Imrich Fabrici J-classes in the direct product of two semigroups

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 2, 325-335

Persistent URL: http://dml.cz/dmlcz/128467

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

J-CLASSES IN THE DIRECT PRODUCT OF TWO SEMIGROUPS

IMRICH FABRICI, Bratislava

(Received July 21, 1992)

In [3] the mutual relation between a principal two-sided ideal J(a, b) in the direct product of two semigroups and the direct product of two principal two-sided ideals $J(a) \times J(b)$ is investigated. In particular, some conditions are given under which $J(a, b) = J(a) \times J(b)$ holds.

The aim of the present paper is to study the mutual relation between a \mathscr{J} -class $J_{(a,b)}$ in $S_1 \times S_2$ and the direct product $J_a \times J_b$ of two \mathscr{J} -classes both in the general case and in the special case of maximal \mathscr{J} -classes. Finally, we give conditions under which $J_{(a,b)} = J_a \times J_b$.

All notions and notations which are not defined are meant as in [1].

1.

Theorem 1. Let J_a be a \mathscr{J} -class in S_1 , J_b a \mathscr{J} -class in S_2 , $J_{(a,b)}$ a \mathscr{J} -class in $S_1 \times S_2$. Then

1. $J_{(a,b)} \subseteq J_a \times J_b;$

2. if $J_{(a,b)} \subset J_a \times J_b$, then $J_a \times J_b$ is the union of at least two \mathcal{J} -classes in $S_1 \times S_2$.

Proof. 1. Let $(u,v) \in J_{(a,b)}$, then J(u,v) = J(a,b). If (u,v) = (a,b), then J(u) = J(a) in S_1 and J(v) = J(b) in S_2 . If $(u,v) \neq (a,b)$, then $(u,v) \in [(S_1a \times S_2b) \cup (aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)]$ and $(a,b) \in [(S_1u \times S_2v) \cup (uS_1 \times vS_2) \cup (S_1uS_1 \times S_2vS_2)]$. This implies that (u,v) belongs to at least one of the summands and (a,b) belongs to at least one of the summands. If e.g. $(u,v) \in (S_1a \times S_2b)$ and $(a,b) \in (S_1u \times S_2v)$ then $u \in S_1a, v \in S_2b$ and $a \in S_1u, b \in S_2v$. Hence we have $J(u) \subseteq J(a)$ and $J(a) \subseteq J(u)$, hence J(a) = J(u), so $u \in J_a$. Similarly, we can show that $v \in J_b$, therefore $(u,v) \in J_a \times J_b$.

2. Let $(u,v) \in J_a \times J_b - J_{(a,b)}$. Then $u \in J_a$, $v \in J_b$, hence $J_u = J_a$ in S_1 and $J_v = J_b$ in S_2 . Then $J_u \times J_v = J_a \times J_b$ and by 1, $J_{(u,v)} \subseteq J_u \times J_v = J_a \times J_b$. \Box

Corollary. If $J_a = \{a\}$ in S_1 , $J_b = \{b\}$ in S_2 , then $J_{(a,b)} = J_a \times J_b$ in $S_1 \times S_2$.

Definition 1 ([7]). A nonempty subset M of a semigroup S is said to be a two-sided antiideal of S, if $M \cap \{SM, MS, SMS\} = \emptyset$.

Theorem 2. If $(a,b) \in S_1 \times S_2$ is a one-element two-sided antiideal in $S_1 \times S_2$, then $J_{(a,b)} = \{(a,b)\}$.

Proof. Let $(a,b) \notin \{(S_1a \times S_2b) \cup (aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)\}$. If $|J_{(a,b)}| > 1$, then there is at least one element $(u,v) \in J_{(a,b)}$ such that (u,v) #(a,b) and J(u,v) = J(a,b), hence

$$(u,v) \cup (S_1u \times S_2v) \cup (uS_1 \times vS_2) \cup (S_1uS_1 \times S_2vS_2)$$

= $(a,b) \cup (S_1a \times S_2b) \cup (aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2).$

Consequently, $(u, v) \in \{(S_1 a \times S_2 b) \cup (aS_1 \times bS_2) \cup (S_1 aS_1 \times S_2 bS_2)\}$ and $(a, b) \in \{(S_1 u \times S_2 v) \cup (uS_1 \times vS_2) \cup (S_1 uS_1 \times S_2 vS_2)\}.$

If e.g. $(u, v) \in (S_1a \times S_2b)$ and $(a, b) \in (S_1u \times S_2v)$, then $(S_1u \times S_2v) \subseteq (S_1a \times S_2b)$, $(uS_1 \times vS_2) \subseteq (S_1aS_1 \times S_2bS_2)$,

(1)
$$(S_1 u S_1 \times S_2 v S_2) \subseteq (S_1 a S_1 \times S_2 b S_2)$$

and $(S_1a \times S_2b) \subseteq (S_1u \times S_2v), (aS_1 \times bS_2) \subseteq (S_1uS_1 \times S_2vS_2),$

(2)
$$(S_1aS_1 \times S_2bS_2) \subseteq (S_1uS_1 \times S_2vS_2).$$

From (1) we obtain

$$J(u,v) = (u,v) \cup (S_1u \times S_2v) \cup (uS_1 \times vS_2) \cup (S_1uS_1 \times S_2vS_2)$$
$$\subseteq (S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2) \subseteq J(a,b).$$

However, J(a, b) = J(u, v), therefore $(a, b) \in J(u, v) \subseteq (S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)$, hence

$$(a,b) \in \{(S_1a \times S_2b) \cup (aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)\},\$$

which contradicts the hypothesis.

In the case that $(u,v) \in (aS_1 \times bS_2)$ and $(a,b) \in (uS_1 \times vS_2)$, or any other possibility, we proceed analogously.

Corollary. If $J_{(a,b)} = J_a \times J_b$, then either 1. $J_a = \{a\}$ and $J_b = \{b\}$ or 2. no element in $J_a \times J_b$ is a two-sided intiideal in $S_1 \times S_2$.

The following example indicates that 2 in Corollary represents only a necessary condition.

Example 1. Let $S_1 = \{a_1, a_2, a_3, a_4\}$, $S_2 = \{b_1, b_2, b_3, b_4\}$ be two semigroups, in which associative binary operations are given by means of multiplicative tables:

	a_1	a_2	a_3	a_4				b_3	
a_1	a_1	a_1	a_1	a_1		b_1			
a_2	a_1	a_2	a_2	a_2		b_1			
a_3	a_1	a_2	a_3	a_4		b_1			
a_4	a_1	a_2	a_3	a_4	b_4	b_1	b_2	b_3	

 $J_{a_3} = \{a_3, a_4\}$ in $S_1, J_{b_2} = \{b_2\}$ in S_2 . Then $J_{a_3} \times J_{b_2} = \{(a_3, b_2), (a_4, b_2)\}$.

We have $(a_3, b_2) \in (S_1a_3 \times S_2b_2)$, so (a_3, b_2) is not a two-sided antiideal in $S_1 \times S_2$. Similarly $(a_4, b_2) \in (S_1a_4 \times S_2b_2)$, so (a_4, b_2) is not a two-sided antiideal in $S_1 \times S_2$. Hence no element in $J_{a_3} \times J_{b_2}$ is a two-sided antiideal in $S_1 \times S_2$; however,

$$\begin{split} J(a_3, b_2) &= (S_1 a_3 \times S_2 b_2) \cup (S_1 a_3 S_1 \times S_2 b_2 S_2) \\ &= \{a_1, a_2, a_3\} \times \{b_1, b_2\} \cup \{a_1, a_2, a_3, a_4\} \times \{b_1\} \\ &= \{(a_1, b_1), (a_2, b_1), (a_3, b_1), (a_4, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\}, \\ J(a_4, b_2) &= (S_1 a_4 \times S_2 b_2) \cup (S_1 a_4 S_1 \times S_2 b_2 S_2) \\ &= \{a_1, a_2, a_4\} \times \{b_1, b_2\} \cup \{a_1, a_2, a_3, a_4\} \times \{b_1\} \\ &= \{(a_1, b_1), (a_2, b_1), (a_3, b_1), (a_4, b_1), (a_1, b_2), (a_2, b_2), (a_4, b_2)\}. \end{split}$$

We have $J(a_3, b_2) \# J(a_4, b_2)$, $(a_3, b_2) \notin J(a_4, b_2)$, $(a_4, b_2) \notin J(a_3, b_2)$. So $J_{(a_3, b_2)} = \{(a_3, b_2)\}$, $J_{(a_4, b_2)} = \{(a_4, b_2)\}$, but none of them is a two-sided antiideal in $S_1 \times S_2$.

Lemma 1. Let $J_a \times J_b$ contain more than one element. If (a, b) is in any two components of $\{(S_1a \times S_2b), (aS_1 \times bS_2), (S_1aS_1 \times S_2bS_2)\}$, then $(a, b) \in (S_1aS_1 \times S_2bS_2)$.

Proof. It is sufficient to show that $(a,b) \in (S_1a \times S_2b) \cap (aS_1 \times bS_2)$ implies $(a,b) \in (S_1aS_1 \times S_2bS_2)$. Let $(a \in S_1a \wedge a \in aS_1)$ and $(b \in S_2b \wedge b \in bS_2)$. As $a \in S_1a$, we have $aS_1 \subseteq S_1aS_1$ and because $a \in aS_1 \subseteq S_1aS_1$, then $a \in S_1aS_1$. Similarly we can show that $b \in (S_2bS_2)$, so $(a,b) \in (S_1aS_1 \times S_2bS_2)$.

Theorem 3. If $(a,b) \in (S_1aS_1 \times S_2bS_2)$, then $J_{(a,b)} = J_a \times J_b$.

Proof. If $(a,b) \in (S_1aS_1 \times S_2bS_2)$, then $J(a) = S_1aS_1$, $J(b) = S_2bS_2$. $J_a \subseteq J(a)$ in S_1 , $J_b \subseteq J(b)$ in S_2 . If $(c,d) \in J_a \times J_b$ then $(c,d) \in (S_1aS_1 \times S_2bS_2)$. It implies $J(c,d) \subseteq (S_1aS_1 \times S_2bS_2) \subseteq J(a,b)$. Since it can be verified that $S_1cS_1 = S_1aS_1$ and $S_2dS_2 = S_2bS_2$, then $J(a) \times J(b) = (S_1aS_1 \times S_2bS_2) = (S_1cS_1 \times S_2dS_2) = J(c) \times J(d)$, so $(a,b) \in (S_1cS_1 \times S_2dS_2)$. Hence we have $J(a,b) \subseteq (S_1cS_1 \times S_2dS_2) \subseteq J(c,d)$.

The last relation with the previous one give J(c,d) = J(a,b). We have proved that $J_a \times J_b \subseteq J_{(a,b)}$ and because in general $J_{(a,b)} \subseteq J_a \times J_b$ by Theorem 1, we conclude

$$J_{(a,b)} = J_a \times J_b.$$

It remains to find conditions under which $J_{(a,b)} = J_a \times J_b$ in the case that $J_a \times J_b$ contains more than one element and either

(i) $(a,b) \in (S_1a \times S_2b) \land (a,b) \notin [(aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)]$ or

(ii) $(a,b) \in (aS_1 \times bS_2) \land (a,b) \notin [(S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)].$

Lemma 2. Let $J_a \times J_b$ contain more than one element, $(a, b) \in (S_1 a \times S_2 b) \land (a, b) \notin [(aS_1 \times bS_2) \cup (S_1 aS_1 \times S_2 bS_2)]$. Let $(a, b) \in J_a \times J_b$, $(a_1, b) \in J_a \times J_b$, $J_{(a,b)} \neq J_{(a_1,b)}$. Then neither $J(a_1, b) \subset J(a, b)$ nor $J(a, b) \subset J(a_1, b)$.

Proof. Suppose that $J(a_1, b) \subset J(a, b)$. We will show that $(a, b) \notin J(a_1, b)$. If $(a, b) \in J(a_1, b)$, then $J(a, b) \subseteq J(a_1, b)$. The last relation with our assumption give $J(a_1, b) = J(a, b)$, which contradicts the hypothesis, hence $(a, b) \notin J(a_1, b)$, so $(a, b) \notin [(S_1a_1 \times S_2b) \cup (S_1a_1S_1 \times S_2bS_2)]$. Consequently, $(a, b) \notin (S_1a_1 \times S_2b) \wedge (a, b) \notin$ $(S_1a_1S_1 \times S_2bS_2)$. It implies $a \notin S_1a_1$, since $b \in S_2b$. From the assumption of Lemma 2 we have: I. $(a, b) \notin (S_1aS_1 \times S_2bS_2)$, and from the relation above we have: II. $(a, b) \notin (S_1a_1S_1 \times S_2bS_2)$. From I and II we get the following possibilities:

I.	1. $a \notin S_1 a S_1 \wedge b \notin S_2 b S_2$,	II. 1'. $a \notin S_1 a_1 S_1 \wedge b \notin S_2 b S_2$,
	2. $a \in S_1 a S_1 \wedge b \notin S_2 b S_2$,	$2'. \ a \in S_1 a_1 S_1 \land b \notin S_2 b S_2,$
	3. $a \notin S_1 a S_1 \wedge b \in S_2 b S_2$,	3'. $a \notin S_1 a_1 S_1 \wedge b \in S_2 b S_2$.

Since we have supposed $J(a_1, b) \subset J(a, b)$, we have $(a_1, b) \in [(S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)]$, so (a_1b) belongs to at least one of the two summands. In both cases we get $J(a_1) \subseteq J(a)$. We shall show that if we combine any possibility of I with any possibility of II, then we find that some of them cannot occur and in the remaining cases $J(a_1) \subset J(a)$ holds.

 $(1,1'): a \notin S_1 a S_1 \wedge a \notin S_1 a_1 S_1$. Then $a \notin S_1 a_1 \wedge a \notin S_1 a_1 S_1$ implies $a \notin (S_1 a_1 \cup S_1 a_1 S_1) = J(a_1)$, therefore $J(a_1) \subset J(a)$.

(1,2'): $a \notin S_1 a S_1 \wedge a \in S_1 a_1 S_1$. This cannot occur, since $a \in S_1 a_1 S_1$ implies $a \in S_1 a S_1$, and this contradicts the hypothesis.

(1,3'): $a \notin S_1 a S_1 \wedge a \notin S_1 a_1 S_1$. Then similarly as in (1,1') we get $J(a_1) \subset J(a)$. (2,1'): $a \in S_1 a S_1 \wedge a \notin S_1 a_1 S_1$. Then $a \notin S_1 a_1 \wedge a \notin S_1 a_1 S_1$ implies $J(a_1) \subset J(a)$. (2.2'): $a \in S_1 a S_1 \land a \in S_1 a_1 S_1$. It implies $a_1 \in S_1 a_1 S_1 \land a \in S_1 a_1 S_1$. Then $S_1 a S_1 = S_1 a_1 S_1$ and from $S_1 a_1 \subset S_1 a$ (since $J(a_1) \subseteq J(a)$ and $a \notin S_1 a_1$) we get $S_1 a_1 \cup S_1 a_1 S_1 \subset S_1 a \cup S_1 a S_1$, hence $J(a_1) \subset J(a)$.

(2,3'): $a \in S_1 a S_1 \land a \notin S_1 a_1 S_1$. Then similarly as in (2,1'), $J(a_1) \subset J(a)$.

 $(3,1'): a \notin S_1 a S_1 \land a \notin S_1 a_1 S_1$. Then similarly as in $(1,1'), J(a_1) \subset J(a)$.

 $(3,2'): a \notin S_1 a S_1 \land a \in S_1 a_1 S_1$. Similarly as in (1,2') this cannot occur.

 $(3,3'): a \notin S_1 a S_1 \wedge a \notin S_1 a_1 S_1$. Then from $S_1 a_1 \subset S_1 a$ and from $J(a_1) \subseteq J(a)$ we get $J(a_1) \subset J(a)$.

Therefore, in all the cases that may occur we have $J(a_1) \subset J(a)$, but this is a contradiction because $a \in J_a$, $a_1 \in J_a$, so $J(a_1) = J(a)$. Hence our assumption $J(a_1, b) \subset J(a, b)$ cannot be fulfilled. In a similar way we could prove that $J(a, b) \subset J(a_1, b)$ cannot hold.

Lemma 3. Let $J_a \times J_b$ contain more than one element. Let $(a, b) \in (S_1a \times S_2b) \land$ $(a, b) \notin [(aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)]$. Then $J_a \times J_b$ is the union of at least two different \mathscr{J} -classes iff at least for one of J_a , J_b the following holds: $S_1J_1 \subset S_1J_a$, $S_2J_2 \subset S_2J_b$ for every proper subset $J_1 \subset J_a$, $J_2 \subset J_b$.

Proof. a. Let $J_a \times J_b$ be the union of at least two \mathscr{J} -classes. We will show that at least for one of the \mathscr{J} -classes J_a , J_b the inclusion $S_1J_1 \subset S_1J_a$, $S_2J_2 \subset S_2J_b$ holds, where J_1 is any proper subset of J_a , J_2 is any proper subset of J_b . Because $|J_1 \times J_b| > 1$, the following cases may occur: 1. $|J_a| > 1 \wedge |J_b| = 1, 2$. $|J_a| = 1 \wedge |J_b| > 1, 3$. $|J_a| > 1 \wedge |J_b| > 1$.

If 1 holds, then the \mathscr{J} -classes in $J_a \times J_b$ are of the form $J_{(a_i,b)}$, if 2 holds, then the \mathscr{J} -classes in $J_a \times J_b$ are of the form $J_{(a,b_i)}$, $i \in I$. If 3 holds, then we get the following possibilities:

(a) the \mathcal{J} -classes are of the form $J_{(a_i,b)}$, if $S_2b = S_2J_b$ and the case 1 occurs;

(b) the \mathscr{J} -classes are of the form $J_{(a,b_i)}$, if $S_1a = S_1J_a$ and the case 2 occurs;

(c) $S_1 a \subset S_1 J_a \wedge S_2 b \subset S_2 J_b$. Then there are at least two \mathscr{J} -classes of the form $J_{(a_i,b)}$ and at least two \mathscr{J} -classes of the form $J_{(a,b_i)}$, $i \in I$.

Let $J_{(a,b)}$, $J_{(a_1,b)}$ be any two \mathscr{J} -classes for $a \# a_1$, $J(a,b) \# J(a_1,b)$. Then $J(a,b) = (S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)$, $(a,b) \in (S_1a \times S_2b) \land (a,b) \notin [(aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)]$. Further, $J(a_1,b) = (S_1a_1 \times S_2b) \cup (S_1a_1S_1 \times S_2bS_2)$, $(a_1b) \in (S_1a_1 \times S_2b) \land (a_1,b) \notin [(a_1S_1 \times bS_2) \cup (S_1a_1S_1 \times S_2bS_2)]$.

We claim that $(a_1, b) \notin J(a, b)$. If $(a_1, b) \in J(a, b)$, then $J(a_1, b) \subseteq J(a, b)$. There are only two possibilities: either $J(a_1, b) = J(a, b)$, or $J(a_1, b) \subset J(a, b)$. The first possibility contradicts the fact $J_{(a_1,b)} \# J_{(a,b)}$. If the other possibility occurs, then by Lemma 2 it leads to a contradiction. Therefore, $(a_1, b) \notin [(S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)]$. So $(a_1, b) \notin (S_1a \times S_2b)$, hence $a_1 \notin S_1a$, as $b \in S_2b$. Similarly we can show that $(a, b) \notin J(a_1, b)$ and, moreover, $a \notin S_1a_1$. Let $J_1 \,\subset J_a$ be any proper subset. Hence there exists at least one $a_i \in J_a$ such that $a_i \notin J_1$. Then $S_1 J_1 \subseteq S_1 J_a$. There are only two possibilities: either $S_1 J_1 = S_1 J_a$, or $S_1 J_1 \subset S_1 J_a$. If $S_1 J_1 = S_1 J_a$, then from the relation $c \in S_1 c$ for any $c \in J_a$ we get $J_a \subseteq S_1 J_a = S_1 J_1$. So any element of J_a is contained in $S_1 a_j$ for some $a_j \in J_1$, but this is a contradiction with the fact $a_i \notin S_1 a_j$ for $a_i \# a_j$. Therefore, the other possibilities occurs, namely $S_1 J_1 \subset S_1 J_a$, for any proper subset $J_1 \subset J_a$.

b. As $J_a \times J_b$ contains more than one element, at least one of J_a , J_b contains more than one element. Let J_a contain more than one element and let $S_1J_1 \subset S_1J_a$ for every proper subset $J_1 \subset J_a$. Denote $S_1J_a = L$. Then for any $x \in L$ there is $a_1 \in J_a$ such that $x \in S_1a_1$. By the hypothesis $S_1a \subset S_1J_a = L$. Hence there is $y \in L$ such that $y \notin S_1a$, but $y \in S_1c$ for some $c \in J_a$, c # a. We shall show that $c \notin S_1a$. If $c \in S_1a$, then $S_1c \subseteq S_1a$ and because $y \in S_1c \subseteq S_1a$, so $y \in S_1a$ and this is a contradiction. We also show that $a \notin S_1c$. If $a \in S_1c$, then $S_1a \subseteq S_1c$. Hence we have $L = S_1J_a = S_1J_1$ where $J_1 = J_a - \{a\}$, but this is a contradiction with our assumption that $S_1J_1 \subset S_1J_a = L$ for every proper subset $J_1 \subset J_a$, so $c \notin S_1a$, $a \notin S_1c$.

Consider principal two-sided ideals J(a, b) and J(c, b) in $S_1 \times S_2$ with $a \in J_a$, $c \in J_a$. $J(a, b) = (S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)$, $J(c, b) = (S_1c \times S_2b) \cup (S_1cS_1 \times S_2bS_2)$. We show that J(a, b) # J(c, b). Indeed, $(a, b) \in J(a, b)$, but $(a, b) \notin J(c, b)$, since $(a, b) \notin (S_1c \times S_2b)$ as $a \notin S_1c$. If $(a, b) \in (S_1cS_1 \times S_2bS_2)$, then $a \in S_1cS_1$, $b \in S_2bS_2$. Consequently $a \in S_1cS_1$ implies $a \in S_1aS_1$, hence $(a, b) \in (S_1aS_1 \times S_2bS_2)$ and this contradicts the fact that $(a, b) \notin (aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)$, which is contained in Lemma 3. Similarly $(c, b) \in J(c, b)$, but $(c, b) \notin J(a, b)$, since $(c, b) \notin (S_1a \times S_2b)$ because $c \notin S_1a$, $(c, b) \notin (S_1aS_1 \times S_2bS_2)$, because if $(c, b) \in (S_1aS_1 \times S_2bS_2)$, then $c \in S_1aS_1$, $b \in S_2bS_2$. However, $c \in S_1aS_1$ implies $a \in S_1aS_1$ and then $(a, b) \in (S_1aS_1 \times S_2bS_2)$ and it is a contradiction again. Therefore, for $(a, b) \in J_a \times J_b$, $(c, b) \in J_a \times J_b$, (a, b) # (c, b) we get J(a, b) # J(c, b), so $J_{(a,b)} \subset J_a \times J_b$, $J_{(c,b)} \subset J_a \times J_b$. Hence, $J_a \times J_b$ is the union of at least two \mathscr{J} -classes.

Lemma 4. Let $J_a \times J_b$ contain more then one element. Let $(a, b) \in (aS_1 \times bS_2) \land$ $(a, b) \notin [(S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)]$. Then $J_a \times J_b$ is the union of at least two different \mathscr{J} -classes iff at least for one of J_a , J_b the following holds: $J_1S_1 \subset J_aS_1$, $J_2S_2 \subset J_bS_2$ for any proper subset $J_1 \subset J_a$, $J_2 \subset J_b$, respectively.

Proof. The proof is similar to that of Lemma 3.

From Lemma 3 we get

Theorem 4. Let $J_a \times J_b$ contain more than one element. Let $(a, b) \in (S_1a \times S_2b) \wedge (a, b) \notin [(aS_1 \times bS_2) \cup (S_1aS_1 \times S_2bS_2)]$. Then $J_a \times J_b = J_{(a,b)}$ iff $S_1a = S_1J_a$ and $S_2b = S_2J_b$.

Analogously from Lemma 4 we can obtain

Theorem 5. Let $J_a \times J_b$ contain more than one element. Let $(a, b) \in (aS_1 \times bS_2) \wedge (a, b) \notin [(S_1a \times S_2b) \cup (S_1aS_1 \times S_2bS_2)]$. Then $J_a \times J_b = J_{(a,b)}$ iff $aS_1 = J_aS_1$ and $bS_2 = J_bS_2$.

R e m a r k 2. It is known (see [2]) that in the case of \mathscr{L} -classes (\mathscr{R} -classes) the situation is as follows: If $|L_a \times L_b| > 1$, then $L_a \times L_b$ is the union of at least two \mathscr{L} -classes iff $|L_a| > 1$ and $L_b = \{b\}$, $b \notin S_2b$, or $L_a = \{a\}$, $a \notin S_1a$ and $|L_b| > 1$ and any \mathscr{L} -class in $L_a \times L_b$ is one-element. If $|L_a| > 1$ and $|L_b| > 1$ then $L_a \times L_b = L_{(a,b)}$.

In the cases of \mathcal{J} -classes the situation is different, as we can see from the following example.

Example 2. Let $S_1 = \{a_1, a_2, a_3, a_4\}$ and let an associative binary operation be given by means of the following table:

	a_1	a_2	a_3	a_4
a_1	a_1	a_1	a_1	a_1
a_2	a_1	a_2	a_2	a_2
a_3	a_1	a_2	a_3	a_4
a_4	a_1	a_2	a_3	a_4

$$J_{a_3} = \{a_3, a_4\}, S_1 a_3 = \{a_1, a_2, a_3\}, a_3 S_1 = S_1, S_1 a_3 S_1 = S_1.$$

 $S_2 = A \cup B \cup \{0\}$, where A is the infinite cyclic group generated by an element $\{a\}$, $B = \{\dots, b_{-2}, b_{-1}, b_0, b_1, b_2, \dots\}$, $\{0\}$ is zero in S_2 . An associative binary operation is defined as follows: $a^i \cdot b_j = b_{i+j}, b_j \cdot a^i = b_i \cdot b_j = 0$.

$$\begin{split} S_2a^i &= A \cup \{0\}, \ a^iS_2 = S_2, \ S_2a^iS_2 = S_2, \ J(a^i) = S_2, \ J_{a^i} = A \\ S_2b_i &= B \cup \{0\}, \ b_iS_2 = 0, \ S_2b_iS_2 = 0, \ J(b_i) = B \cup \{0\}, \\ J_{b_i} &= B, \ J(0) = \{0\}, \ J_0 = \{0\}. \end{split}$$

Let us consider the direct product $S_1 \times S_2$, J_{a_3} in S_1 , J_{b_i} in S_2 . Then $J_{a_3} \times J_{b_i} = \{a_3, a_4\} \times B$. Consider the principal two-sided ideals $J(a_3, b_i)$ and $J(a_4, b_i)$ in $S_1 \times S_2$. We have

$$J(a_3, b_i) = (a_3, b_i) \cup (S_1 a_3 \times S_2 b_i) \cup (a_3 S_1 \times b_i S_2) \cup (S_1 a_3 S_1 \times S_2 b_i S_2)$$

= $(a_3, b_i) \cup \{a_1, a_2, a_3\} \times \{B \cup 0\} \cup (S_1 \times \{0\}) \cup (S_1 \times \{0\})$

331

$$= \{a_1, a_2, a_3\} \times \{B \cup \{0\}\} \cup (S_1 \times \{0\})$$

$$= \{a_1, a_2, a_3\} \times \{B \cup \{0\}\} \cup \{(a_4, 0)\}$$

$$= \{a_1, a_2, a_3\} \times B \cup (S_1 \times \{0\}),$$

$$J(a_4, b_i) = (a_4, b_i) \cup (S_1 a_4 \times S_2 b_i) \cup (a_4 S_1 \times b_i S_2) \cup (S_1 a_4 S_1 \times S_2 b_i S_2)$$

$$= (a_4, b_i) \cup \{a_1, a_2, a_4\} \times \{B \cup \{0\}\} \cup (S_1 \times \{0\})$$

$$= \{a_1, a_2, a_4\} \times \{B \cup \{0\}\} \cup (S_1 \times \{0\})$$

$$= \{a_1, a_2, a_4\} \times \{B\} \cup \{(a_3, 0)\}$$

$$= \{a_1, a_2, a_4\} \times \{B\} \cup (S_1 \times \{0\}).$$

It is evident that $J(a_3, b_i) \neq J(a_4, b_i)$, because $J(a_3, b_i)$ contains elements of the form $\{(a_3, b_i)\}$ that do not belong to $J(a_4, b_i)$, and conversely $J(a_4, b_i)$ contains elements of the form $\{(a_4, b_i)\}$ that do not belong to $J(a_3, b_i)$. Hence $J_{a_3} \times J_{b_i} = \{a_3, a_4\} \times \{B\}$ is decomposed into two \mathscr{J} -classes, namely $J_{(a_3, b_i)}, J_{(a_4, b_i)}$, and each of them contains infinite number of elements, but none of them is a two-sided antiideal in $S_1 \times S_2$.

$\mathbf{2}.$

In this part we shall investigate the mutual relation between $J_{(a,b)}$ and $J_a \times J_b$ in $S_1 \times S_2$ provided J_a is a maximal \mathscr{J} -class in S_1 , J_b is a maximal \mathscr{J} -class in S_2 .

Remark 3. If J_a is a maximal \mathscr{J} -class in S_1 , then $M_a = S - J_a$ is a maximal two-sided ideal in S and conversely ([4]).

For the factor semigroup S/M_a exactly one of the following two possibilities occurs ([6]):

1. $(S/M_a)^2 = \overline{0}$ and S/M_a is a two-element semigroup, $J_a = \{a\}, a \in S - S^2$;

2. $S/M_a = \overline{S}$ is a 0-simple semigroup and for every nonzero element $\overline{a} \in \overline{S}$ we have $\overline{S}\overline{a}\overline{S} = \overline{S}$, hence $a \in SaS$ for $a \in J_a = S - M_a$.

Lemma 5 ([6]). Let J_a be a maximal \mathscr{J} -class in a semigroup S and $|J_a| > 1$. Then $a \in SaS$.

Theorem 6. Let J_a be a maximal \mathcal{J} -class in S_1 , J_b a maximal \mathcal{J} -class in S_2 , and let $|J_a| > 1$ and $|J_b| > 1$. Then

$$J_{(a,b)} = J_a \times J_b.$$

Proof. The statesment follows from Lemma 5 and Theorem 3.

332

Corollary. Let J_a be a maximal \mathscr{J} -class in S_1 , J_b a maximal \mathscr{J} -class in S_2 . If $J_a \times J_b$ is the union of at least two \mathscr{J} -classes in $S_1 \times S_2$, then either 1. $|J_a| > 1$ and $J_b = \{b\}$, or

2. $J_a = a \text{ and } |J_b| > 1.$

Lemma 6. Let J_a be a maximal \mathscr{J} -class in S_1 , J_b a maximal \mathscr{J} -class in S_2 and let $J_{(a_1,b_1)} \subset J_a \times J_b$, $J_{(a_2,b_2)} \subset J_a \times J_b$, $J_{(a_1,b_1)} \neq J_{(a_2,b_2)}$. Then either 1. $|J_a| > 1$, $J_b = \{b\}$, $b \in S_2 - S_2^2$, or 2. $J_a = \{a\}$, $a \in S_1 - S_1^2$, $|J_b| > 1$ and $J_{(a_1,b_1)}$, $J_{(a_2,b_2)}$ are uncomparable.

Proof. From the Corollary of Theorem 6 we get that either 1. $|J_a| > 1$ and $J_b = \{b\}$, or 2. $J_a = \{a\}$ and $|J_b| > 1$. Let 1 hold. Then $b_1 = b_2 = b$. As both J_a and J_b are maximal \mathscr{J} -classes, then, since $|J_a| > 1$, we have $a \in S_1 a S_1$. However, $J_b = \{b\}$, therefore there are only two possibilities:

(i) $b \in SbS$,

(ii) $b \in S_2 - S_2^2$ by Remark 3.

If $b \in S_2bS_2$, then by Theorem 3 we have $J_{(a,b)} = J_a \times J_b$, a contradiction to the hypothesis, therefore $b \in S_2 - S_2^2$ holds. Hence $b \notin (S_2b \cup bS_2 \cup S_2bS_2)$. It remains to show that $J(a_1,b)$, $J(a_2,b)$ are uncomparable. We have $(a_1,b) \in J(a_1,b)$ but $(a_1,b) \notin J(a_2,b)$ since $(a_1,b) \neq (a_2,b)$ as $a_1 \neq a_2$, and $(a_1,b) \notin [(S_1a_2 \times S_2b) \cup (a_2S_1 \times bS_2) \cup (S_1a_2S_1 \times S_2bS_2)]$ since $b \notin (S_2b \cup bS_2 \cup S_2bS_2)$. Similarly $(a_2,b) \in J(a_2,b)$, but $(a_2,b) \notin J(a_1,b)$.

Theorem 7. Let J_a be a maximal \mathcal{J} -class in S_1 , J_b a maximal \mathcal{J} -class in S_2 . Then either

1. $J_a \times J_b$ is a maximal \mathcal{J} -class in $S_1 \times S_2$ or

2. $J_a \times J_b$ is the union of at least two maximal \mathcal{J} -classes in $S_1 \times S_2$.

Proof. With regard to Lemma 3 it is sufficient to show that if $J_{(a_1,b_1)} \subseteq J_a \times J_b$, then $J(a_1,b_1)$ is not contained as a proper subset in any principal ideal of $S_1 \times S_2$.

Suppose that there exists such an element $(u, v) \in S_1 \times S_2 - J_a \times J_b$ that $(a_1, b_1) \subset J(u, v)$. Then

$$(a_1,b_1) \cup (S_1a_1 \times S_2b_1) \cup (a_1S_1 \times b_1S_2) \cup (S_1a_1S_1 \times S_2b_1S_2)$$

$$\subset (u,v) \cup (S_1u \times S_2v) \cup (uS_1 \times vS_2) \cup (S_1uS_1 \times S_2vS_2).$$

Since $(a_1, b_1) \neq (u, v)$, then

$$(a_1,b_1) \in [(S_1u \times S_1b) \cup (uS_1 \times vS_2) \cup (S_1uS_1 \times S_2vS_2)].$$

333

If e.g. $(a_1, b_1) \in (S_1u \times S_2v)$, then $a_1 \in S_1u$ and $b_1 \in S_2v$. Hence $J(a_1) \subseteq J(u)$ in S_1 and $J(b_1) \subseteq J(v)$ in S_2 . If both $J(a_1) = J(u)$ and $J(b_1) = J(v)$, then $u \in J_{a_1}$ and $v \in J_b$ and $(u, v) \in J_a \times J_b$, a contradiction. Therefore either $J(a_1) \subset J(u)$, or $J(b_1) \subset J(v)$. It means that either J_a in S_1 or J_b in S_2 is not a maximal \mathscr{J} -class and this contradicts the hypothesis. For the remaining possibilities $(a_1, b_1) \in (uS_1 \times vS_2)$, $(a_1, b_1) \in (S_1uS_1 \times S_2vS_2)$, we could proceed analogously.

Corollary. Let J_a be a maximal \mathscr{J} -class in S_1 and $|J_a| > 1$, $J_b = \{b\}$, $b \in S - S^2$ a maximal \mathscr{J} -class in S_2 . Then $J_a \times J_b$ is the union of maximal \mathscr{J} -classes in $S_1 \times S_2$ and each of them is one-element of the form $J_{(a_i,b)} = \{(a_i,b)\}, a_i \in J_a$.

Theorem 8. Let $u \in S_1$ be any element, $b \in S_2 - S_2^2$ $(a \in S_1 - S_1^2, v \in S_2$ any element). Then $J_{(u,b)} = \{(u,b)\}$ $(J_{(a,v)} = \{(a,v)\})$ is a maximal \mathscr{J} -class in $S_1 \times S_2$.

Proof. Let $u \in S_1$ be any element, $b \in S_2 - S_2^2$. Then $b \notin (S_2b \cup bS_2 \cup S_2bS_2)$, hence b is an antiideal in S_2 . Then $(u, b) \in S_1 \times S_2$ is an antiideal in $S_1 \times S_2$ and by Theorem 2 we have $J_{(u,b)} = \{(u,b)\}$. To prove that $J_{(u,b)}$ is maximal in $S_1 \times S_2$, it is sufficient to show that (u, b) is undecomposable in $S_1 \times S_2$. As $u \in S_1$, $b \in S_2$, then $(u, b) \in (S_1 \times S_2)$. But $b \in S_2 - S_2^2$, so $b \notin S_2^2$, and therefore $(u, b) \notin (S_1^2 \times S_2^2) =$ $(S_1 \times S_2)^2$. This implies $(u, b) \in (S_1 \times S_2) - (S_1 \times S_2)^2$, hence $J_{(u,b)} = \{(u,b)\}$ is maximal.

Theorem 9. Let $J_{(a,b)}$ be any maximal \mathcal{J} -class in $S_1 \times S_2$. Then either

1. $J_{(a,b)} = J_a \times J_b$, where J_a is a maximal \mathcal{J} -class in S_1 , J_b a maximal \mathcal{J} -class in S_2 , or

2. $J_{(a,b)} = \{(a,b)\}$, where $a \in S_1$ is any element, $b \in S_2 - S_2^2$, or $a \in S_1 - S_1^2$ and $b \in S_2$ is any element.

Proof. As $J_{(a,b)}$ is a maximal \mathscr{J} -class in $S_1 \times S_2$, then $S_1 \times S_2 - J_{(a,b)} = M_{\alpha}$ is a maximal ideal in $S_1 \times S_2$ and for the factor-semigroup $(S_1 \times S_2)/M_{\alpha}$ either

(a) $(S_1 \times S_2)/M_{\alpha}$ is a 0-simple semigroup and for $(a, b) \in (S_1 \times S_2) - M_{\alpha} = J_{(a,b)}$ we have $(a, b) \in (S_1 \times S_2)(a, b)(S_1 \times S_2)$, or

(b) $[(S_1 \times S_2)/M_{\alpha}]^2 = \overline{0}$ and $(S_1 \times S_2)/M_{\alpha}$ is a two-elements zero semigroup.

In the case (a) $(a, b) \in (S_1aS_1 \times S_2bS_2)$, so $a \in S_1aS_1$ and $b \in S_2bS_2$. Then $J_{(a,b)} = J_a \times J_b$ by Theorem 3. It remains to show that J_a is maximal in S_1 , J_b is maximal in S_2 . If J_a is not a maximal \mathscr{J} -class in S_1 , then there is $u \in S_1 - J_a$ such that $J(a) \subset J(u)$. Then $J(a) = S_1aS_1 \subset (u \cup S_1u \cup uS_1 \cup S_1uS_1)$. It implies that $a \in (S_1u \cup S_1uS_1)$. If e.g. $a \in S_1u$, then $S_1aS_1 \subseteq S_1uS_1$. Further, $J(a, b) = (S_1aS_1 \times S_2bS_2) \subseteq (u, b) \cup (S_1u \times S_2b) \cup (uS_1 \times bS_1) \cup (S_1uS_1 \times S_2bS_2) = J(u, b)$. Now there are two possibilities: either J(a, b) = J(u, b), or $J(a, b) \subset J(u, b)$.

If J(a,b) = J(u,b), then $(u,b) \in J_{(a,b)} = J_a \times J_b$, therefore $u \in J_a$, which means J(u) = J(a), a contradiction to $J(a) \subset J(u)$.

If $J(a,b) \subset J(u,b)$, then we have a contradiction to the hypothesis. Therefore J_a is a maximal \mathscr{J} -class in S_1 . Similarly we can show that J_b is a maximal \mathscr{J} -class in S_2 .

In the case (b) $(S_1 \times S_2) - M_\alpha = J_{(a,b)} = \{(a,b)\}$ and the element (a,b) is undecomposable in $S_1 \times S_2$, so $(a,b) \in (S_1 \times S_2) - (S_1 \times S_2)^2$. It means $(a,b) \notin (S_1 \times S_2)^2 = (S_1^2 \times S_2^2)$. Hence either $a \notin S_1^2$, or $b \notin S_2^2$. Therefore the \mathscr{J} -class $J_{(a,b)} = \{(a,b)\}$ is of the form: $a \in S_1$ is any element, $b \in S_2 - S_2^2$ or $a \in S_1 - S_1^2$, $b \in S_2$ is any element.

References

- Clifford A. H., Preston G. B.: The algebraic theory of semigroup, Vol. I. American Math. Society, Providence, 1961.
- [2] Fabrici I.: One-sided principal ideals in the direct product of two semigroup. (submitted to Math. Bohemica).
- [3] Fabrici I.: Principal two-sided ideals in the direct product of two semigroups. Czechoslovak Math. Journal 41 (1991), 411-421.
- [4] Fabrici I., Macko T.: On bases and maximal ideals in semigroups. Math. Slovaca 31 (1981), 115-120.
- [5] Howie J. M.: An introduction to semigroup theory. Academic Press, 1976.
- [6] Schwarz S.: On maximal ideals in the theory of semigroups I. Czechoslovak Math. Journal 78 (1953), 139-153.
- [7] Schwarz S.: On maximal ideals in the theory of semigroups II. Czechoslovak Math. Journal 78 (1953), 365-383.

Author's address: Department of Mathematics, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia.