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SOME PROPERTIES OF AN ARCHIMEDEAN £-GROUP 

DAO-RONG TON, Nanjing 

(Received March 30, 1993) 

1. AUXILIARY RESULTS 

We will use the standard notation for ^-groups, cf. [5]. Throughout the paper G is 

an ^-group, R is the real group, Q is the rational group and Z is the integer group. 

If G and H are ^-groups, G ffl H denotes their cardinal sum. Let {Ga \ a G A} be a 

system of ^-groups and let Yl Ga be their product. For an element g G Yl Ga
 w e 

aeA aeA 

denote the a component of g by ga. An £-group G is said to be a subdirect sum of 

^-groups GQ, in symbols G C' y[ GQ, if G is an ^-subgroup of Yl Ga such that for 
aeA aeA 

each a G A and each g' G Ga there exists g G G with the property gQ = g'. An £-

group G is said to be an ideal subdirect sum of ^-groups Ga, in symbols G C* Yl Ga, 
aeA 

if G C' Yl Ga and G is an £-ideal of Yl Ga. We denote the ^-subgroup of Yl Ga 
aeA aeA aeA 

consisting of the elements with only finitely many non-zero components by ^ Ga. 
aeA 

An f-group G is said to be a completely subdirect sum, if G is an ^-subgroup of 

J! Ga and £ GQ C G. 
aeA aeA 

A subset {0} ^ D C G is said to be disjoint, if Oi A g2 = 0 for any pair of distinct 

elements gi, g-2 € D. For any A" C G we designate X1- = {g G G | \g\ A |x| = 0 for 

each T G A"}. For g G G, [O] is the convex ^-subgroup of G generated by O, (g) = g11 

is the polar subgroup of G generated by g. We denote the least cardinal a such 

that |A | ^ a for each bounded disjoint subset A of G by UG, where |A | denotes the 

cardinal of A. G is said to be ^-homogeneous if vH = vG for any convex ^-subgroup 

II ^ {0} of G. If G is an archimedean ^-homogeneous £-group and vG = K;, we call 

G an archimedean D-homogeneous t^-group of K; type. 

In [9] we proved that an ^-group G is complete if and only if G is ^-isomorphic to 

an ideal subdirect sum of real groups, integer groups and continuous U-homogeneous 

complete ^-groups. By using this result, we described the structure of an archimedean 
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£-group in [10]. Suppose tha t G is a subdirect sum of subgroups of reals and v-

homogeneous ^-groups, G C' Yl Ts. Let Ai = {l5 G A | T^ is a subgroup of reals}. 
SEA 

If ~l Ts C G, then G is said to be a semicomplete subdirect sum of subgroups of 
6eAl 

reals and ^-homogeneous ^-groups of Hi type, in symbols 

(1.1) £ T6CGC' l\Ts. 
8eAxCA 8<EA 

T h e o r e m 1.1 (Theorem 4.7 of [10]). An E-group G is archimedean if and only 

if G is ^-isomorphic to a semicomplete subdirect sum of subgroups of reals and 

archimedean v-homogeneous i-groups of Hi type. 

Now let G be an archimedean ^-group. Then we have an ^-isomorphism Q such 

tha t 

£ TSl C QG C' TJ TS, 
(5i€AiCA SeA 

where T$x is a subgroup of reals for each 6\ G Ai C A and Ts is an archimedean v-

homogeneous ^-group of Hi type for each 6 G A \ A i . For x G G put xl — ( . . . x\ .. .) 

such tha t 
! _ j(Qx)s ^G A i , 

X& ~ j o (56 A \ A i . 

We call x1 the real part of x. If for any x G G, the real part T1 G OG, G is said to 

be real decomposable archimedean £-group. In this case, if we put x2 = ( . . . x2 . . . ) 

as follows: 
' 0 « G A i , 

Xs 1 (QX)S SeA\Al 

then 

QX — x1 -f x2, 

and Æ2 — QX - x1 Є QG. P u t 

Gi = {Qxe QG \X EG,(QX)S = 0 f o r 6 e A \ A i } , 

G 2 = {DxG DG | x G G, (DT)* = 0 f o r ( 5 G A i } . 

Then both Gi and G 2 are ^-subgroups of DG, moreover, 

DG = Gi fflG2. 

It is clear t h a t G 2 = R(QG) (the radical of G) and Gi = R(QG)±. 

294 



Corollary 1.2. Let G be a real decomposable archimedean (-group. Then G is 
(^-isomorphic to a cardinal sum G\ EB G2, where G\ is a completely subdirect sum of 
subgroups of reals and G2 is a subdirect sum of archimedean v-homogeneous £-groups 
of^i type. 

So, if G is a real decomposable archimedean £-group, then G = R(G) ffl H(G)±. 

However, in general, R(G) is not a cardinal summand of G. If G is complete or 

laterally complete, then R(G) is a cardinal summand. 

2 . A COMPLETELY SUBDIRECT SUM OF SUBGROUPS OF REALS 

Now we can characterize those ^-groups which can be represented as completely 
subdirect sums of subgroups of reals. 

Theorem 2.1. Let G 7-= {0} be an archimedean (.-group. Then the following 

properties are equivalent: 
(1) G is (-isomorphic to a completely subdirect sum of subgroups of reals; 

(2) G is (-isomorphic to an ideal subdirect sum of real groups and integer groups; 
(3) G has a basis. 

P r o o f . (1) => (2): Without loss of generality, assume 

6eA seA 

where each Ts is a subgroup of R for S G A. Then 

GA C* ft Ts\ 
SeA 

where Tf = R or Z for S € A. 
(2) -=> (1): It is similar to the proof of Theorem l.L 

(1) =-> (3): If we have the formula (1.1), then for each S (E A we choose a fixed ts 

with 0 < ts G Ts; the system {ts \ S € A} is a basis for G. 

(3) => (2): See Theorem 3.5 in [5]. • 

By Theorem 4 and Corollary IV of Chapter 3 in [5] we see that an archimedean 
£-group G has a finite basis if and only if G is ^-isomorphic to a completely subdirect 
sum of a finite number of subgroups of reals. However, a completely subdirect sum of 
a finite number of subgroups of reals is a cardinal sum of a finite number of subgroups 
of reals. So we get 
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Corollary 2.2. An archimedean (-group G has a finite basis if and only if G is 

(.-isomorphic to a cardinal sum of a finite number of subgroups of reals. 

3. HYPER-ARCHIMEDEAN PROPERTY 

An £-group G is called hyper-archimedean if each £-homomorphic image of G is 
archimedean. 

Proposition 3.1. An (-group G is hyper-archimedean if and only if G is pro
tectable and [g] = (g) for each 0 < g G G. 

P r o o f . Necessity. Suppose that G is hyper-archimedean. For any 0 < g G G 

we have gL ffl (g) C G. But gL ffl (g) D g x ffl [g] = G by Theorem 2.4 in [5]. So 

G = g1- ffl (g), and G is projectable. From G = g x ffl [g] = g x ffl (g) we get [g] = (g). 

Sufficiency. If G is projectable and 0 < g G G, then G = g x ffl (g). Since [g] = (g), 

G = g x ffl [g]. Hence G is hyper-archimedean. • 

An £-group G is an a-extension of an ^-group H if and only if H is an ^-subgroup 
of G and the map L —)• LDH is a one-to-one map of the set of all convex ^-subgroups 
of G onto those of H. G is a-closed if it admits no proper a-extension. 

Corollary 3.2. Let G be a hyper-archimedean (-group with a basis. If G is 

a-closed, then G/P ~ R for each proper prime P. 

P r o o f . Let G be an a-closed hyper-archimedean l^-group with a basis. By the 
above Theorem 2.1, without loss of generality, we have 

]TT, CGC' J]T, , 
seA seA 

where each Ts is a subgroup of reals. Let P be a proper prime. By Theorem 2.4 in 

[5] P is maximal and P = {x G G | xs{) = 0 for some S0 G A}. So 

G = TSll ffl P 

and G/P ~ Ts0. If G/P0 fails to be isomorphic to R for some proper prime P0, then 
G' = R ffl Fo 2 Q 3 -°o or G' = H ffl P0 2 Z ffl P0 is clearly an a-extension of G, a 
contradiction. Therefore G/P = H for each proper prime P. D 
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This corollary partly answers the question of the Corollary 2 in [2]. 
Next we discuss the hyper-archimedean kernel Ar(G) of an archimedean ^-group 

G. Ar(G) is a convex ^-subgroup of G which is hyper-archimedean and contains 
every hyper-archimedean convex ^-subgroup of G. An £-group G is continuous if for 
each 0 < x G G there exist x\, x2 G G such that x = x\ + x2, x\ A x2 = 0, x\ ^ 0 
and #2 ^ 0. 

Lemma 3.3. Let G be a complete (laterally complete and archimedean) divisible 

v-homogeneous £-group of Hi type. Then Ar(G) = 0. 

P r o o f . First we can show that a projectable U-homogeneous ^-group of ttz- type 
is continuous. In fact, v[x] = vG = tt; for any 0 < x G G. So there exist 0 < a\ < x 

and 0 < a2 < x such that a\ A a2 = 0. Then G = a± ffl a.^ and so x = xi + x2 with 
xi G a]1 and x2 G ar^. It is clear that x £ a± and x £ a^~. Hence x\ ^ 0, x2 ^ 0. 

Now let G be a complete (laterally complete and archimedean) divisible v-

homogeneous ^-group of Kt- type. Then G is projectable (see [5], [4]) and continuous. 
Consider the Bernau representation ([3]) 

g: G -*G CD(XG). 

For any 0 < x G G there exists a maximal disjoint subset X in G such that x G X. 
By Theorem 3.3 in [6] we can choose g such that x is the characteristic function of a 
clopen subset 5 in XQ. Since G is continuous, G is also continuous. So x = x\ + x\ 

with x} A rrJ = 0 and x\ ^ 0, x^ -̂ 0. For 0 < xf G G we also have x\ = x\ + x'2 with 
x4 A x\ — 0 and X2 ^ 0, X2 7̂  0. We continue to get a sequence {xn | n = 1, 2, . . .} 
in G such that 

xn = XS (x i ) , xn A x n i = 0 (71 ^ m ) 

and 

S ( ^ ) C S(x), S(xl
n) n 5 ( a i ) = 0 (n -4 m), 

where 5(xn) is the support of xn and Xs(xl) is the characteristic function on S(xn). 
Put 

i "" 

— xn and x = \J xn = — xl and x = \ / (G)x„ 

Then x n , x G G. Now (x A nx)(t) = - ^ for l G 5 (x n + 1 ) . On the other hand 
[x A (?t + l)x](f) = 0. Therefore 

x A nx = x A (n + l)x. 

This proves that Ar(G) = 0 by Lemma 2.1 in [8]. • 
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Proposition 3.4. Let G be a complete (laterally complete and archimedean) 

v-homogeneous t-group of Hi type. Then Ar(G) = 0. 

P r o o f . By Lemma 3.3, Ar(Gd) = 0 where Gd is the divisible hull of G. For 

any 0 < x G G and any n G IV we have 

* ] G = [ ^ ] G and 4 = ( 
П.) G'<' 

G 

where [x]G is the convex /^-subgroup of G generated by x and [^] is the convex (.-

subgroup of Gd generated by ^, XQ and (^) G f i are polars in G and in G d , respectively. 

Hence 

By Corollary 2.1.1 in [8] we get 

Ar(G) = | - | ([z]°Bxh)= H ( [ ^ " ^ © a ^ ^ ^ ^ 0 -
0<*ЄG 0<xЄG 

nЄN 

D 

Theorem 3.5. Let G be a complete i-group. Then Ar(G) is an ideal subdirect 

sum of real groups and integer groups. 

P r o o f . By Proposition 2.2 in [9], without loss of generality, we have 

seA seA 

where each Ts (6 G A) is R or Z or a complete U-homogeneous /^-group of N; type. 

Put Ai = {6 G A | Ts = R or Z}, A2 = A \ Ai. Assume x G Ar(G). For any 

60 G A 2 and any a^ G Ts0 we have a<,-0 = (... 0 . . . as0 •. • 0 ...) G G. So there exists 

n £ N such that 

x A nas0 = x A (n -f l)a«50. 

Hence 

rr^ A naSo = xSo A (n + l)a<,-0. 

By Lemma 2.1 in [8] this means that x6o G Ar(T^0). However, by Proposition 3.4, 

Ar(T.5()) = 0. So xSo = 0. Therefore 

Ar(G) C' J ] T,. 

298 



By Lemma 2.1. in [8] it is clear that J2 Ts Q Ar(G). Since Ar(G) is convex in G 
SeAr 

and G is convex in Yl Ts, Ar(G) is convex in Yl Ts. So we have 
SeAl c5GAi 

£ T, C Ar(G) C* Y[ T6. 
seAx seAi 

D 

Corollary 3.6. If a complete i-group G is hyper-archimedean, then G is an ideal 

subdircct sum of real groups and integer groups. 

Theorem 3.7. Let G be a complete (-group. Then Ar(G) is dense in G if and 

only if G is an ideal subdirect sum of real groups and integer groups. 

P r o o f. Necessity. By the proof of Theorem 3.5 we have 

J2 Ts C Ar(G) C G C* J ] T5 
seAY seA 

and 

(3A) E r ^ Ar(G) ^ n r*> 
seAl seAi 

where Ts = R or Z {6 <E Ai). Since G is complete, Ar(G)£ Q ]J Ts by (3.1). 
seAl 

Since Ar(G) is dense in G,G = Ar(G)£. Hence 

£ T, C Ar(G) C Ar(G)^ = G C* J ] T,. 
5€Ai 5GAi 

Sufficiency. Let 
^ T, C G C* [ ] T,, 

(SGAj SeAi 

where each Ts = R or Z (S G Ai). Since 

] T 7* C Ar(G) C G, 

Ar(G) is dense in G. D 

Corollary 3.8. Let G be a complete (-group. Then Ar(G) is dense in G if and 
only if G has a basis. 

Theorem 3.7 and Corollary 3.8 partly answer the question and conjecture in [8]. 
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4. PROJECTABILITY 

It is well known that a complete (cr-complete) £-group is projectable. M. An
derson defined some weak concepts of projectability in [1]. An £-group G is called 
subprojectable if for each 0 < x G G and each non-zero polar P C x11 there exists a 
non-zero polar Q such that Q C P and x = Q EB Q1-. G is called densely projectable 
if it has a family T of non-trivial cardinal summands such that if {0} ^ P G F(G) 
then there exists a Q G T such that Q C P, where P(G) is the Boolean algebra of 
all polars in G. 

Suppose that H is an ^-subgroup of an £-group G. H is called a signature for 
G i f P - > P n H i s a Boolean isomorphism from P(G) onto P(H). An £-group G 
is a specker group if it is generated as a group by its singular elements. Assume 
0 < x G G. If x = x\ + #2, #i A :T2 = 0 in G, we call xi (and £2) a component of 
x. We call 0 ^ x G G a specker sign if for each 0 < y ^ a; there exists a non-zero 
component X\ of x in H11. We will say that G has a specker signature if it has a 
signature if it has a signature which happens to be a specker ^-subgroup. 

Let G be an archimedean ^-group. We denote by Ge the essential closure of G 
(see [6]). An element 0 < x G G is said to be saturated if, whenever there exist x\, 

X2 G Ge with x\ A #2 = 0 in Ge such that x = x\ 4- £2, t n e n #1 € G. An archimedean 
^-group G is said to be saturated if each 0 < x G G is saturated. For example, a 
divisible complete £-group is saturated. 

Proposition 4.1. A subprojectable v-homogeneous £-group G of#i type is con

tinuous. 

P r o o f . By Theorem 6 in [7] each 0 ^ x G G is a specker sign. v[x] — vG = tt2-

implies that x is not basic. It follows from Lemma 9 of [7] that G is continuous. • 

Proposition 4.2. A saturated archimedean (.-group is subprojectable. 

P r o o f . Let G be a saturated archimedean £-group. Consider the Bernau rep
resentation 

TT: G - + G C D(XG), 

x -> x G G. 

Let 0 < y ^ x G G. By Theorem 3.3 in [6] the ^-isomorphism n can be chosen so 
that y is the characteristic function of a clopen subset 5 of the Stone space XQ- Put 
S( = S(x) \ S where S(x) is the support of x. Then Sr is also a clopen subset of XG 

and 
S(x) = 5 U S r . 
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So we have 

D(S(x)) =D(S)mD(S'), 

X = X i + x2, 

where xx G D(S), x2 G D(S') and D(S)(D(S')) = {/: S(S') -> (H, ±00) | / is 
continuous and / is real on a dense open subset of S(S')}. Since G is saturated, so 
is G. Hence x 1 G G. It is clear that 

y% = {g G G | S($) C 5} 

(see [3]). So we have xi G H^-. This proves that x is a specker sing. Hence each 
0 ^ i G G is a specker sign. By Theorem 6 in [7], G is subprojectable. D 

Corollary 4 .3. A saturated archimedean v-homogeneous £-group of tt; type is 

continuous. 

From Theorem 7 in [7] we have 

Corollary 4.4. A saturated archimedean £-group has a specker signature. 

In [1] M. Anderson proved that G is subprojectable if and only if each [x] is densely 
projectable. so from Proposition 4.2 we have 

Corollary 4.5. Let G be a saturated archimedean (.-group. Then each [x] (x € G) 

is densely projectable. 

Proposition 4.6. Let G be an archimedean (-group with a basis. Then G is 

subprojectable. 

P r o o f . By Theorem 1.1 we have 

^ T a C G C ' T j T , , 

where each Ts (S G A) is a subgroup of reals. Then for each 5 G A we choose a fixed 
ts with 0 < ts G Ts; the system {ts G Ts \ S G A} is a maximal disjoint subset and 
each ts is a specker sign (each basic is a specker sign). By 4(b) in [7], G has a specker 
signature. It follows from Theorem 7 in [7] that G is subprojectable. D 
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