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ON A RESULT OF J. JOHNSON 

KAMIL JOHN, Praha 

(Received March 3, 1993) 

J. Johnson proved in [4] that if Y is a Banach space having the bounded ap

proximation property then the anulator K(X,Y) in L(X,Y)* is the kernel of a 

projection P in L(X, Y)*. Here X is an arbitrary Banach space and K(X,Y) = K, 

L(X,Y) — L, denote respectively the space of all compact or bounded operators / : 

X —> Y. Moreover, the range space of the projection P is isomorphic to K*. In [3] 

the same statement was shown to be true for the spaces X = P and Y = P* where 

P is any separable Pisier space. Notice that here Johnson's result cannot be applied 

since P* (and P) do not even have the approximation property The proof in [3] was 

based on the fact that every / : P —> P* is factorable through a Hilbert space. In 

this note we observe (see Proposition 2 and Remarks 1 and 2) that Johnson's result 

holds for any couples of Banach spaces X, Y such that any / : X —> Y is factorable 

through a Banach space Z, Z* having the bounded approximation property and Z* 

being separable. In fact much weaker assumptions are shown to be sufficient for J. 

Johnson's result (Proposition 1 and Remark 5). 

Following N. Kalton [6] we denote on by w' the topology L(X,Y) — L (projec-

tively) generated by all x** ® y* where x** G X** and y* G Y*. Thus we write 

fn ^> / to denote that for any x**, and y* we have x** (f*(y*)) -> x**(f*(y*)). We 

will make crucial use of the following result of Kalton: 

(K) If {/n} C K is a sequence of compact operators such that / n —> / and if / : 

x —> y is compact then fn —> / in the weak topology of L(X, Y). 

We say that the operator f:X —> Y is factorable through a Banach space Z if 

/ = fif'2 where f2: X —> Z and / i : Z —> Y are operators. All operators in the 

paper are bounded linear operators. 

Propos i t ion 1. Let X, Y be Banach spaces such that for every f G L(X, Y) — L 

there is a sequence {fn} C K(X,Y) = K such that fn —> / . Then there exists a 

continuous bilinear form J: K* x L —> R (scalars) and a number c > 0 such that 
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a)iffeK andQe K* then J($,/) = $ ( / ) ; 
b) |J ($ , / ) | ^ c||$|| • ll/H for allfeL and $ G K*; 

c) J($,f) = lim<I>(/n) where {/n} is any sequence of compact operators fn e K 
tending w' to f. 

P r o o f . First we observe that if fn --̂ -» f,feL and fn e K then l im$( / n ) 
exists for all $ G K*. Indeed, {$(fn)} is bounded by the uniform boundedness 
principle and thus limsup$(/n) = lim$(/nfc) and liminf$(/n) = lim<l>(/TniJ for 

n k n k 

suitable subsequences {nk} and {nik} of natural numbers. Thus l imsup$(/n) — 

liminf $ ( / n ) = lim $(fnk ~fmk) = 0, because fnk -fmk -» 0 weakly by (K). Similarly 
k 

we show that if fn ----•> / and #n -^-» / with {/n} C J\" and {gn} C AT then 

l im$( / n ) = lim$(gn) for any $ G AT*. Thus we may define J($, / ) by c). J is 

evidently bilinear and if / € AT then J($,/) = l im$( / n ) = $ ( / ) because / n = 

/ —•> / . To show b) let us assume 

(i) there is c > 0 such that for any / G L there is {/n} C K with fn ----» / and 

ll/n|Kc||/||. 
If (i) is satisfied and $ G K* then 

| J ( * , / ) | = | lim * ( / n ) | < ||*|| sup | | /n | | < c||$|| • | |/ | | . 

To complete the proof it is sufficient to show (i). • 

Lemma. Let X, Y be such that for every f G L(X, Y) there is a sequence {fn} C 
w' 

K(X,Y) such that fn —> f. Then the condition (i) is satisfied. In deed, the norm 

in-in 
l / l = inf{sup | |/n | | ; /„ C K, /„ - ^ / } for / € L(X, Y) 

n 

is an equivalent norm on L(X,Y). 

P r o o f . The uniform boundedness theorem yields that if fn —> f then {/n} is 
bounded in the norm so that | | / | is finite. We observe that || • || ^ ||| • ||| on L. In fact 

for any e > 0 let ||x|| ^ 1 and ||y*|| ^ 1 be such that 

11/11 -e^\y* (f(x)) | = lim \y* (fn(x)) \ ^ sup | |/n | | . 

Passing to the infimum gives the claim. Evidently ||| • ||| is a norm on L. Now we 
observe that (L, ||| • |||) is complete. To prove this it is sufficient to show that if fp G L, 

OO CO 

Z 11/pffl < oo then £ /„ 6 L exists in L and ||| £ /p | | <_ £ I/P1I (d- Theorem 6.2.3 
p=:l p = l 
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[7]). To see this let fnp G K be such that fnp ^ fp, sup | | / n p | | ^ | / p | | + ^ . If 
71 n 

||x**|| ^ 1, \\y*\\ ^ 1 then we have 

k**(/np(2/*))|^I/p»l + ^ for all n. 

Thus Ylx**(fnP(y*)) converges uniformly in n and 

(1) l i m 5 > " (/;>•)) =^lim^(/:p(2/*)) = 5>**(/;(y*)). 
p = l p = l p = l 

oo 
Observe now that ^ fP € L exists because ||/p | | ^ | / p | and similarly also ^ /nP € 

p p = i 
A' exists because K is || ||-complete. Thus (1) implies that 

z^fnp-^2-^ fp 

Then I E / P » K sup || £ / n p | | ^ sup £ | | /np | | ^ £ + £ | / p | , showing that ||| £ /p | | ^ 
n p n p p p 

X! Ill/pi- Finally, the open mapping theorem gives that ||| • ||| ^ §1| • || which implies 

(i). D 

Proposition 2. Suppose that every f G L(X,Y) is factorable through a Banach 

space Z, f = /1/2 (Z depending on f) such that Z* is separable and has the 

approximation property. Then for every f G L there is a sequence {fn} C K with 

fn —t f, i.e. the assumptions of Proposition 1 are satisfied. 

P r o o f . Under the assumptions Z* has the metric approximation property. Let 

/ = /1/2 be any factorization of / G L through the Banach space Z, let pn(z*) —•» z* 

for every z* G Z*. We may suppose that pn = P* where Pn G K(Z), \\Pn\\ ^ 1 are 

finite-dimensional operators [5]. Let us define fn = /iFn/2 G K. Then fn —> / . 

• 

R e m a r k 1. J gives rise to two isomorphic imbeddings: 

JK:K*->L* JK*(f) = J(*,f) 

and 

JL:L^K** JLf($) = J ( $ , / ) , JL = J*K/L. 
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Evidently JLf = f if f e K. 

Moreover, 

| |$ | | ^ \\JK*\\ <c | | $ | | for all $ G IT 

and 

11/11 ^ I P L / I I < cll/H for all / G L. 

Thus J/< and J/, are c isomorphisms and HJ/cll ^ c, ||JL|| ^ c. 

P r o o f . Indeed, given / G L and o O w e have for suitable ||x|| = 1, ||u*|| = 1 

| | / | | " ^ | y * ( / ( x ) ) | = | l imx(/ ; (y*)) | 

= |J(o;®3/*,/)| = | J L / ( a ;®y*) | 

< sup{ | J L / (* ) | ; | | * | | < 1 } = | | J L / | | . 

Similarly | |$ | | = sup{ |*( / ) | ; f e K; | | / | | ^ l } . But * ( / ) - J($,/) = JK$(f). 
Thus 

11*11 < sup { |J**(/) | ; / G F; H/ll ^ 1} = ||JK*||. 

• 
Remark 2. If Re : L* -» A"* is the restriction operator then P = JK Re is a 

projection in L* whose range is c-isomorphic to K* and KerP = K°. 

This is J. Johnson's type of statement and it follows immediately from Remark 1. 

Remark 3. Let every / G L(X, Y) be factorable as indicated in the assumption 
of Proposition 2. Let us put 

p(/) = inf | | / i | | - | | / 2 | | 

where the infimum is taken over all factorizations of / through any Z such that Z* 

has the bounded approximation property and is separable. Then 

a) p is an equivalent norm on L(X,Y); 

b) for every e > 0 there are fn G K such that 

U^+f and p ( / n K ( l + e ) p ( / ) . 

Thus 

bi) | J ( * , / ) | ^ p * ( $ ) p ( / ) for / G Land $ e K*. 

Easy observations similar as in Remark 1 give that JK and JL are p-isometries 
and p(P) - 1. Thus K is an ideal in (L,p) in the terminology of [2]. The question 
when e.g. (L,p) is a H-ideal or an M-ideal will be treated in a subsequent paper. 
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P r o o f . We show e.g. a). As in the proof of Proposition 1 we have || • || ^ p(-) on 

L. Evidently p is subadditive. In fact, let fi = BiAi be factorizations of fi through 

suitable Z{ so that £ HA Î • ||JB.£|| ^ e + £ > ( / ; ) , \\A{\\ = | |£; | | . Let us put 
i i 

Z = (Zi)t2 and A = (A{): X -> Z, 

B-.Z^Y, B({Zi}) = ZBi(zi). Then p | | 2 < £ ||A.||2 and | | 5 | | 2 = | |£*| |2 ^ 

EIIBill2- Thus 

p ( £ * ) < Mil • IWI ^ £11*11 • iî n < *+£?(/*)• 

To see that (F,p) is complete it suffices as in the proof of the Lemma to show the 
following: Let / ; G L be such that Ylp(fi) < °°- Then ^2 fi G L and p($2 fi) ^ 
^2p(fi)> But this is exactly the above proof of the subadditivity of p. • 

Remark 4. The isomorphism JL : L —>> K** together with the local reflexivity of 
K gives: Under the assumptions of Proposition 1 the Banach space L is (c+£)-finitely 
representable in K so that the representations are the identity on K. 

Remark 5. It is not necessary to assume in Proposition 2 that Z* is separable. 
In fact, the following is sufficient for the statement of Proposition 2 (and for Re
mark 3): Every / G L is factorable through a Banach space Z, f — / i / 2 (Z depend
ing on / ) such that Z* has the bounded approximation property and f{(Y*) C Z* 
is separable. 

Remark 6. Another modification of Proposition 2 is the following: 
Suppose that every / E L(X,Y) is factorable through a Banach space Z, (Z 

depending on / ) such that there is a sequence {Pn} in the unit ball of K(Z) such 
that Pn —» Idz in the weak operator topology and such that Z has the property (**) 
defined in [1, p. 678]. Then the assumptions of Proposition 1 are satisfied. 

In order to have (**) it is sufficient that Z has the unique extension property in 
the sense of [1]. 

Acknowledgement. The author is indebted to Gerhard Racher and Dirk Werner 
for valuable discussions on the subject. 
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