Czechoslovak Mathematical Journal

Imrich Fabrici

\mathcal{J}-classes in the direct product of two semigroups

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 2, 325-335

Persistent URL:
http://dml.cz/dmlcz/128467

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

\mathscr{J}-CLASSES IN THE DIRECT PRODUCT OF TWO SEMIGROUPS

Imrich Fabrici, Bratislava

(Received July 21, 1992)

In [3] the mutual relation between a principal two-sided ideal $J(a, b)$ in the direct product of two semigroups and the direct product of two principal two-sided ideals $J(a) \times J(b)$ is investigated. In particular, some conditions are given under which $J(a, b)=J(a) \times J(b)$ holds.

The aim of the present paper is to study the mutual relation between a \mathscr{J}-class $J_{(a, b)}$ in $S_{1} \times S_{2}$ and the direct product $J_{a} \times J_{b}$ of two \mathscr{J}-classes both in the general case and in the special case of maximal \mathscr{J}-classes. Finally, we give conditions under which $J_{(a, b)}=J_{a} \times J_{b}$.

All notions and notations which are not defined are meant as in [1].

1.

Theorem 1. Let J_{a} be a \mathscr{J}-class in S_{1}, J_{b} a \mathscr{J}-class in $S_{2}, J_{(a, b)}$ a \mathscr{J}-class in $S_{1} \times S_{2}$. Then

1. $J_{(a, b)} \subseteq J_{a} \times J_{b}$;
2. if $J_{(a, b)} \subset J_{a} \times J_{b}$, then $J_{a} \times J_{b}$ is the union of at least two \mathscr{J}-classes in $S_{1} \times S_{2}$.

Proof. 1. Let $(u, v) \in J_{(a, b)}$, then $J(u, v)=J(a, b)$. If $(u, v)=(a, b)$, then $J(u)=J(a)$ in S_{1} and $J(v)=J(b)$ in S_{2}. If $(u, v) \neq(a, b)$, then $(u, v) \in\left[\left(S_{1} a \times S_{2} b\right) \cup\right.$ $\left.\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$ and $(a, b) \in\left[\left(S_{1} u \times S_{2} v\right) \cup\left(u S_{1} \times v S_{2}\right) \cup\left(S_{1} u S_{1} \times S_{2} v S_{2}\right)\right]$. This implies that (u, v) belongs to at least one of the summands and (a, b) belongs to at least one of the summands. If e.g. $(u, v) \in\left(S_{1} a \times S_{2} b\right)$ and $(a, b) \in\left(S_{1} u \times S_{2} v\right)$ then $u \in S_{1} a, v \in S_{2} b$ and $a \in S_{1} u, b \in S_{2} v$. Hence we have $J(u) \subseteq J(a)$ and $J(a) \subseteq J(u)$, hence $J(a)=J(u)$, so $u \in J_{a}$. Similarly, we can show that $v \in J_{b}$, therefore $(u, v) \in J_{a} \times J_{b}$.
2. Let $(u, v) \in J_{a} \times J_{b}-J_{(a, b)}$. Then $u \in J_{a}, v \in J_{b}$, hence $J_{u}=J_{a}$ in S_{1} and $J_{v}=J_{b}$ in S_{2}. Then $J_{u} \times J_{v}=J_{a} \times J_{b}$ and by $1, J_{(u, v)} \subseteq J_{u} \times J_{v}=J_{a} \times J_{b}$.

Corollary. If $J_{a}=\{a\}$ in $S_{1}, J_{b}=\{b\}$ in S_{2}, then $J_{(a, b)}=J_{a} \times J_{b}$ in $S_{1} \times S_{2}$.
Definition 1 ([7]). A nonempty subset M of a semigroup S is said to be a two-sided antiideal of S, if $M \cap\{S M, M S, S M S\}=\emptyset$.

Theorem 2. If $(a, b) \in S_{1} \times S_{2}$ is a one-element two-sided antiideal in $S_{1} \times S_{2}$, then $J_{(a, b)}=\{(a, b)\}$.

Proof. Let $(a, b) \notin\left\{\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right\}$. If $\left|J_{(a, b)}\right|>1$, then there is at least one element $(u, v) \in J_{(a, b)}$ such that $(u, v) \#(a, b)$ and $J(u, v)=$ $J(a, b)$, hence

$$
\begin{aligned}
& (u, v) \cup\left(S_{1} u \times S_{2} v\right) \cup\left(u S_{1} \times v S_{2}\right) \cup\left(S_{1} u S_{1} \times S_{2} v S_{2}\right) \\
= & (a, b) \cup\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) .
\end{aligned}
$$

Consequently, $(u, v) \in\left\{\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right\}$ and $(a, b) \in$ $\left\{\left(S_{1} u \times S_{2} v\right) \cup\left(u S_{1} \times v S_{2}\right) \cup\left(S_{1} u S_{1} \times S_{2} v S_{2}\right)\right\}$.
If e.g. $(u, v) \in\left(S_{1} a \times S_{2} b\right)$ and $(a, b) \in\left(S_{1} u \times S_{2} v\right)$, then $\left(S_{1} u \times S_{2} v\right) \subseteq\left(S_{1} a \times S_{2} b\right)$, $\left(u S_{1} \times v S_{2}\right) \subseteq\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$,

$$
\begin{equation*}
\left(S_{1} u S_{1} \times S_{2} v S_{2}\right) \subseteq\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) \tag{1}
\end{equation*}
$$

and $\left(S_{1} a \times S_{2} b\right) \subseteq\left(S_{1} u \times S_{2} v\right),\left(a S_{1} \times b S_{2}\right) \subseteq\left(S_{1} u S_{1} \times S_{2} v S_{2}\right)$,

$$
\begin{equation*}
\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) \subseteq\left(S_{1} u S_{1} \times S_{2} v S_{2}\right) . \tag{2}
\end{equation*}
$$

From (1) we obtain

$$
\begin{aligned}
J(u, v) & =(u, v) \cup\left(S_{1} u \times S_{2} v\right) \cup\left(u S_{1} \times v S_{2}\right) \cup\left(S_{1} u S_{1} \times S_{2} v S_{2}\right) \\
& \subseteq\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) \subseteq J(a, b) .
\end{aligned}
$$

However, $J(a, b)=J(u, v)$, therefore $(a, b) \in J(u, v) \subseteq\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, hence

$$
(a, b) \in\left\{\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right\}
$$

which contradicts the hypothesis.
In the case that $(u, v) \in\left(a S_{1} \times b S_{2}\right)$ and $(a, b) \in\left(u S_{1} \times v S_{2}\right)$, or any other possibility, we proceed analogously.

Corollary. If $J_{(a, b)}=J_{a} \times J_{b}$, then either

1. $J_{a}=\{a\}$ and $J_{b}=\{b\}$ or
2. no element in $J_{a} \times J_{b}$ is a two-sided intiideal in $S_{1} \times S_{2}$.

The following example indicates that 2 in Corollary represents only a necessary condition.

Example 1. Let $S_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, S_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be two semigroups, in which associative binary operations are given by means of multiplicative tables:

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{1}	a_{2}	a_{2}	a_{2}
a_{3}	a_{1}	a_{2}	a_{3}	a_{4}
a_{4}	a_{1}	a_{2}	a_{3}	a_{4}

	b_{1}	b_{2}	b_{3}	b_{4}
b_{1}	b_{1}	b_{1}	b_{1}	b_{1}
b_{2}	b_{1}	b_{1}	b_{1}	b_{1}
b_{3}	b_{1}	b_{2}	b_{3}	b_{4}
b_{4}	b_{1}	b_{2}	b_{3}	b_{4}

$J_{a_{3}}=\left\{a_{3}, a_{4}\right\}$ in $S_{1}, J_{b_{2}}=\left\{b_{2}\right\}$ in S_{2}. Then $J_{a_{3}} \times J_{b_{2}}=\left\{\left(a_{3}, b_{2}\right),\left(a_{4}, b_{2}\right)\right\}$.
We have $\left(a_{3}, b_{2}\right) \in\left(S_{1} a_{3} \times S_{2} b_{2}\right)$, so (a_{3}, b_{2}) is not a two-sided antiideal in $S_{1} \times S_{2}$.
Similarly $\left(a_{4}, b_{2}\right) \in\left(S_{1} a_{4} \times S_{2} b_{2}\right)$, so (a_{4}, b_{2}) is not a two-sided antiideal in $S_{1} \times S_{2}$.
Hence no element in $J_{a_{3}} \times J_{b_{2}}$ is a two-sided antiideal in $S_{1} \times S_{2}$; however,

$$
\begin{aligned}
J\left(a_{3}, b_{2}\right) & =\left(S_{1} a_{3} \times S_{2} b_{2}\right) \cup\left(S_{1} a_{3} S_{1} \times S_{2} b_{2} S_{2}\right) \\
& =\left\{a_{1}, a_{2}, a_{3}\right\} \times\left\{b_{1}, b_{2}\right\} \cup\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \times\left\{b_{1}\right\} \\
& =\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{4}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{2}\right)\right\}, \\
J\left(a_{4}, b_{2}\right) & =\left(S_{1} a_{4} \times S_{2} b_{2}\right) \cup\left(S_{1} a_{4} S_{1} \times S_{2} b_{2} S_{2}\right) \\
& =\left\{a_{1}, a_{2}, a_{4}\right\} \times\left\{b_{1}, b_{2}\right\} \cup\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \times\left\{b_{1}\right\} \\
& =\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{3}, b_{1}\right),\left(a_{4}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{2}\right),\left(a_{4}, b_{2}\right)\right\} .
\end{aligned}
$$

We have $J\left(a_{3}, b_{2}\right) \# J\left(a_{4}, b_{2}\right),\left(a_{3}, b_{2}\right) \notin J\left(a_{4}, b_{2}\right),\left(a_{4}, b_{2}\right) \notin J\left(a_{3}, b_{2}\right)$. So $J_{\left(a_{3}, b_{2}\right)}=$ $\left\{\left(a_{3}, b_{2}\right)\right\}, J_{\left(a_{4}, b_{2}\right)}=\left\{\left(a_{4}, b_{2}\right)\right\}$, but none of them is a two-sided antiideal in $S_{1} \times S_{2}$.

Lemma 1. Let $J_{a} \times J_{b}$ contain more than one element. If (a, b) is in any two components of $\left\{\left(S_{1} a \times S_{2} b\right),\left(a S_{1} \times b S_{2}\right),\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right\}$, then $(a, b) \in\left(S_{1} a S_{1} \times\right.$ $S_{2} b S_{2}$).

Proof. It is sufficient to show that $(a, b) \in\left(S_{1} a \times S_{2} b\right) \cap\left(a S_{1} \times b S_{2}\right)$ implies $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$. Let $\left(a \in S_{1} a \wedge a \in a S_{1}\right)$ and $\left(b \in S_{2} b \wedge b \in b S_{2}\right)$. As $a \in S_{1} a$, we have $a S_{1} \subseteq S_{1} a S_{1}$ and because $a \in a S_{1} \subseteq S_{1} a S_{1}$, then $a \in S_{1} a S_{1}$. Similarly we can show that $b \in\left(S_{2} b S_{2}\right)$, so $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$.

Theorem 3. If $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, then $J_{(a, b)}=J_{a} \times J_{b}$.
Proof. If $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, then $J(a)=S_{1} a S_{1}, J(b)=S_{2} b S_{2} . \quad J_{a} \subseteq$ $J(a)$ in $S_{1}, J_{b} \subseteq J(b)$ in S_{2}. If $(c, d) \in J_{a} \times J_{b}$ then $(c, d) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$. It implies $J(c, d) \subseteq\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) \subseteq J(a, b)$. Since it can be verified that $S_{1} c S_{1}=S_{1} a S_{1}$ and $S_{2} d S_{2}=S_{2} b S_{2}$, then $J(a) \times J(b)=\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)=\left(S_{1} c S_{1} \times S_{2} d S_{2}\right)=J(c) \times J(d)$, so $(a, b) \in\left(S_{1} c S_{1} \times S_{2} d S_{2}\right)$. Hence we have $J(a, b) \subseteq\left(S_{1} c S_{1} \times S_{2} d S_{2}\right) \subseteq J(c, d)$.

The last relation with the previous one give $J(c, d)=J(a . b)$. We have proved that $J_{a} \times J_{b} \subseteq J_{(a, b)}$ and because in general $J_{(a, b)} \subseteq J_{a} \times J_{b}$ by Theorem 1, we conclude

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

It remains to find conditions under which $J_{(a, b)}=J_{a} \times J_{b}$ in the case that $J_{a} \times J_{b}$ contains more than one element and either
(i) $(a, b) \in\left(S_{1} a \times S_{2} b\right) \wedge(a, b) \notin\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$ or
(ii) $(a, b) \in\left(a S_{1} \times b S_{2}\right) \wedge(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$.

Lemma 2. Let $J_{a} \times J_{b}$ contain more than one element, $(a, b) \in\left(S_{1} a \times S_{2} b\right) \wedge(a, b) \notin$ $\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$. Let $(a, b) \in J_{a} \times J_{b},\left(a_{1}, b\right) \in J_{a} \times J_{b}, J_{(a, b)} \neq J_{\left(a_{1}, b\right)}$. Then neither $J\left(a_{1}, b\right) \subset J(a, b)$ nor $J(a, b) \subset J\left(a_{1}, b\right)$.

Proof. Suppose that $J\left(a_{1}, b\right) \subset J(a, b)$. We will show that $(a, b) \notin J\left(a_{1}, b\right)$. If $(a, b) \in J\left(a_{1}, b\right)$, then $J(a, b) \subseteq J\left(a_{1}, b\right)$. The last relation with our assumption give $J\left(a_{1}, b\right)=J(a, b)$, which contradicts the hypothesis, hence $(a, b) \notin J\left(a_{1}, b\right)$, so $(a, b) \notin\left[\left(S_{1} a_{1} \times S_{2} b\right) \cup\left(S_{1} a_{1} S_{1} \times S_{2} b S_{2}\right)\right]$. Consequently, $(a, b) \notin\left(S_{1} a_{1} \times S_{2} b\right) \wedge(a, b) \notin$ $\left(S_{1} a_{1} S_{1} \times S_{2} b S_{2}\right)$. It implies $a \notin S_{1} a_{1}$, since $b \in S_{2} b$. From the assumption of Lemma 2 we have: I. $(a, b) \notin\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, and from the relation above we have: II. $(a, b) \notin\left(S_{1} a_{1} S_{1} \times S_{2} b S_{2}\right)$. From I and II we get the following possibilities:
I. 1. $a \notin S_{1} a S_{1} \wedge b \notin S_{2} b S_{2}$,
2. $a \in S_{1} a S_{1} \wedge b \notin S_{2} b S_{2}$,
3. $a \notin S_{1} a S_{1} \wedge b \in S_{2} b S_{2}$,
II. 1'. $a \notin S_{1} a_{1} S_{1} \wedge b \notin S_{2} b S_{2}$,
$2^{\prime} . a \in S_{1} a_{1} S_{1} \wedge b \notin S_{2} b S_{2}$, $3^{\prime} . a \notin S_{1} a_{1} S_{1} \wedge b \in S_{2} b S_{2}$.

Since we have supposed $J\left(a_{1}, b\right) \subset J(a, b)$, we have $\left(a_{1}, b\right) \in\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times\right.\right.$ $\left.S_{2} b S_{2}\right)$], so ($a_{1} b$) belongs to at least one of the two summands. In both cases we get $J\left(a_{1}\right) \subseteq J(a)$. We shall show that if we combine any possibility of I with any possibility of II, then we find that some of them cannot occur and in the remaining cases $J\left(a_{1}\right) \subset J(a)$ holds.
$\left(1,1^{\prime}\right): a \notin S_{1} a S_{1} \wedge a \notin S_{1} a_{1} S_{1}$. Then $a \notin S_{1} a_{1} \wedge a \notin S_{1} a_{1} S_{1}$ implies $a \notin$ $\left(S_{1} a_{1} \cup S_{1} a_{1} S_{1}\right)=J\left(a_{1}\right)$, therefore $J\left(a_{1}\right) \subset J(a)$.
$\left(1,2^{\prime}\right): a \notin S_{1} a S_{1} \wedge a \in S_{1} a_{1} S_{1}$. This cannot occur, since $a \in S_{1} a_{1} S_{1}$ implies $a \in S_{1} a S_{1}$, and this contradicts the hypothesis.
$\left(1,3^{\prime}\right): a \notin S_{1} a S_{1} \wedge a \notin S_{1} a_{1} S_{1}$. Then similarly as in (1, $\left.1^{\prime}\right)$ we get $J\left(a_{1}\right) \subset J(a)$. $\left(2,1^{\prime}\right): a \in S_{1} a S_{1} \wedge a \notin S_{1} a_{1} S_{1}$. Then $a \notin S_{1} a_{1} \wedge a \notin S_{1} a_{1} S_{1}$ implies $J\left(a_{1}\right) \subset J(a)$.
(2.2'): $a \in S_{1} a S_{1} \wedge a \in S_{1} a_{1} S_{1}$. It implies $a_{1} \in S_{1} a_{1} S_{1} \wedge a \in S_{1} a_{1} S_{1}$. Then $S_{1} a S_{1}=S_{1} a_{1} S_{1}$ and from $S_{1} a_{1} \subset S_{1} a$ (since $J\left(a_{1}\right) \subseteq J(a)$ and $a \notin S_{1} a_{1}$) we get $S_{1} a_{1} \cup S_{1} a_{1} S_{1} \subset S_{1} a \cup S_{1} a S_{1}$, hence $J\left(a_{1}\right) \subset J(a)$.
$\left(2,3^{\prime}\right): a \in S_{1} a S_{1} \wedge a \notin S_{1} a_{1} S_{1}$. Then similarly as in (2, $\left.1^{\prime}\right), J\left(a_{1}\right) \subset J(a)$.
$\left(3,1^{\prime}\right): a \notin S_{1} a S_{1} \wedge a \notin S_{1} a_{1} S_{1}$. Then similarly as in $\left(1,1^{\prime}\right), J\left(a_{1}\right) \subset J(a)$.
$\left(3,2^{\prime}\right): a \notin S_{1} a S_{1} \wedge a \in S_{1} a_{1} S_{1}$. Similarly as in ($1,2^{\prime}$) this cannot occur.
$\left(3,3^{\prime}\right): a \notin S_{1} a S_{1} \wedge a \notin S_{1} a_{1} S_{1}$. Then from $S_{1} a_{1} \subset S_{1} a$ and from $J\left(a_{1}\right) \subseteq J(a)$ we get $J\left(a_{1}\right) \subset J(a)$.

Therefore, in all the cases that may occur we have $J\left(a_{1}\right) \subset J(a)$, but this is a contradiction because $a \in J_{a}, a_{1} \in J_{a}$, so $J\left(a_{1}\right)=J(a)$. Hence our assumption $J\left(a_{1}, b\right) \subset J(a, b)$ cannot be fulfilled. In a similar way we could prove that $J(a, b) \subset$ $J\left(a_{1}, b\right)$ cannot hold.

Lemma 3. Let $J_{a} \times J_{b}$ contain more than one element. Let $(a, b) \in\left(S_{1} a \times S_{2} b\right) \wedge$ $(a, b) \notin\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$. Then $J_{a} \times J_{b}$ is the union of at least two different \mathscr{J}-classes iff at least for one of J_{a}, J_{b} the following holds: $S_{1} J_{1} \subset S_{1} J_{a}$, $S_{2} J_{2} \subset S_{2} J_{b}$ for every proper subset $J_{1} \subset J_{a}, J_{2} \subset J_{b}$.

Proof. a. Let $J_{a} \times J_{b}$ be the union of at least two \mathscr{J}-classes. We will show that at least for one of the \mathscr{J}-classes J_{a}, J_{b} the inclusion $S_{1} J_{1} \subset S_{1} J_{a}, S_{2} J_{2} \subset S_{2} J_{b}$ holds, where J_{1} is any proper subset of J_{a}, J_{2} is any proper subset of J_{b}. Because $\left|J_{1} \times J_{b}\right|>1$, the following cases may occur: $1 .\left|J_{a}\right|>1 \wedge\left|J_{b}\right|=1,2 .\left|J_{a}\right|=1 \wedge\left|J_{b}\right|>$ 1, 3. $\left|J_{a}\right|>1 \wedge\left|J_{b}\right|>1$.

If 1 holds, then the \mathscr{J}-classes in $J_{a} \times J_{b}$ are of the form $J_{\left(a_{i}, b\right)}$, if 2 holds, then the \mathscr{J}-classes in $J_{a} \times J_{b}$ are of the form $J_{\left(a, b_{i}\right)}, i \in I$. If 3 holds, then we get the following possibilities:
(a) the \mathscr{J}-classes are of the form $J_{\left(a_{i}, b\right)}$, if $S_{2} b=S_{2} J_{b}$ and the case 1 occurs;
(b) the \mathscr{J}-classes are of the form $J_{\left(a, b_{i}\right)}$, if $S_{1} a=S_{1} J_{a}$ and the case 2 occurs;
(c) $S_{1} a \subset S_{1} J_{a} \wedge S_{2} b \subset S_{2} J_{b}$. Then there are at least two \mathscr{J}-classes of the form $J_{\left(a_{i}, b\right)}$ and at least two \mathscr{J}-classes of the form $J_{\left(a, b_{i}\right)}, i \in I$.

Let $J_{(a, b)}, J_{\left(a_{1}, b\right)}$ be any two \mathscr{J}-classes for $a \# a_{1}, J(a, b) \# J\left(a_{1}, b\right)$. Then $J(a, b)=$ $\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right),(a, b) \in\left(S_{1} a \times S_{2} b\right) \wedge(a, b) \notin\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times\right.\right.$ $\left.\left.S_{2} b S_{2}\right)\right]$. Further, $J\left(a_{1}, b\right)=\left(S_{1} a_{1} \times S_{2} b\right) \cup\left(S_{1} a_{1} S_{1} \times S_{2} b S_{2}\right),\left(a_{1} b\right) \in\left(S_{1} a_{1} \times S_{2} b\right) \wedge$ $\left(a_{1}, b\right) \notin\left[\left(a_{1} S_{1} \times b S_{2}\right) \cup\left(S_{1} a_{1} S_{1} \times S_{2} b S_{2}\right)\right]$.

We claim that $\left(a_{1}, b\right) \notin J(a, b)$. If $\left(a_{1}, b\right) \in J(a, b)$, then $J\left(a_{1}, b\right) \subseteq J(a, b)$. There are only two possibilities: either $J\left(a_{1}, b\right)=J(a, b)$, or $J\left(a_{1}, b\right) \subset J(a, b)$. The first possibility contradicts the fact $J_{\left(a_{1}, b\right)} \# J_{(a, b)}$. If the other possibility occurs, then by Lemma 2 it leads to a contradiction. Therefore, $\left(a_{1}, b\right) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times\right.\right.$ $\left.\left.S_{2} b S_{2}\right)\right]$. So $\left(a_{1}, b\right) \notin\left(S_{1} a \times S_{2} b\right)$, hence $a_{1} \notin S_{1} a$, as $b \in S_{2} b$. Similarly we can show that $(a, b) \notin J\left(a_{1}, b\right)$ and, moreover, $a \notin S_{1} a_{1}$.

Let $J_{1} \subset J_{a}$ be any proper subset. Hence there exists at least one $a_{i} \in J_{a}$ such that $a_{i} \notin J_{1}$. Then $S_{1} J_{1} \subseteq S_{1} J_{a}$. There are only two possibilities: either $S_{1} J_{1}=S_{1} J_{a}$, or $S_{1} J_{1} \subset S_{1} J_{a}$. If $S_{1} J_{1}=S_{1} J_{a}$, then from the relation $c \in S_{1} c$ for any $c \in J_{a}$ we get $J_{a} \subseteq S_{1} J_{a}=S_{1} J_{1}$. So any element of J_{a} is contained in $S_{1} a_{j}$ for some $a_{j} \in J_{1}$, but this is a contradiction with the fact $a_{i} \notin S_{1} a_{j}$ for $a_{i} \# a_{j}$. Therefore, the other possibilities occurs, namely $S_{1} J_{1} \subset S_{1} J_{a}$, for any proper subset $J_{1} \subset J_{a}$.
b. As $J_{a} \times J_{b}$ contains more than one element, at least one of J_{a}, J_{b} contains more than one element. Let J_{a} contain more than one element and let $S_{1} J_{1} \subset S_{1} J_{a}$ for every proper subset $J_{1} \subset J_{a}$. Denote $S_{1} J_{a}=L$. Then for any $x \in L$ there is $a_{1} \in J_{a}$ such that $x \in S_{1} a_{1}$. By the hypothesis $S_{1} a \subset S_{1} J_{a}=L$. Hence there is $y \in L$ such that $y \notin S_{1} a$, but $y \in S_{1} c$ for some $c \in J_{a}, c \# a$. We shall show that $c \notin S_{1} a$. If $c \in S_{1} a$, then $S_{1} c \subseteq S_{1} a$ and because $y \in S_{1} c \subseteq S_{1} a$, so $y \in S_{1} a$ and this is a contradiction. We also show that $a \notin S_{1} c$. If $a \in S_{1} c$, then $S_{1} a \subseteq S_{1} c$. Hence we have $L=S_{1} J_{a}=S_{1} J_{1}$ where $J_{1}=J_{a}-\{a\}$, but this is a contradiction with our assumption that $S_{1} J_{1} \subset S_{1} J_{a}=L$ for every proper subset $J_{1} \subset J_{a}$, so $c \notin S_{1} a$, $a \notin S_{1} c$.

Consider principal two-sided ideals $J(a, b)$ and $J(c, b)$ in $S_{1} \times S_{2}$ with $a \in J_{a}$, $c \in J_{a} . J(a, b)=\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right), J(c, b)=\left(S_{1} c \times S_{2} b\right) \cup\left(S_{1} c S_{1} \times S_{2} b S_{2}\right)$. We show that $J(a, b) \# J(c, b)$. Indeed, $(a, b) \in J(a, b)$, but $(a, b) \notin J(c, b)$, since $(a, b) \notin\left(S_{1} c \times S_{2} b\right)$ as $a \notin S_{1} c$. If $(a, b) \in\left(S_{1} c S_{1} \times S_{2} b S_{2}\right)$, then $a \in S_{1} c S_{1}, b \in S_{2} b S_{2}$. Consequently $a \in S_{1} c S_{1}$ implies $a \in S_{1} a S_{1}$, hence $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$ and this contradicts the fact that $(a, b) \notin\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, which is contained in Lemma 3. Similarly $(c, b) \in J(c, b)$, but $(c, b) \notin J(a, b)$, since $(c, b) \notin\left(S_{1} a \times S_{2} b\right)$ because $c \notin S_{1} a,(c, b) \notin\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, because if $(c, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, then $c \in S_{1} a S_{1}, b \in S_{2} b S_{2}$. However, $c \in S_{1} a S_{1}$ implies $a \in S_{1} a S_{1}$ and then $(a, b) \in$ $\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$ and it is a contradiction again. Therefore, for $(a, b) \in J_{a} \times J_{b}$, $(c, b) \in J_{a} \times J_{b},(a, b) \#(c, b)$ we get $J(a, b) \# J(c, b)$, so $J_{(a, b)} \subset J_{a} \times J_{b}, J_{(c, b)} \subset J_{a} \times J_{b}$. Hence, $J_{a} \times J_{b}$ is the union of at least two \mathscr{J}-classes.

Lemma 4. Let $J_{a} \times J_{b}$ contain more then one element. Let $(a, b) \in\left(a S_{1} \times b S_{2}\right) \wedge$ $(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$. Then $J_{a} \times J_{b}$ is the union of at least two different \mathscr{J}-classes iff at least for one of J_{a}, J_{b} the following holds: $J_{1} S_{1} \subset J_{a} S_{1}$, $J_{2} S_{2} \subset J_{b} S_{2}$ for any proper subset $J_{1} \subset J_{a}, J_{2} \subset J_{b}$, respectively.

Proof. The proof is similar to that of Lemma 3.
From Lemma 3 we get
Theorem 4. Let $J_{a} \times J_{b}$ contain more than one element. Let $(a, b) \in\left(S_{1} a \times\right.$ $\left.S_{2} b\right) \wedge(a, b) \notin\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$. Then $J_{a} \times J_{b}=J_{(a, b)}$ iff $S_{1} a=S_{1} J_{a}$ and $S_{2} b=S_{2} J_{b}$.

Analogously from Lemma 4 we can obtain

Theorem 5. Let $J_{a} \times J_{b}$ contain more than one element. Let $(a, b) \in\left(a S_{1} \times\right.$ $\left.b S_{2}\right) \wedge(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$. Then $J_{a} \times J_{b}=J_{(a, b)}$ iff $a S_{1}=J_{a} S_{1}$ and $b S_{2}=J_{b} S_{2}$.

Remark 2. It is known (see [2]) that in the case of \mathscr{L}-classes (\mathscr{R}-classes) the situation is as follows: If $\left|L_{a} \times L_{b}\right|>1$, then $L_{a} \times L_{b}$ is the union of at least two \mathscr{L}-classes iff $\left|L_{a}\right|>1$ and $L_{b}=\{b\}, b \notin S_{2} b$, or $L_{a}=\{a\}, a \notin S_{1} a$ and $\left|L_{b}\right|>1$ and any \mathscr{L}-class in $L_{a} \times L_{b}$ is one-element. If $\left|L_{a}\right|>1$ and $\left|L_{b}\right|>1$ then $L_{a} \times L_{b}=L_{(a, b)}$.

In the cases of \mathscr{J}-classes the situation is different, as we can see from the following example.

Example 2. Let $S_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and let an associative binary operation be given by means of the following table:

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{1}	a_{2}	a_{2}	a_{2}
a_{3}	a_{1}	a_{2}	a_{3}	a_{4}
a_{4}	a_{1}	a_{2}	a_{3}	a_{4}

$J_{a_{3}}=\left\{a_{3}, a_{4}\right\}, S_{1} a_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}, a_{3} S_{1}=S_{1}, S_{1} a_{3} S_{1}=S_{1}$.
$S_{2}=A \cup B \cup\{0\}$, where A is the infinite cyclic group generated by an element $\{a\}$, $B=\left\{\ldots b_{-2}, b_{-1}, b_{0}, b_{1}, b_{2}, \ldots\right\},\{0\}$ is zero in S_{2}. An associative binary operation is defined as follows: $a^{i} \cdot b_{j}=b_{i+j}, b_{j} \cdot a^{i}=b_{i} \cdot b_{j}=0$.

$$
\begin{aligned}
S_{2} a^{i} & =A \cup\{0\}, a^{i} S_{2}=S_{2}, S_{2} a^{i} S_{2}=S_{2}, J\left(a^{i}\right)=S_{2}, J_{a^{i}}=A . \\
S_{2} b_{i} & =B \cup\{0\}, b_{i} S_{2}=0, S_{2} b_{i} S_{2}=0, J\left(b_{i}\right)=B \cup\{0\} \\
J_{b_{i}} & =B, J(0)=\{0\}, J_{0}=\{0\} .
\end{aligned}
$$

Let us consider the direct product $S_{1} \times S_{2}, J_{a_{3}}$ in $S_{1}, J_{b_{i}}$ in S_{2}. Then $J_{a_{3}} \times J_{b_{i}}=$ $\left\{a_{3}, a_{4}\right\} \times B$. Consider the principal two-sided ideals $J\left(a_{3}, b_{i}\right)$ and $J\left(a_{4}, b_{i}\right)$ in $S_{1} \times S_{2}$. We have

$$
\begin{aligned}
J\left(a_{3}, b_{i}\right) & =\left(a_{3}, b_{i}\right) \cup\left(S_{1} a_{3} \times S_{2} b_{i}\right) \cup\left(a_{3} S_{1} \times b_{i} S_{2}\right) \cup\left(S_{1} a_{3} S_{1} \times S_{2} b_{i} S_{2}\right) \\
& =\left(a_{3}, b_{i}\right) \cup\left\{a_{1}, a_{2}, a_{3}\right\} \times\{B \cup 0\} \cup\left(S_{1} \times\{0\}\right) \cup\left(S_{1} \times\{0\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{a_{1}, a_{2}, a_{3}\right\} \times\{B \cup\{0\}\} \cup\left(S_{1} \times\{0\}\right) \\
& =\left\{a_{1}, a_{2}, a_{3}\right\} \times\{B \cup\{0\}\} \cup\left\{\left(a_{4}, 0\right)\right\} \\
& =\left\{a_{1}, a_{2}, a_{3}\right\} \times B \cup\left(S_{1} \times\{0\}\right) \\
J\left(a_{4}, b_{i}\right) & =\left(a_{4}, b_{i}\right) \cup\left(S_{1} a_{4} \times S_{2} b_{i}\right) \cup\left(a_{4} S_{1} \times b_{i} S_{2}\right) \cup\left(S_{1} a_{4} S_{1} \times S_{2} b_{i} S_{2}\right) \\
& =\left(a_{4}, b_{i}\right) \cup\left\{a_{1}, a_{2}, a_{4}\right\} \times\{B \cup\{0\}\} \cup\left(S_{1} \times\{0\}\right) \\
& =\left\{a_{1}, a_{2}, a_{4}\right\} \times\{B \cup\{0\}\} \cup\left(S_{1} \times\{0\}\right) \\
& =\left\{a_{1}, a_{2}, a_{4}\right\} \times\{B\} \cup\left\{\left(a_{3}, 0\right)\right\} \\
& =\left\{a_{1}, a_{2}, a_{4}\right\} \times\{B\} \cup\left(S_{1} \times\{0\}\right) .
\end{aligned}
$$

It is evident that $J\left(a_{3}, b_{i}\right) \neq J\left(a_{4}, b_{i}\right)$, because $J\left(a_{3}, b_{i}\right)$ contains elements of the form $\left\{\left(a_{3}, b_{i}\right)\right\}$ that do not belong to $J\left(a_{4}, b_{i}\right)$, and conversely $J\left(a_{4}, b_{i}\right)$ contains elements of the form $\left\{\left(a_{4}, b_{i}\right)\right\}$ that do not belong to $J\left(a_{3}, b_{i}\right)$. Hence $J_{a_{3}} \times J_{b_{i}}=\left\{a_{3}, a_{4}\right\} \times\{B\}$ is decomposed into two \mathscr{J}-classes, namely $J_{\left(a_{3}, b_{i}\right)}, J_{\left(a_{4}, b_{i}\right)}$, and each of them contains infinite number of elements, but none of them is a two-sided antiideal in $S_{1} \times S_{2}$.
2.

In this part we shall investigate the mutual relation between $J_{(a, b)}$ and $J_{a} \times J_{b}$ in $S_{1} \times S_{2}$ provided J_{a} is a maximal \mathscr{J}-class in S_{1}, J_{b} is a maximal \mathscr{J}-class in S_{2}.

Remark 3. If J_{a} is a maximal \mathscr{J}-class in S_{1}, then $M_{a}=S-J_{a}$ is a maximal two-sided ideal in S and conversely ([4]).

For the factor semigroup S / M_{a} exactly one of the following two possibilities occurs ([6]):

1. $\left(S / M_{a}\right)^{2}=\overline{0}$ and S / M_{a} is a two-element semigroup, $J_{a}=\{a\}, a \in S-S^{2}$;
2. $S / M_{a}=\bar{S}$ is a 0 -simple semigroup and for every nonzero element $\bar{a} \in \bar{S}$ we have $\bar{S} \bar{a} \bar{S}=\bar{S}$, hence $a \in S a S$ for $a \in J_{a}=S-M_{a}$.

Lemma 5 ([6]). Let J_{a} be a maximal \mathscr{J}-class in a semigroup S and $\left|J_{a}\right|>1$. Then $a \in S a S$.

Theorem 6. Let J_{a} be a maximal \mathscr{J}-class in S_{1}, J_{b} a maximal \mathscr{J}-class in S_{2}, and let $\left|J_{a}\right|>1$ and $\left|J_{b}\right|>1$. Then

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

Proof. The statesment follows from Lemma 5 and Theorem 3.

Corollary. Let J_{a} be a maximal \mathscr{J}-class in S_{1}, J_{b} a maximal \mathscr{J}-class in S_{2}. If $J_{a} \times J_{b}$ is the union of at least two \mathscr{J}-classes in $S_{1} \times S_{2}$, then either

1. $\left|J_{a}\right|>1$ and $J_{b}=\{b\}$, or
2. $J_{a}=a$ and $\left|J_{b}\right|>1$.

Lemma 6. Let J_{a} be a maximal \mathscr{J}-class in S_{1}, J_{b} a maximal \mathscr{J}-class in S_{2} and let $J_{\left(a_{1}, b_{1}\right)} \subset J_{a} \times J_{b}, J_{\left(a_{2}, b_{2}\right)} \subset J_{a} \times J_{b}, J_{\left(a_{1}, b_{1}\right)} \neq J_{\left(a_{2}, b_{2}\right)}$. Then either

1. $\left|J_{a}\right|>1, J_{b}=\{b\}, b \in S_{2}-S_{2}^{2}$, or
2. $J_{a}=\{a\}, a \in S_{1}-S_{1}^{2},\left|J_{b}\right|>1$ and
$J_{\left(a_{1}, b_{1}\right)}, J_{\left(a_{2}, b_{2}\right)}$ are uncomparable.
Proof. From the Corollary of Theorem 6 we get that either 1. $\left|J_{a}\right|>1$ and $J_{b}=\{b\}$, or 2. $J_{a}=\{a\}$ and $\left|J_{b}\right|>1$. Let 1 hold. Then $b_{1}=b_{2}=b$. As both J_{a} and J_{b} are maximal \mathscr{J}-classes, then, since $\left|J_{a}\right|>1$, we have $a \in S_{1} a S_{1}$. However, $J_{b}=\{b\}$, therefore there are only two possibilities:
(i) $b \in S b S$,
(ii) $b \in S_{2}-S_{2}^{2}$ by Remark 3 .

If $b \in S_{2} b S_{2}$, then by Theorem 3 we have $J_{(a, b)}=J_{a} \times J_{b}$, a contradiction to the hypothesis, therefore $b \in S_{2}-S_{2}^{2}$ holds. Hence $b \notin\left(S_{2} b \cup b S_{2} \cup S_{2} b S_{2}\right)$. It remains to show that $J\left(a_{1}, b\right), J\left(a_{2}, b\right)$ are uncomparable. We have $\left(a_{1}, b\right) \in J\left(a_{1}, b\right)$ but $\left(a_{1}, b\right) \notin J\left(a_{2}, b\right)$ since $\left(a_{1}, b\right) \neq\left(a_{2}, b\right)$ as $a_{1} \neq a_{2}$, and $\left(a_{1}, b\right) \notin\left[\left(S_{1} a_{2} \times\right.\right.$ $\left.\left.S_{2} b\right) \cup\left(a_{2} S_{1} \times b S_{2}\right) \cup\left(S_{1} a_{2} S_{1} \times S_{2} b S_{2}\right)\right]$ since $b \notin\left(S_{2} b \cup b S_{2} \cup S_{2} b S_{2}\right)$. Similarly $\left(a_{2}, b\right) \in J\left(a_{2}, b\right)$, but $\left(a_{2}, b\right) \notin J\left(a_{1}, b\right)$.

Theorem 7. Let J_{a} be a maximal \mathscr{J}-class in S_{1}, J_{b} a maximal \mathscr{J}-class in S_{2}. Then either

1. $J_{a} \times J_{b}$ is a maximal \mathscr{J}-class in $S_{1} \times S_{2}$ or
2. $J_{a} \times J_{b}$ is the union of at least two maximal \mathscr{J}-classes in $S_{1} \times S_{2}$.

Proof. With regard to Lemma 3 it is sufficient to show that if $J_{\left(a_{1}, b_{1}\right)} \subseteq J_{a} \times J_{b}$, then $J\left(a_{1}, b_{1}\right)$ is not contained as a proper subset in any principal ideal of $S_{1} \times S_{2}$.

Suppose that there exists such an element $(u, v) \in S_{1} \times S_{2}-J_{a} \times J_{b}$ that $\left(a_{1}, b_{1}\right) \subset$ $J(u, v)$. Then

$$
\begin{aligned}
& \left(a_{1}, b_{1}\right) \cup\left(S_{1} a_{1} \times S_{2} b_{1}\right) \cup\left(a_{1} S_{1} \times b_{1} S_{2}\right) \cup\left(S_{1} a_{1} S_{1} \times S_{2} b_{1} S_{2}\right) \\
& \subset(u, v) \cup\left(S_{1} u \times S_{2} v\right) \cup\left(u S_{1} \times v S_{2}\right) \cup\left(S_{1} u S_{1} \times S_{2} v S_{2}\right) .
\end{aligned}
$$

Since $\left(a_{1}, b_{1}\right) \neq(u, v)$, then

$$
\left(a_{1}, b_{1}\right) \in\left[\left(S_{1} u \times S_{1} b\right) \cup\left(u S_{1} \times v S_{2}\right) \cup\left(S_{1} u S_{1} \times S_{2} v S_{2}\right)\right] .
$$

If e.g. $\left(a_{1}, b_{1}\right) \in\left(S_{1} u \times S_{2} v\right)$, then $a_{1} \in S_{1} u$ and $b_{1} \in S_{2} v$. Hence $J\left(a_{1}\right) \subseteq J(u)$ in S_{1} and $J\left(b_{1}\right) \subseteq J(v)$ in S_{2}. If both $J\left(a_{1}\right)=J(u)$ and $J\left(b_{1}\right)=J(v)$, then $u \in J_{a_{1}}$ and $v \in J_{b}$ and $(u, v) \in J_{a} \times J_{b}$, a contradiction. Therefore either $J\left(a_{1}\right) \subset J(u)$, or $J\left(b_{1}\right) \subset J(v)$. It means that either J_{a} in S_{1} or J_{b} in S_{2} is not a maximal \mathscr{J}-class and this contradicts the hypothesis. For the remaining possibilities $\left(a_{1}, b_{1}\right) \in\left(u S_{1} \times v S_{2}\right)$, $\left(a_{1}, b_{1}\right) \in\left(S_{1} u S_{1} \times S_{2} v S_{2}\right)$, we could proceed analogously.

Corollary. Let J_{a} be a maximal \mathscr{J}-class in S_{1} and $\left|J_{a}\right|>1, J_{b}=\{b\}, b \in S-S^{2}$ a maximal \mathscr{J}-class in S_{2}. Then $J_{a} \times J_{b}$ is the union of maximal \mathscr{J}-classes in $S_{1} \times S_{2}$ and each of them is one-element of the form $J_{\left(a_{i}, b\right)}=\left\{\left(a_{i}, b\right)\right\}, a_{i} \in J_{a}$.

Theorem 8. Let $u \in S_{1}$ be any element, $b \in S_{2}-S_{2}^{2}\left(a \in S_{1}-S_{1}^{2}, v \in S_{2}\right.$ any element). Then $J_{(u, b)}=\{(u, b)\}\left(J_{(a, v)}=\{(a, v)\}\right)$ is a maximal \mathscr{J}-class in $S_{1} \times S_{2}$.

Proof. Let $u \in S_{1}$ be any element, $b \in S_{2}-S_{2}^{2}$. Then $b \notin\left(S_{2} b \cup b S_{2} \cup S_{2} b S_{2}\right)$, hence b is an antiideal in S_{2}. Then $(u, b) \in S_{1} \times S_{2}$ is an antiideal in $S_{1} \times S_{2}$ and by Theorem 2 we have $J_{(u, b)}=\{(u, b)\}$. To prove that $J_{(u, b)}$ is maximal in $S_{1} \times S_{2}$, it is sufficient to show that (u, b) is undecomposable in $S_{1} \times S_{2}$. As $u \in S_{1}, b \in S_{2}$, then $(u, b) \in\left(S_{1} \times S_{2}\right)$. But $b \in S_{2}-S_{2}^{2}$, so $b \notin S_{2}^{2}$, and therefore $(u, b) \notin\left(S_{1}^{2} \times S_{2}^{2}\right)=$ $\left(S_{1} \times S_{2}\right)^{2}$. This implies $(u, b) \in\left(S_{1} \times S_{2}\right)-\left(S_{1} \times S_{2}\right)^{2}$, hence $J_{(u, b)}=\{(u, b)\}$ is maximal.

Theorem 9. Let $J_{(a, b)}$ be any maximal \mathscr{J}-class in $S_{1} \times S_{2}$. Then either

1. $J_{(a, b)}=J_{a} \times J_{b}$, where J_{a} is a maximal \mathscr{J}-class in S_{1}, J_{b} a maximal \mathscr{J}-class in S_{2}, or
2. $J_{(a, b)}=\{(a, b)\}$, where $a \in S_{1}$ is any element, $b \in S_{2}-S_{2}^{2}$, or $a \in S_{1}-S_{1}^{2}$ and $b \in S_{2}$ is any element.

Proof. As $J_{(a, b)}$ is a maximal \mathscr{J}-class in $S_{1} \times S_{2}$, then $S_{1} \times S_{2}-J_{(a, b)}=M_{\alpha}$ is a maximal ideal in $S_{1} \times S_{2}$ and for the factor-semigroup $\left(S_{1} \times S_{2}\right) / M_{\alpha}$ either
(a) $\left(S_{1} \times S_{2}\right) / M_{\alpha}$ is a 0 -simple semigroup and for $(a, b) \in\left(S_{1} \times S_{2}\right)-M_{\alpha}=J_{(a, b)}$ we have $(a, b) \in\left(S_{1} \times S_{2}\right)(a, b)\left(S_{1} \times S_{2}\right)$, or
(b) $\left[\left(S_{1} \times S_{2}\right) / M_{\alpha}\right]^{2}=\overline{0}$ and $\left(S_{1} \times S_{2}\right) / M_{\alpha}$ is a two-elements zero semigroup.

In the case (a) $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$, so $a \in S_{1} a S_{1}$ and $b \in S_{2} b S_{2}$. Then $J_{(a, b)}=J_{a} \times J_{b}$ by Theorem 3. It remains to show that J_{a} is maximal in S_{1}, J_{b} is maximal in S_{2}. If J_{a} is not a maximal \mathscr{J}-class in S_{1}, then there is $u \in S_{1}-J_{a}$ such that $J(a) \subset J(u)$. Then $J(a)=S_{1} a S_{1} \subset\left(u \cup S_{1} u \cup u S_{1} \cup S_{1} u S_{1}\right)$. It implies that $a \in\left(S_{1} u \cup S_{1} u S_{1}\right)$. If e.g. $a \in S_{1} u$, then $S_{1} a S_{1} \subseteq S_{1} u S_{1}$. Further, $J(a, b)=$ $\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) \subseteq(u, b) \cup\left(S_{1} u \times S_{2} b\right) \cup\left(u S_{1} \times b S_{1}\right) \cup\left(S_{1} u S_{1} \times S_{2} b S_{2}\right)=J(u, b)$. Now there are two possibilities: either $J(a, b)=J(u, b)$, or $J(a, b) \subset J(u, b)$.

If $J(a, b)=J(u, b)$, then $(u, b) \in J_{(a, b)}=J_{a} \times J_{b}$, therefore $u \in J_{a}$, which means $J(u)=J(a)$, a contradiction to $J(a) \subset J(u)$.

If $J(a, b) \subset J(u, b)$, then we have a contradiction to the hypothesis. Therefore J_{a} is a maximal \mathscr{J}-class in S_{1}. Similarly we can show that J_{b} is a maximal \mathscr{J}-class in S_{2}.

In the case (b) $\left(S_{1} \times S_{2}\right)-M_{\alpha}=J_{(a, b)}=\{(a, b)\}$ and the element (a, b) is undecomposable in $S_{1} \times S_{2}$, so $(a, b) \in\left(S_{1} \times S_{2}\right)-\left(S_{1} \times S_{2}\right)^{2}$. It means $(a, b) \notin$ $\left(S_{1} \times S_{2}\right)^{2}=\left(S_{1}^{2} \times S_{2}^{2}\right)$. Hence either $a \notin S_{1}^{2}$, or $b \notin S_{2}^{2}$. Therefore the \mathscr{J}-class $J_{(a, b)}=\{(a, b)\}$ is of the form: $a \in S_{1}$ is any element, $b \in S_{2}-S_{2}^{2}$ or $a \in S_{1}-S_{1}^{2}$, $b \in S_{2}$ is any element.

References

[1] Clifford A. H., Preston G. B.: The algebraic theory of semigroup, Vol. I. American Math. Society, Providence, 1961.
[2] Fabrici I.: One-sided principal ideals in the direct product of two semigroup. (submitted to Math. Bohemica).
[3] Fabrici I.: Principal two-sided ideals in the direct product of two semigroups. Czechoslovak Math. Journal 41 (1991), 411-421.
[4] Fabrici I., Macko T.: On bases and maximal ideals in semigroups. Math. Slovaca 31 (1981), 115-120.
[5] Howie J. M.: An introduction to semigroup theory. Academic Press, 1976.
[6] Schwarz Š.: On maximal ideals in the theory of semigroups I. Czechoslovak Math. Journal 78 (1953), 139-153.
[7] Schwarz Š.: On maximal ideals in the theory of semigroups II. Czechoslovak Math. Journal 78 (1953), 365-383.

Author's address: Department of Mathematics, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia.

