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IN UPPER CONTINUOUS LATTICES 

ANDRZEJ WALENDZIAK, Warszawa 

(Received August 30, 1988) 

1 . INTRODUCTION 

Let L be a complete lattice. Lattice join, meet, inclusion and proper inclusion are 
denoted respectively by the symbols V, A, -$ and <. Let 0 be the least element of L, 
and 1 the greatest element of L. 

An element m G L is called irreducible if and only if, for all x,y G F, m = x A y 

implies m = x or m = y. M(L) is defined to be the set of all irreducible elements 
of L. 

If a is an element of the lattice L, then a representation a = [\T with T C M(L) 

is called a (meet) decomposition of a. A decomposition a = f\ T is irredundant if 
/\(T - {t}) ^ a for all t G T. 

If every element of L has exactly one irredundant decomposition, then we say that 
L has unique irredundant decompositions. 

A complete lattice L is called upper continuous iff, for every a G L and for every 
chain C C L, aA\f C = \J(a Ac: cE C). 

For two elements a, b G L (a < b) we define 

b/a := {x: a ^ x ^ b}. 

If b/a = {a,b}, then we say that b covers a, notation a -< b. A lattice L is said 
to he weakly atomic if, for every pair of elements a, b G L with a < b, there exist 
elements it, v G L such that a ^ u -< v ^ b. 

L is strongly atomic if, whenever a < b, there is an element p G L with a -< p ^ b. 
In a complete strongly atomic lattice L, for each a G L let P a denote the set of all 
elements covering a, and we set ua = \/ Pa-

If for every a G L the sublattice ua/a is distributive, then we say that L is locally 
distributive. 
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We know that each element of an upper continuous weakly atomic lattice has a 
decomposition ([3], p. 338). Furthermore, if an upper continuous lattice L is strongly 
atomic, then every element of L has an irredundant decomposition ([4], Theorem 10). 

In this paper^we prove the following 

Theorem. An upper continuous strongly atomic lattice L has unique irredundant 

decompositions if and only if L is locally distributive. 

2. SOME LEMMAS 

We start this section with the following 

Lemma 1. If a,b are elements of an upper continuous strongly atomic lattice L 

and a^b, then there exists an element m e M(L) such that m ^ a and m J£ b. 

P r o o f . Since L is strongly atomic and a < aV b, there exists an element p e L 
such that a -< p ^ a V b. Let 

T := {x e L: x ^ a, x ^ p}. 

T is nonempty, since a e T. Let C be a chain in T. Then upper continuity yields 

p/\\J C = \/(pAc: ceC) = a. 

Thus \J C e T, and by Zorn's lemma T contains a maximal element m. Clearly, 
m e M(L), m ^ a and m ^ b. • 

In the proofs of Theorems 3.7 and 7.3 from [1] it was not used that L is an algebraic 
lattice, only that L is upper continuous. Therefore, Lemmas 2 and 3 below can be 
proved analogously, and their proofs will be omitted. 

Lemma 2. If an upper continuous, strongly atomic lattice L has the property 
that, for all a,b e L, a A b -< a,b implies a, b -< a V b, then L is semimodular. 

In view of this lemma, every locally distributive, upper continuous, strongly atomic 

lattice is semimodular. 

Lemma 3. If a,b,p\,p2 are elements of a locally distributive, upper continuous, 

strongly atomic lattice L, and if pi,p2 G Pn, b A (pi V p2) = a and p\ V b = p2 V b, 

then pi = p2. 

194 



By Zorn's lemma we get 

Lemma 4. Let L be an upper continuous lattice and let a,b,c G L. If a = b Ac, 

then the set {x G L: x ^ c, a = b A x} has a maximal element. 

The next lemma is a generalization of Lemma 6.2 from [2]. 

Lemma 5. If an upper continuous strongly atomic lattice L has unique irredun-

dant decompositions, then L is semimodular. 

P r o o f . By the proof of Lemma 6.2 ([2], p. 17) we conclude that our lemma 

follows from Lemmas 1 and 4. D 

For our investigations we need the following concept. A subset A of a complete 
lattice L is said to be independent if a A \J(A — {a}) = 0 for all a £ A. 

Lemma 6. Let L be an upper continuous strongly atomic lattice. If an element 
a G L has a unique irredundant decomposition, then Pa is an independent subset of 
1/a. 

P r o o f . Let p be an arbitrary element of the set Pa. Now we prove that 

(1) for every finite subset X of Pa — {p}, p ^\J X. 

Suppose that there is a finite subset Q of Pa — {p} which contains a minimal number 
of elements such that p ^ \J Q. Let q be an element of Q and set s := \/(Q — {<?})• 
Obviously p ^ s. By Lemma 1 there exist irreducible elements m\ and m2 such that 
mi ^ q, m-2 ^ s, ni\ j£ p and 7712 ^ p. Consequently m\ Ap = m2 Ap = a. Lemma 4 
implies that there are maximal elements iv\ ,w2 ^ p such that 7711 Aw\ = m2Aw2 = a. 

Since L is an upper continuous strongly atomic lattice, every element of L has 
an irredundant decomposition. Let w\ = /\T\ and w2 = f\T2 be irredundant 
decompositions of w\ and w2, respectively Then 

a = 7711 A f\T\ = m2 A f\ T2. 

Moreover, these decompositions are irredundant, since /\T\,/\T2 ^ p > a, and the 
maximality of w>\ and w2 implies that /7Ii A /\(T\ ~~ {h}),vi2 A A(^2 - {̂ 2}) > a for 
every t[ G T\ and t2 G T-2. 

Note that 777,1 ̂  T2, otherwise ?7ii ^ w2 ^ p, contradicting m\ ^ p. Since a has a 
unique irredundant decomposition we have ni\ = m2. Therefore ?7ii ^ q and 7̂ 1 ^ s. 

Hence 7771 ^ q V s = \J Q ^ p, a contradiction. Thus we obtain (1). Therefore, by 

2.4 [1] we have p ^ \J(Pa - {p})- Thus Pa is an independent subset of I/O. D 
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Now we will prove 

Lemma 7. Let L be an upper continuous semimodular lattice and let P be the 
set of all atoms of L. If P is an independent subset of L and every element of L is a 
join of elements of P, then L is distributive. 

P r o o f . By Theorem 4.1 from [1], L is both atomic and complemented. Observe 
that 

(2) if 1 = \J T, where F C P , then T = P. 

Indeed, if F ^ P , then there exists an element p G P — F, and hence 

0<p = pA\/T^pA\J(P-{p}), 

contrary to the independence of P . 

Now we prove that L is a uniquely complemented lattice. Let x G L. Suppose 
Hi,it2 G L are such that 

(3 ) x V Hi = x V U2 = 1 

and 

(4) x A Hi = x A H2 = 0. 

Since every element of L is a join of atoms, there are subsets X, Ui, U2 of P such 
that x = V -Y, ui = \/Ui and H2 = V U2. By (3), 1 = \J(X U Ui) = V(A' U U2) and 
from (2) it follows that X U Ui = X U U2 = P . By (4) we have K n Ui = X n U2 = 0. 
Consequently, Ui = U2 and hence Hi = H2. Thus L is a uniquely complemented 
lattice. Then, by Theorem 4.5 [1], L is distributive. • 

Lemma 8. Let L be a locally distributive upper continuous strongly atomic lattice 

and let a G L. Then m ^ a and m ^ ua imply m A ua -< ua for each m G M(L). 

P r o o f . Lemma 2 implies that L is semimodular. Let 

b := m A ua. 

Since m ^ ua we have b < ua. Then there is an element pi G Pa such that p\ ^ b. 
By semimodularity, b -< b Vp\. Suppose that ua does not cover b. Then b Vpi < ua, 

and therefore there exists an element p2 G Pa such that 

(5) P2&bVpi. 

196 



Since b,p\,p2 E ua/a and ua/a is distributive by hypothesis, we obtain 

6A(pi Vp2) = (6 A pi) V(bAp2). 

We have pi ^ b and p2 ^ b, and hence bApi = bAp2 = a. Therefore, bA(p\ Vp2) = a. 

Then 
m A (pi V p2) = m A Ha A (pi V p2) = b A (pi V p2) = a. 

Since b = m A ua J£ pi we conclude that m ^ pi. Also m J£ p2, since otherwise 
b V pi ^ b = ua A m > p2, contrary to (5). Now, by semimodularity, m ~< m V pi 
and ?7i -< m V p2, and as 771 E M(L) and hence is covered by a unique element, we 
conclude that 

771 V p i = 777 V p 2 . 

By Lemma 3 we obtain pi = p2, contrary to (5). Thus m Aua -< ua, and proof of 

Lemma 8 is completed. • 

Finally, we prove 

Lemma 9. Let L be a locally distributive upper continuous strongly atomic lat

tice, and let a be an element of L. If p £ Pa, x,y ^ a and x £ M(L), then 

(6) p A (x V y) = (p A x) V (p A y). 

P r o o f . Suppose the assumptions of Lemma 9 are fulfilled but p A (x V y) > 
(pAx) V (p Ay). Consequently, pA (x Vy) = p and pAx = pAy = a. Then p ^ x Vg, 
p ^ x and p ^ y. Set 

b .= x A y. 

We have b < H, since otherwise y = xAy ^ x and hence p ^ xVy = x, a contradiction. 
Since L is strongly atomic, there is an element q £ L such that b -< </ ^ H. By 
Lemma 2, L is semimodular. The semimodularity of L and the fact that p ^ b imply 
that b -< p V b. We denote w := x A u^. By the assumption, x £ M(L). Note that 
x J£ Ufc, otherwise x ^ H ^ ^ p V b ^ p , contradicting p ^ x. It follows from Lemma 8 
that 

( 7 ) 77J -< Ub. 

We shall prove that w ^ q. Suppose on the contrary that w ^ q. Then x ^ 
xA«(, = w ^ q. But also y ^ q, and hence b = xAy ^ q, & contradiction. Therefore, 
w ^ q. From this and (7) we obtain 

( 8 ) w V G = H/j. 
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Since x ^ p and y ^ p we have w ^ pV b and pV b ^ q. This together with the fact 
that b -< p V b and b -< O yields that 

(pV b) Aw = b and (pV b) Aq = b. 

Since pV b, q, w € ub/b, by the distributivity of itb/b we infer 

(pVb)A(wVq)= [(p V b) A w] V [(p V b) A q] = b. 

On the other hand, by (8), 

(p V b) A (iv V q) = (p V b) A ub = p V b > b. 

This contradiction shows that (6) holds. • 

3. P R O O F OF THEOREM 

Let L be an upper continuous strongly atomic lattice. Suppose that L has unique 
irredundant decompositions. Consider a particular element a G L. 

By Lemma 5, L is semimodular. Lemma 6 implies that Pa is an independent 
subset of ua/a. Therefore, in view of Lemma 7, to show that ua/a is distributive we 
need only to show that each element of ua/a is a join of elements covering a. 

Let x be an arbitrary element of ua/a, and let b be the join in the sublattice ua/a 

of all elements p G Pa for which p ^ x. Suppose that b < x. Since L is strongly 
atomic, there exists an element q G L such that b -< q ^ x. By semimodularity, if 
p G Pa and p ^ b, then b -< pV b. 

Observe that q ^ p V b for every p G Pa. Indeed, if q = po V b for some element 
Po £ Pa, then po ^poVb = q^.x and hence po ^ b. Consequently q = b, a 
contradiction. Therefore 

{PVb:p£Pa, p£b}CPb-{q}. 

Then 
q^x^ua = \/(pVb:pe Pa, p£b)C \J (Pb - {q}), 

contrary to the fact that the set Pb is an independent subset of 1/b. Tims x = b, 
and every element of ua/a is a join of elements covering a. 

Now, suppose that L is locally distributive. Since L is an upper continuous strongly 
atomic lattice, every element of L has an irredundant decomposition. 
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Let a be an arbitrary element of L, and let a = /\ 5 = f\T be two irredundant 
decompositions of a. Pick any element s £ S and set w := /\(S - {s}). Obviously 
w > a. Then, as L is strongly atomic, there exists p G L such that a •< p ^ w. 
Clearly, there must be an element t G T such that c j£ p. Consequently, p A s = 
p At = a. By Lemma 9, 

p A (5 V t) = (p A s) V (p A t) = a. 

Hence p £ sV t. From Lemma 2 it follows that L is semimodular. Therefore 

s -< p V s and t -< pV t. 

Suppose that s ^ t. Then either s V * > s o r . s V £ > £ . If s\/ t > s, then there 
exists v € sVt/s such that s -< v. Since 5 G M(L) and hence is covered by a unique 
element, pVs = v -$ sV£. But this is impossible since p £ sVt. Similarly, if 5Vt > t, 

then p V t ^ s V t . Hence p ^ 5 V ̂ , a contradiction. Therefore s = t, and we infer 
that S = T. Consequently, L has unique irredundant decompositions, and the proof 
of our theorem is complete. 
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