).

Remark 3.5, If (h, g)is an L-pair on the lattice L, and T is its induced tolerance,
it is casily shown that the following conditions are equivalent: (1) g(a) < h(b); (i)
a < w for some wTh; (1i1) b > v for some vTa.

Definition 3.6.  Proceeding as in Definition 3.3, we take a lattice L and define
g(x) = Jr and assume that h: L — (L) is a meet homomorphism such that
g(r) < /1(1) for all 2 € L. Such a pair of mappings will be called a standard L-
pair. A related construction appears in [1] (Proposition 1.3, p. 372) and has been
generalized in [13], pp. 142-143.

Theorem 3.7. There is a bijection between tolerances on the lattice L and stan-
dard L-pairs.

Proof. By the remarks preceding Leinma 3.5, every standard L-pair induces a
tolerance in L. The remainder of the proof is left for the reader. a
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4. SEMILATTICE TOLERANCES

In this section it will be assumed that L, M denote semilattices. The pair (h.g)
of mappings of L into M will be called an SL-pair in case:

g 1s 1sotone,
h is a partial meet homomorphism, and

g(z) < (x) for all 2 € L.

Associated with such a pair (h,g¢) there is the tolerance relation T defined by aTb
if g(a) < h(b) aud g(b) < h(a). In fact T is a meet tolerance on L. For if aTb and
¢Td, then

glanc) <gla)Ag(e) < h(b)AR(d) < h(bA),
and a similar argument shows that g(bAd) < h(aAe), whence a AcTbAd. There are
dual notions regarding join semilattices and join tolerances that we shall not bother
to state.

Definition 4.1. A standard SL-pair is taken to be an S L-pair (h, g) of mappings
of L into 0.7 (L) with g(z) = J;.

Theorem 4.2. (1) Every SL-pair on the semilattice L induces a meet tolerance
on L.
(11) Every meet tolerance on a semilattice L is induced by an SL-pair.

Proof. The opening remarks of the section established (i), so we need only
consider (ii). Taking g(z) = J, and h(x) the order ideal generated by {w: wTr}, it
is clear that (h, g) 1s an SL-pair of mappings from L into 0 #(L). Evidently,

2Ty = g(x) < h(y) and g(y) < h(z).

Suppose conversely that g(r) < h(y) and ¢(y) < h(x). There then exist elements
v,w € L such that 2 < v, y < w, vTy and wTe. But then 2 = r A vTw Ay =y
shows that 2Ty, thus establishing that T is induced by the pair (h,g). a

Remark 4.3. There is no natural one-one correspondence between meet toler-
ances on L and standard SL-pairs of mappings. To see this, consider the semilattice
L indicated below:



Consider the meet congruence T on L defined by 2Ty if and only if e Ab = y A D.
This congruence has the classes {0,a} and {b,c}. Letting

g(x) = ¢'(z) = Jz, with

h(a) = h'(a) = h(0) = h'(0) = {0, a},

h(b) = h(c) = {0,b,c}, and
I'(b) = h'(c) = {0,a,b,¢c},

we have that (h,g) and (I, ¢") are distinct standard SL-pairs that each induce T.
The difficulty arises from the fact that il a standard SL-pair (h”,g¢"”) induces a
tolerance T then ¢”(z) < h”(y) need not imply the existence of an element w such
that * < w with wTy. Corollary 4.4 does however contain a special case that will
be of interest in the next section.

Corollary 4.4. Let L be a chain. There is then a natural one-one correspondence

between meet tolerances and standard SL-pairs.

Proof. Wenced only notice that if T is induced by the standard S L-pair (h, g),
and if ¢(y) < h(«x) then

y <z nnplies y < z with 2Tz, while

<
2 < y implies Ty, so y < y with yTe.

Thus h(z) = {y: y < w for some wTz}, and this completely specifies the mapping h.
a

5. TOLERANCES ON A CHAIN

When L is a chain so are (L) and Z(L); it follows that every tolerance T is
induced by an L-pair (h, g) where I, g are each homomorphisins from L into a chain
M. Since every mappping from a chain into a lattice is a partial homomorphism, the
corresponding result for meet tolerances is that every such tolerance T is induced
by an SL-pair (h,g) where g is a homomorphisin and h a partial homomorphism.
Given the mecet tolerance relation T on the chain L, one can define new relations R
and P by the rules

Ry ifz < yoraTy,

Py if £ < y and £ Ty fails.
If T is induced by the SL-pair (h,g) where g is a homomorphism and h a partial
homomorphisim of L into a chain, one then has:

xRy if and only if g(z) < h(y).
Py if and only if h(x) < ¢g(y).
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This observation has some rather interesting nplications, since by [5] (Proposition 1,
p. 7) this implics that P is an interval order; if v is in fact also a homowmorphisim (so
that T is necessarily a lattice tolerance), it even implies that P is a semiordcr. To

see this, note that by using the standard scheme for T, one can assuine that:
(*) g(x) < g(y) plies h(z) < h(y).

Suppose that Py, yPz but that 2P w fails, so that wR.r. This translates to

It follows that ¢(w) < g(y) so by (), h(w) < h(y). Hence h(w) < g(z). But this
says that wPz, whence P is in fact a sennorder.

We now supply a converse to the above observations. Thus we assume that P is
an interval order on X and define the relation R by «Ry if aud only if yPur fails.
By [5] (Proposition 1, p. 7) there is a chain (E, <) and two mappings I, g from X to
E such that:

Py & h(r) < y(y)

and
g(x) < h(x).
It follows that
Ry < y(x) < hy).

If we define T = RNAR-L, we then have that:
+Ty e gla) < h(y) and g(y) < h(e).

The idea now is to find a linear order <o on X for which T 15 a tolerance and «Pb
denotes the fact that @ <¢ b with «Tb false. We begin by delining a weak order W
by the agreement that:

aWbh & g(a) < y(b).

Next we let <y be an extension of W to a linear order, so that a <o b implies «Wh.
But this is all that needs to be done, as it is clear that ¢ is isotone, so by Theorn
4.2, T is a meet tolerance on (X, <¢). Evidently, aPb implies « <o & with aTh filsc.
Suppose on the other hand that a < b with «Th false. Since aPb nnplics a <y b, it
follows that a <o b implies aRb. Thus we have aRb but not dRa, and this says that
aPb. If P is a semiorder, we apply [5] (Proposition 2, p. 8) to deduce that g, /i can
be chosen so that also
g(x) <yly) & h(x) < h(y).
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But this says that both ¢ % are homomorphisms from (X, <o) into (E, <), so by
Theorem 3.7, T is a tolerance on (X, <o). We summarize these observations in the

next Theorem.

Theorem 5.1, (1) If T is a meet tolerance on the chain (X, <), and if P is defined
by «Py il and only if 2 < y with £ Ty false, then P is an interval order on X. If T
is a tolerance then P is a semiorder on X.

(1) If P is an interval order on the set X, and if T is defined by aTb < aPb and
bPa both fail, then there exists a linear order < on X having the property that T is
a meet tolerance on (X, <) and aPb is equivalent to a < b with aTb false. If P is a
semiorder then T is a tolerance on (X, <).

Remark 5.2, The portion of Theorem 5.1 (i) relating to sciniorders is essentially
contained in the discussion of Roberts ([12], pp. 255-8). The correspondence between

semiorders on a finite set and tolerances on a finite chain appears in [10].

6. PARTIAL INTERVAL ORDERS

Interval orders involve a pair (P, I) of relations on X such that: (i) P is transitive;
(i1) I is reflexive and symmetric; (iii) P NI = §; (iv) «,b € X implies aPb, aIb, or
bPa. Condition (iv) is often not met in practical applications. This is especially
true in preference modeling that involves multicriteria decisions. It therefore seems
desirable to relax condition (iv) and introduce some sort of partial interval order.
This has been done in both [5] and [15]. The connection between the two approaches
is explained in [5], p. 10 and p. 16. Results related to those of [5] can be found in [1]
and the mitial work in this area was done by Roy [14]. In that the definitions in [5]
hear more directly on what we have in mind, let us begin by examining them.

Definition 6.1 ([5], Definition 4, p. 15). A partial inlerval order of type 1 is a
pair of relations (P, I) on X such that

I is symmetric and reflexive,
PNni=90,
PIP C P.

A partial inlcrval order of type 2 is defined by adding
IP'INIPICL

It follows from results in [5] that for a given partial interval order (P,I) there
exists a lincarly ordered set (E, <) and a pair h, g of mappings from X into E having
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the property that

g(x) < h(z) for all z,
zPy implies h(x) < g(y),
zIy implies g(z) < h(y) and g(y) < h(x).

This representation by the mappings (i, g) is not particulary useful since the -
plications only go in one direction. This leads us to suggest that another possible
model for partial interval orders would involve tolerances on a suitable posct. First

the appropriate terminology must be introduced.

Definition 6.2. Let L, M be posets. A pair (h,¢) of mappings from L into M

1s called a P-pair in case

¢ is isotone, and

g(2) < h(z) for all z € L.

Definition 6.3. Let L be a poset. A poset lolerance on L is a reflexive symmetric
relation T having the property that

vTh, b < 2Ta = aTh, and

a<
< b < e with aTe nplies aTh.

a

Lemma 6.4. Every P-pair (h,g) of mappings on a poset L induces a poset tol-
erance in the usual manner.

Proof. Left to the reader. a

Lemma 6.5. Let T be a poset tolerance on the poset L. There then exists a
lattice M and mappings g, h: L — M such that

g Is Isotone,
g(x) < h(x) for all &, and
2Ty < g(2) < h(y) and g(y) < h(z).

Proof. If L does not have a least element, take M = 0. (L) U {}; otherwise,
set M = O0.(L). In either case, M is a complete distributive lattice with » —
g(z) = J, isotone. For the poset tolerance T, let h: L — M be defined by letting
h(X) be the order ideal generated by {w: wTz}. The assertions of the Lemma are
now obvious. O
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Theorem 6.6. Let T be a poset tolerance on the poset L. Define g, h as in
Lemma 6.5. If the relation P is specified by

Py & h(x) < g(y),

then (P, T) is a partial interval order of type 2.

Proof. Since TNP = () is obvious, we begin by showing that PTP C P. So
let aPbOTePd and note that

h(a) < g(b) < h(e) < g(d),

from which aPd follows. Next we show that TP!TNTPT C T. Assume aTbPcTd

and note that

g(a) < h(b) < g(e) < h(d).
A symnetric arguient shows a TV P~1e'Td implies g(d) < h(a), so aTd. Thus the
pair (P, T) is a partial interval order of type 2. 0

Remark 6.7.  The relation P specified in the statemnent of Theorem 6.6 will be
called the strict partial preference associated with (h,g). A word of caution is in
order. If (I, g) and (I', g') are distinct P-pairs that induce the same tolerance T on
the poset L, then the relations P, P’ defined by

aPb & h(a) < g(b),
aP'b < h'(a) < ¢'(b)
need not coincide. This can be concretely illustrated by the example of Remark 4.3.

With (h, g) defined as in Remark 4.3, the relation P is empty, while if T is induced
by the pair (h',¢"), we have 2P’y for x € {0,a} and y € {b,c}.

The next step is to establish a converse to the above results. Suppose (P,I) is a
partial interval order of type 2. By [5], Proposition 6, p. 14 there exist interval order
extensions (Qg,Ji) of (P, I) such that P = ﬂQL and I = ﬂJ;~ By Theorem 5.2,

there exist linear orders < on X such that Jk 1s a meet tolerance on (X, <x). Thus
there exist chains (Eg, <) and mappings gi, hy from (X, <x) into E; such that

gk 1s one-one and isotone,

gr(2) < hi(z) for all 2, and

2Jy & gie(x) <k huly) and gi(y) <i he(z).
Let M =[] Eg be equipped with the product partial order <q. Define g, h: X — M
by the agrﬁomont that

9(x) = (g6(2)), and h(z) = (he(a)),.
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Thus
g(z) <o M(y) & gi(x) <i hi(y) for all k.

It 1s immediate that

g 1s one-one,
g(r) <o h(x) for all &, and
vXy < g(x) <o h(y) and g(y) <o h(x).

One can now define a partial order <; on X by taking <;= [ <k Il 2 < y, then for
k

each index &, we have x <, y so that ge(2) < gx(y), and consequently g(r) <o g(y)
in M. Thus g is an isotone mapping from (X, <;) into M. By Lemnma 6.4, I is a
poset tolerance on (X, <y). This is all summarized in the next theoren.

Theorem 6.8. Let (P, I) be a partial interval order of type 2 on X. There exists
a partial order < on X such that T is a poset tolerance on (X, <). Every posct

tolerance arises in this manner.

7. PARTIAL SEMIORDERS

In this section we shall extend the definition of poset tolerances and explore their
connection to what are called partial semiorders in [5].

Definition 7.1.  Let P, Q be posets. A pair (h,g) of mappings from P into Q
1s called an S-pair in case:

¢, h are each isotone, and

g(z) < h(z) for all £ € P.

Definition 7.2. Let L be a poset. A posct lolerance T on L is said to be of

type 0 in case 1t satisfies the following conditions:
(S1) a < vTh, b < wTa = aTh,
b>

(S2) a>vTh,
(S3) a<

wTa = aTh, and
b < e with aTe implies both aTh and bTe.

This merely says that T is a poset tolerance on both L and its dual. T is called
a posel lolerance of type 1 in case it satisfies (S1), (S2), and the stronger condition

(S3) [z] = {w: wTr} is convex for cach ¢ € L.
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Finally, the pair (P, T) is called a posel interval order if there is an S-pair (h,g)

such that
9(z) < 9(y) & h(z) < h(y),

+Ty & g(x) < h(y) and g(y) < h(z),
Py & h(z) < g(y).
We shall call such an S-pair symmetric and say that the pair (P, T) is induced by

the symmetric S-pair (h, g).

Remark 7.3.  Evidently every poset interval order yields a poset tolerance of
type 1, and every poset tolerance of type 1 is of type 0. Robert C. Powers has
provided an example of a type 0 poset tolerance that is not type 1. With L as in the
diagram below, take T so that 2Ta, 2Te and yTy for all y. Note that T is a poset
tolerance on both L and its dual; yet (S3’) fails since [z] is not convex.

ocC

oa
The construction of Lemma 6.5 now produces the following mappings from L into
oI (L)u{0}:
g(y) = Jy for all y,
h(x) = h(c) = {x,a,b,c}, h(b) = {a,b}, h(a) = {x,a}.
It is curious that the associated strict partial preference P consists only of the pair
(b, ¢), while if T is viewed as a tolerance T™ on the dual of L, the corresponding

construction would produce dP~a. We still need an example of a type 1 partial
sermorder that is not type 2. We precede this with a preliminary result.

Lemma 7.4. Let (P, T) be a posct interval order that is induced by the symumetric
S-pair (h,g). Then:

(0) PTPCP (3 PPTCP (y) TPPCP.

Proof. "Toestablish these facts, note that aPbTcPd implies that h(a) < ¢g(b) <
h(c) < g(d), aTbPcPd forces g(a) < h(b) < g(c) so h(a) < h(c) < g(d); finally, if
aPOPcTd, then h(b) < g(c) < h(d) iplies g(b) < g(d) so h(a) < g(b) < h(d). a
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Remark 7.5. To obtain an example of a type 1 poset tolerance T such that
(P, T) is not a poset interval order, cousider the example of Remark 7.3 and define

g, 0L — 0.7(L)uU{0} by taking

q (1) ={a}, I(z)={x,a,b,c},
(¢) ={x,a,b,c}, h (c) ={z,a,b,c},

q( ) = {z,a, b}, (b) = {z,a,b},
(a) = {x,a}, h (a) = {z,a}.

The pair (2',¢') is then an S-pair in the sense of Definition 7.7 and the poset
semiorder T/ that it induces has the classes

[x] = {z,a,b,c} [yl = {y,2} fory=a,borc.

If P’ is the strict partial preference associated with (1’,¢"), we then have aP’b, bP'c
and ¢T'x. In that aP’x fails, we have that T is type 1 but (P’, T') is not a poset
semiorder.

Lemma 7.6. Every S-pair (I, g) of mappings on a poset L induces a poset toler-

ance of type 1 in the usual manner.

Proof. Thisis left to the reader. a

Lemma 7.7. Every poset tolerance T of type | on the poset L is induced by an
S-pair.

Proof. Taking M as in the proof of Lemma 6.5, we define mappings g, h:
L — M by taking g(x) = J, and h(x) to be the order ideal generated by {w: wTz,
for some z; < a}. Then g, h are isotone and g(z) < h(z) for all z € L. The trick
now is to show that T is the poset tolerance induced by (h,g).

Trivially, if 2Ty then z € h(y) since 2Ty with y < y, so g(z) < h(y) and similarly
g(y) < h(x). So let us assuine conversely that g(x) < h(y) and g(y) < h(zr) and try
to establish xTy. We know that there exist elements v, w,x1,y; € L such that

r<wTy <y and y<vTr <z

It follows that £; < wTy, and y; < vTx; so by (S1), z;Ty,. Using (S3), we now
see that 3Ty, ,Tv with y; <y < v implies £;Ty. Sinlarly by (52), vTx, < w,
wTy, < v together imply vTw; the combination of vTw and vTe; now forces ¢Tu.
Using the fact that »; Ty and vTz, we now have

r>2 2Ty and y>vTr.
A second application of (S2) now forces +Ty. O
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Our next goal is to establish the analog of Theorem 6.8 for poset interval orders.
Before this task can be undertaken we shall need some machinery from [5]. A cycle
of a relation R is any sequence of pairs in R of the form zory, r1z2, ..., 2nxo.
Given two relations V and W on X, we follow [5], p. 16 and denote by V.57 W the
relation formed by all pairs vy for which there exist zo,zy,...,2, € X, with rro,
Toxy, ..., Lpy members of V.U W, with the number of pairs in V strictly greater
than the number taken in W. Similarly, VA W is formed by all pairs zy for which
there exist zg, 2y, ..., 2, € X with 2zg, zo2y, ..., 2,y belonging to VU W, and for
which the number of pairs from W is strictly less than 2 plus the number of those
from V. We are now ready to introduce the semiorder version of Definition 6.1.

Definition 7.8 ([5], Definition 6, p. 17). A partial semiorder of type 1 is a pair
of relations (P, I) on X such that

I is symumetric and reflexive,
PNnI=0,
each cycle of P UT has fewer pairs in P than in I,

PyICP.
A partial semiorder of type 2 is defined by adding

PAINP'AICIL

Doignon et al ([5], Proposition 8, p. 16) prove that if (P, I) is a partial semiorder of

type 2, then there exist semiorder extensions (Qg,Ji) of (P, I) such that P = Qg
k

and I = [J. We begin our discussion by constructing a poset interval order from

‘-
the partial semmiorder (P, I) of type 2. By [5], Proposition 2, p. 8 there exist a family
(Ek, <)) of chains and mappings g, lix of X into Eg such that

ge(e) < hi(x) for all iz,

2Py & hi(x) <k g (y),

eIy © gr(2) <k he(y) and gr(y) <k he(z), and

() <k gk (y) & () <i ly).-
For each index k, define a weak order Wi on X by the rule + Wy if and only if
gr(2) <k ge(y). Now let < be a linear order on X that eztends Wy in the sense

that & < y implies *Wyy. It is inmediate that gx, hy are isotone mappings from
(X, <) into the chain Ep. Taking M = []E; with the product partial order <o,
k
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we now define g, h as we did in the proof of Theorem 6.7. Letting <1= ) <k, it is
clear that ¢

g, h are 1sotone mappings of (X, <) into M,

g(x) <o h(z) for all x,

9(x) <o 9(y) ¢ h(x) <o h(y), and

Iy © g(z) <o h(y) and g(y) <o h(z).
It follows that Iis a poset interval order on (X, <y).

Next we assume that (P, T) i1s a poset interval order, so that (P, T) is induced by

a symietric S-pair (h, g). In view of Lemma 7.4, each of the following assertions is
true:

() PTPCP  (3) PPTCP  (y) TPPCP.

We shall prove that (P, T) is a partial sciniorder of type 2 by proving a number of
claims.

Claim 1. Fach cycle of P UT has fewer pairs in P than in 1.

Proof. Suppose there were a cycle e P IS Pi2IF2  PitTFrz that had at least
as many pairs from P as from I. With no loss in generality, we may assumc that
(«), (B), () have been applied to reduce the length of the cycle as far as possible.
Evidently j; < | for all 7, and k; > 2 for ¢ < t. It follows that { < 2, so «PLe. 2#IPx,
or PIIPz, all of which are impossible. O

Claim 2. PyICP.

Proof. IfuPIy, then +PI1IMPiIF2 | PJeI* y with more pairs from P than
from I. Assuming that («), () and (7) have been applied as many times as possible,
it is inmediate that ¢t > 2(¢f — 1), whence ¢ = 1, and consequently «Py. )

Claim 3. [f 2P ATy, then g(x) < h(y).

Proof. If the assertion of Claim 3 were false, then it would fail for some pair
ay for which P ATy with x, y connected by a minimal length sequence of relations
from P UL In view of (a), (), and (7), it follows as in the proof of Claim 1 that

(%) dPITh PRI  pity

with j; <1 for all i and k; > 2 for i < t. If the last two relations in (x*) were PP,
PI, or IP the choice of (%) as having minimal length would force the existence of
elements v, w such that g(x) < h(v) and (i) tPuwPy, or (it) vPuly, or (iti) vIuDy.
Now (i) clearly forces g(x) < h(y); with (i), g(a) < h(v) < g(w) < h(y): finally, in
(iii) we have g(v) < h(w) < g(y), so i(v) < h(y) and consequently, g(r) < h(e) <
h(y). O
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The situation is smmmnarized in the next Theorem.

Theorem 7.8. Let P. I be binary relations on X. The following conditions are
then equivalent:

(i) (P, 1) is a partial scnorder of type 2.

(i) There exists a partial order < on X for which (P, 1) is a poset semiorder.

(iii) Fach of the following is true:

I is svimetric and reflexive,
rni=»n,
PIPuUPPIUIPP C P.

8. (ONCLUSION

The original motivation behind the definition of semiorders by Luce [11] and inter-
val orders by Fishburn [6] involved considering measurements to have validity only
within some interval of the reals. Abstract versions of both concepts have usually
heen studied from the aspect of relational systems. Investigations into their ordinal
propertios scem largely to have concentrated on properties of their associated strict
orders P. The focus of Theorem 5.2 lies with the ndifference relation I, and comes
full circle to show that the abstract version of interval orders and semiorders can
still he thought of in terms of measurement that has associated with it a notion of
fuzziness. These ideas are formalized by relating then to the theory of tolerances on

lattices. This is of course closely related to results such as those in Fishburn [7].
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