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1. INTRODUCTION

In this paper we obtain results on the asymptotic behavior of the solutions of the
second order nonlinear differential equation

(*) (a(t)2') + h(t,z,2') + q(t) f(2)g(2) = e(t, 2, 2").

We give conditions which ensure that the solutions of (*) are continuable, conditions
which imply that all solutions are bounded, and conditions ensuring that all o-
certain classes of solutions tend to zero as t — oco. We also include some examples
to illustrate our results. Sets of conditions which guarantee these same conculusions
for special cases of (x) can be found in numerous places in the literature (see [1-9,
11-30]). In addition to being for a more general equation, the results here are new
even when (*) is specialized to the forms previously studied.

2. BOUNDEDNESS AND CONTINUABILITY

Consider the equation

(1) (a(t)x") + h(t,z,2") + q(t) f(x)g(2") = e(t,x,2")
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where a,q: [to,00) = R, f,g: R = R, h,e: [ty,0) x R? — R are continous, a(t) > 0,
q(t) > 0, and g(z') > 0. We will write (1) as the system

' =y,
y' = (=a'(t)y — h(t,z,y) — q(t) f(x)g(y) + e(t, z,y))/a(t).

For any function Q we let Q(t); = max{Q(t),0} and Q(¢)- = max{-Q(t),0} so
that Q(t) = Q(t)+ — Q(t)—. We define G(y) = [J[s/g(s)]ds, F(z) = Iy f(s)ds and

assume that

(2)

3) zf(z) >0 forz #0.

In addition, we assume that there are nonnegative continuous functions k,b,r,w:
[to, 00) = R and constants 0 < m < 1, K; > 0, K, > 0, and C; > 0 such that

(4) le(t,z,y)| < k(t)F*(2) +b(t)G# (y) + (),
(5) —w(t)y® < yh(t,z,y),

(6) 9(y) > Cy,

and

(7) v?/9(y) < IGG(y) + Ko.

We first give a continuability result for (2).

Theorem 1. If (3)—(7) hold and G(y) — oo as |y| — oo, then all solutions of
(2) can be defined for all t > to.

Proof. Suppose there is a solution (z(t),y(t)) of (2) and T > to such that
lim (le()] + ly(®)]] = oo.
t—=T

Define
V(t) = a(t)G(y(t))/a(t) + F(x(t));
then differentiating and applying (3)-(5) and (7) we have

V'(t) = a(t)y(t)y'(t)/a(t)g (y(1)) + G (y(t)) (a(t)/q(t))" + y(t) f (x(t))
= —ad'(t)y*(t)/a(t)g (y(t)) + G (y(t)) (a(t)/q(t))’
+y(t) [e(t, z(t), y(t)) — h(t, x(t),y(t))] /a(t)g (y(t))
< Kyd' (8)-G(y(1))/q(t) + G(y(t))(a(t)/q(t)) +w(t)y®(t)/a(t)g(y(2))
+kOly(OIF? (2())/a()gy(®) + bOly(B)IG % (y(t)/a(t)g(y(t))
+ly@)Ir(t) /() g(y(t)) + I2a' () /q(2).
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From (7),

w(t)y?(t)/q(t) g(y() [K1 (y(t)) + K2]/q(t)
(t)/a(t)) V(t) + Kaw(t)/q(t).

Clearly,

(8) (&)l la(®)F(2(£)/a(Hg(y(1))]* < (K + 1)V (t) + Kaa(t)/a(t).

Next, we have

©)
b(t)|y(B)IG % (y(t))/a(t)g(y(t))
[vamﬂﬂﬂwﬂ»]h2IyﬂquﬂMODﬂ
x 0 (G W O)/a (O] @) fal0) *
< [b(®)/(a(t) UM@@D)KﬂtMU F{a(t)y2(6)/a(Dgy(®) + [a()C() /at)]™}
< [b(®)/(a()a(V)g(y () Fa(t) /alt) F {(a(t)/a(t) K1 Gly(®)) + I2)
+ 1+ a(H)G(y(1)/q()}
< [b(t)/(a(®)g(®)) E)(a(t) [a(t) # Iy + V)V (1) /CF
+waman«mquva>%uewwmm+4w0ﬁ

Also,

(10) I(IM)M() ) < r(t) [a)y?(®)/q(t) + 1] /gy ((«wﬁ
< r(t) [a(t)(K1G(y(t) + K2) /q )l /(a(t)a(t))?
+r(t)/g(y (1) (a(t)q(t)) ?
< KtV (8)/(a(t)q(t)
+7(t) [K2a(t)/q(t) + 1/9(y(1))] /(alt)q(t)) %
Therefore,
V'(t) < PL(t)V () + Pa(t)

where

Py(t) = Ki(a'(t)- + w(t))/a(t) + (a(t)/q(t)}/ (a(t)/q(t))
+ (K1 + 1)k(2) /[a(t)(J( )C1]E + [b()/ (a(t)a() F](a(t) /a(t) ¥ (I + 1)/CF
+ Kair(t)/(a(t)g(t)) 2
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and

Py(t) = Ka(d' ()= +w(t))/q(t) + K2k(t)[a(t)/¢*(£)Ci]?
+[b(0)/(a(t)a(t)) ¥)(a(t) /a()) % (Ka(t) /q(t) + 1)/C}
+1(t)[Kaalt) /a(t) + 1/C1)/(alt)a(t)) =

Now f:; P,(s)ds = K3 for some positive constant K3, so by Gronwall’s inequality
we have

T
V() < [V(t) + Kg]exp/ Pi(s)ds < [V(to) + K3) exp/ P (s)ds.

to

Hence, we see that a(t)G(y(t))/q(t) is bounded on [to,T) and since q(t)/a(t) is
bounded on [tg, 7] we have G(y(t)) is bounded on [ty,7’). But this implies that
y(t) is bounded on [tg,T"). An integration shows that x(¢) is also bounded on [to,T’)
contradicting the assumption that (z(t), y(t)) is a solution of (2) with finite escape
time. O

To obtain a boundedness result for solutions of (1) we will ask that

(1) / °° (¢/(5)/a(s)] ds < oo,

(12) [ o) ats) s < e

(13) [ [rota(oats] ds < o,

(14) [ e tatoran ] tatsyjats’ as <o
(15) [ [eaa?] s < e

(16) [ (o)t ) o) s <
and

(17) F(z) = o0 as |z] = oo.

Theorem 2. If (3)—(7) and (11)—(17) hold, then every continuable solution of
(1) is bounded.
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Proof. Let z(t) be a continuable solution of (1) and define V' as in the proof
of Theorem 1. Then, from the proof of Theorem 1 we have

(18) VI(t) < AV (E) + Pa(t).

Notice that (11) implies that a(t) is bounded from below and (16) implies that
a(t)/q(t) is bounded from above. Hence, a(t) > a; and q(t) > Ksa(t) > Ksa, for
some positive constants a; and I{4. This implies that

Py(t) < Ks(a/(t)- + w(t))/a(t) + Kok(t)/(a(t)g(t))?
+ K7 [b(t)/(a(t)a(t)) })(a(t)/a()) ¥ + Ker()/(a(t)a(t))?

for some positive constants I(;, j = 5,6,7,8. By (11)-(16) we have f:)o P;(s)ds < o0
for i = 1,2. Hence, integrating (18) and applying Gronwall’s inequality we obtain
that V(t) is bounded. Thus, F(z(t)) is bounded and so by (17) z(t) is bounded. O

Corollary 3. If, in addition to (3)—(7) and (11)—(17), G(y) = oo as |y| — oo,
then all solutions of (1) are bounded.

Proof. By Theorem 1 all solutions of (1) are continuable, so by Theorem 2, all
solutions of (1) and bounded. O

Remark. When comparing boundedness results such as Theorem 2 above to
similar results of other authors, some care must be taken in comparing individual
hypotheses. For example, conditions (15) and (16) imply that

(19) / " 1r(s)/a(s)] ds < oo,

but do not imply that

(20) /too[r(s)/a(s)] ds < o0.

On the other hand, conditions (19) and (20) together imply (15), and (16) and (20)
imply (19). Other such subtle interrelationships also exist. In this same spirit, if
k(t) = 0 and b(t) = 0, then it is possible to drop condition (6), i.e., g(y) > C;.
In this case, condition (15) in Theorem 2 would be replaced by (20). Thus, the
conditions on r(t) would not be quite as good as those in Theorem 2, but (6) would
be dropped. The verification of this follows from the the fact that (7) implies that

lyl/9(y) < K1G(y) + Ko,
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holds for all y, and then replacing (10) by the estimate

r()|y()]/q(t)g(y(t)) < r(®)[1 + K 1G(y(t) + IK2]/q(t)
< Kir(t)Gy(t)/a(t) + (1 + Ka)r(t)/q(t).

Remark. Due to the generality of the form of the damping term h(t,z,z’) and
the perturbation term e(t, z,z') as well as the form of the conditions imposed on the
coefficient functions, the continuability and boundedness results above extend many
previously known results of this type for equation (1), such as those in [1-9, 11-30].
For example, the above results show that all solutions of the equation

(t22')' +t22' sin(z") +4t°2%](z")? +1) = ta® tanh(z') + [tIn((z')2 + 1)]% +£2, t> 1,

are continuable and bounded, but it is not possible to conclude this fact from previ-
ously known results.

3. CONVERGENCE TO ZERO

We now impose additional conditions on the functions in equation (1) that are
sufficient to ensure that all continuable solutions of (1) tend to zero as t — oo.
Assume that there exist nonnegative continuous functions a, wy : [tg,00) = R and a
positive constant Cs such that for all bounded x and every constant By > 1

(22) I(t) = / a(s)ds — oo as t = oo,

@) ™ 24/(5)/a(s) — (a(s)a(s))' fa(s)a(s) — Bra(s)/I(s)]_ ds < oo,
(24) at) [a(t) /a(B)]? = o(I(1)), t— o0,

(25) / l(a(s)/a())'] (a(s)a(s))? ds = o(I(t)), t — oo,

0) [ {{wn(s) + bs)as)/a(s)) ¥/ (a(s)als))

to

+ [als) + k(s) + 1‘(.9)]/(](5)} a(s)ds = o(I(t)), t— oo,

(27) g(y) < Cs.



Theorem 4. If conditions (3)—(6), (11)—(17), and (21)—(27) are satisfied, then
every solution z(t) of (1) satisfies z(t) — 0 as t — oo.

Proof. Let z(t) be a solution of (1) and let € > 0 be given. First observe that
conditions (6) and (27) imply (7) with K; = 2C/Cy and K, =0, i.e.,

(28) ¥ /9(y) < KoG(y)

for all y where K¢ = 2C3/C;. Condition (3), together with the arguments given by
Karsai [14] or Scott [23], shows that there exists a positive constant E such that

(29) F(x(t)) - Ex(t)f(=(t)) <e

for t > to. Let E = C,E/Cy; then V(t), as defined in the proof of Theorem 1, can
be rewritten in the form

V(t) = a(t)G(y(t)/q(t) + Ey*(t)a(t)/q(t)g(y(t))
— Ey*(t)a(t)/q(t)g(y(t)) + F(x(t)).

By (28), there exists a positive constant £; such that

Ey*(t)a(t)/q(t)g(y(t)) < Ea(t)KoG(y(t))/q(t) < Era(t)G(y(t))/q(t).

Also, it follows from (27) that

—By*(t)a(t)/q(t)9(y(t)) < —By*(t)a(t)/Caq(t),
SO
V(t) < (1 + E1)a(t)G(y(t)/a(t) — Ey*(t)a(t)/Caq(t) + F(z(t)).
Then, from the identity (a(t)z(t)y(t))" = a(t)y?(t) + z(t)(a(t)y(t))’,
V(t) < (1+ E1)a(t)G(y(t)/a(t) + F(x(t))
— E[(a(t)z(t)y(t)) — x(t)(a(t)y(t))']/Caq(t)
= (1+ E1)a(t)G(y(t))/a(t) — E(a(t)x(t)y(t)) /Caq(t)
+ Ex(t)[e(t, z(t), y(t)) — h(t, x(t),y(t))]/C2q(t)
+ F(z(t)) — Ex(t) f((t))g(y(t))/Ca.

By (6), (29), and the definition of £,

(30) V() < (1+ Eal®)G (1) /a(t) — Es(a®)z(®)y(t))' /a(t)
+ Esa(0)let, 2(0), y(1)) - hit, (), y(®)]/a(t) +¢
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where E; = E/C5. Also, from the proof of Theorem 1, we have

V'(t) = —d' (t)y?(t) /q(t)g(y(t)) +G(y(t) (a(t)/fI(t) )!
+y(t)[et, z(), y(t)) — h(t, z(t), y(t))]/a(t)g(y(t))

Observe that
Gly®))(at)/q(t))" = a(®)G(y(t)[(a(t)a(t)) /alt) — 2¢'()]/¢*(2),
and that (28) implies
—a'(t)y* (1) /a(t)g(y(1)) < KoV (t)a' (1) /alt).

Thus, we have

(31) V() < KoV (t)a'(t)-/a(t) + a(t)G(y(1))[(a(t)a(t))' /a(t) - 24'(t)]/4*(t)
+y(®le(t,z(t),y(t) — h(t, z(t),y(1))]/a(t)g(y(t)).
Now define H(t) = V (t)I(t) so that
H'(t) = V'(t)I(t) + V(t)a(t).
Then from (30) and (31) we have
H'(t) < = [24'(t)/q(t) — (a(t)q(t))'/a(t)q(t)

(32) — (L4 Ev)a(t)/I(D)]a(t)G(y(t)I(t)/q(t)

- Ex(a ( )z(t)y(t)) a(t)/a(t) + ea(t) + KoV (8)I(t)a’ ()~ /a(t)

+ I(t)y(t)[e(t, x(t),y(t)) — h(t,=(t),y(t)]/a(t)g(y(t))
+ Exa(t)z(t)[e(t, x(t),y(t)) — h(t,x(t),y(t))]/q(t).

Next, observe that: (5) and (28) imply
—y(t)h(t, (), y(t))/a(t)g(y(t)) < Kow(t)V (t)/a(t);
(4), (6), and (28) imply
ly(t)e(t, z(t), y(t))|/q(t) g(y( )
< (Ko + 1)k V(t)/[a(f a(t)g(y(t)]?
+[0(t)/(a(t)q(t) 2)(q(t) /a(t)) % (1(9+ nv()/c¢
)/(

)

(t)

+[b(t)/(a f)q(t)) Ja(t)/a(®) % /Cf + Kor())V (8)/ (a(t)(t))?
+7(t)/(a(t)a(t) 2 g(y(t));
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(21), (27), and (28) imply

In(t, (t), y(0)I/a(t) < ly(®)lwr (£)/q(t)
<wi(®)[a®)y?(t)/a(t) + 1)/ (a(t)q(t))
< Cowr ()[alt)y? () /a(®)g(y(t)] +wi(t)/(a(t)g(t)) 2
< KoCowy (1)V (1) /(a(t)q(t) ® +wi(t)/(a(t)a(t) F;

and (4) implies

le(t, z(), y(£))/a(t) < kK(O)F2 (2(1))/a(t) + b(H)G (y(1))/a(t) + r(t)/a(2)
< k(®)F2(2(t)/a(t) + (0(t) /a())V  (6)(a(t) /a(®) E +r(t)/a(D).

As noted in the proof of Theorem 2, a(t) > a; > 0 and ¢(t) > K4a(t) > Ksa1 > 0.
Hence, we have

ly()e(t, =(8), y(t)I/a()g(y(t))
< (Ko +1)k(t)V (1) /(a(t)Q(t Cl)% + Kro[b(t)/(a(t)a(t)) 21(a(t) /a(t)) 2 V(2)
+ Kub(t)/(a(t)a(t) )(a(t)/a(t) % + Kor(®)V (8)/(alt)a(t))
+r(t)/(a(t)a(t)) 2Cy,

and

le(t, (t), y(t))|/a(t)
< k()FE(z(t))/a(t) + b(t)V E (£)(q(t)/a(t)) % /(Ksa(t)a(t))F +7(t)/q(t)

where 1o = (I{g + 1)/0% and I{y; = 1/C’1'l. Notice, next, that (28) implies G(y) —
00 as y — 00, so z(t) is continuable and V'(t) and z(t) are bounded. Therefore, we
have

KoV (8)I(t)a'(t)-/a(t) + I(t)y(t)[e(t, l(t y( ) — h(t,2(t), y(t) ]/q (y(*)
< {Esd (1) /a(t) + Eak(t)/(a(t)a())* + Es[b(t)/(a(t)q(t)) ?](a(t) /a(t )%
+ Egr(t)/(a(t)q(t)? + Eqw(t) /a(t )H (1),

and

Exa(t)z(t)[e(t, z(t),y(t)) — h(t, x(t),y(t))]/q(t)
< [Es(k(t) + (1)) /a(t) + Eo[o(t)(a(t)/a(t)) F + w1 ()]/(a(t)q(t)) 2]a(2)
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for some positive constants E;, 1 = 3,4,...,9. Now let

Ps(t) = [24'(8)/q(t) — (a(t)q())' /a(t)q(t) — (1 + Ex)a(t)/1(t)]-,
Py(t) = Es(k(t) +7(2))/a(t) + Eo[b(t)(a(t)/a(t) ¥ +wi(8)]/(alt)a(t))?

and
Ps(t) = E3a'(t)-/a(t) +[E4k(t + Esb(t)(a(t)/a(t)) %1/ (a(t)q(t)) *
+ Eor(t)/(a(t)g(t))? + Erw(t)/a(t).
Then, from (32) we have
H'(t) < Ps(t)H(t) — Ez(a(t)x(t)y(t)) a(t)/q(t) + Ps(t)a(t) + ea(t) + Ps(t)I(t).

Notice next that (11)-(15) imply that [~ r, P5(s)ds < oo, so there exists T > to so
that [ Ps(s)ds < e. Therefore, fT Ps(s)I(s)ds < I(t) fT P5(s)ds < eI(t). Also,
Jra(s)ds < I(2), so

(33) H(t) < H(T) +/T Py(s)H(s) ds—Ez/T[(a(S)w(S)y(S))'0(3)/4(8)] ds

+ /t Py(s)a(s)ds + 2¢I(t).
T

An integration by parts yields

/Tt [(a(s)a(s)y(s)) als)/a(s)] ds
= a()(y(alt)/a(t) - aT)e(T)y(T)a(T)/a(T)
-/ ' al)a(s)y()als)/a(s)] ds.
Now by (27) and (28),

(34)  a@y(t)/q(t) < a*(®)[a()y?(t)/a(t) + 1]/a% ()
< a¥ (1)[Caa(t) oGy (1) /a(t)] /a* (t) + (a(t)/q(t))?
< KoCa(alt) /q(t)) 2V (8) + (alt)/q(t))
< (EpoV (t) + 1)[a(t) )]%

for some positive constant F;g. Then,
H(t) < En + Eale(t)(EroV (t) + Da(t)a(t)/q(t)) 2
+ B /T l2(8)|(ExoV'(s) + 1)|(als)/a(s))|(als)a(s)) ¥ ds
+ /T Ps(s)H(s)ds + /F Py(s)a(s)ds + 2eI(t),
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and from the boundedness of V (¢) and z(t) we have

H(t) < En + Evsa(t)[a(t)/q(t)])? + /T Ens|(a(s)/q(s))'|(a(s)q(s)) % ds
+ /Tt Py(s)a(s)ds + 2eI(t) + /Tt P3(s)H(s)ds =.Ps(t) + /Tt P3(s)H(s)ds

where Ps(t) is the sum of the first five terms in the right member of the last inequality

and E;, i = 11,12,13, are positive constants. We then have from (22)—(26) that

lim sup Ps(t)/1(t) < 2¢ and f;o P;3(s)ds £ N < oo. Applying a generalized version
t—o0

of Gronwall’s inequality (see for example [10; Lemma 6]) we obtain

H(t) < Bs(t) + /Tt P?(‘S)P3(s) exp (/: Ps(u) du) ds

+lexp | Py(s) ds] /T P(SPs(s)exo (— i " Py(u) du) ds

t
<Po(t) +e" / Pa(s)Ps(s) ds
< Ps(t) + €| sup Ps(s) / Ps(s)ds
T<s\

< Ps(t) + NeV [ sup PG(s)],

TLs<t

and hence
V(t) = H(t)/I(t) < 3¢ + NeMN2e

for all sufficiently large t. Since e is arbitrary, this implies that V(t) — 0 as t = oo.
Thus, from (3) and the definition of F(z), we have z(t) — 0 as t — oo. O

If o and g are such that (a/q) € C?[ty, ), then by modifying the proof of Theo-

rem 4 we obtain the following result.

Theorem 5. Let (3)—(6), (11)-(17), (21)-(24), (26), and (27) hold. If, in addi-
tjon; (a/q) € 02[t0v OO),

(25') a(t) [(a(8)/a(t))] = o(I(1)). t = oo,
and
(25") / ([a(s)(a(s) /a(s))']) - ds = o(I(£)), t = oo,
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hold, then every solution z(t) of (1) satisfies x(t) — 0 as t — oo.

Proof. Let z(t) be a solution of (1); then Theorem 1 implies that z(¢) is
continuable. Proceed exactly as in the proof of Theorem 4 until inequality (33) is
obtained. Then, integrating the second integral in (33) by parts as in the proof of
Theorem 4, we have

(35) H(t) < Erq — Exa(t)z(t)y(t)e(t)/q(t) + Ez/T a(s)z(s)y(s)[a(s)/q(s)] ds
+ /Tt Ps(s)H (s)ds + /Tt Py(s)a(s)ds + 2¢I(t)

for some constant F14 > 0. Now integrate the first integral in the right member of
(35) by parts to obtain

H(t) < Exs — Eza(t)z(t)y(t)a(t)/q(t) + = E2a (B)[e(t) /q(®)) 2% (2)
- 38 [ a6 a5+ [ A
+/TP4(s)a(s)ds+2eI(t)

where Ej5 is a positive constant. Then, from (34) we have
(36) H(t) < Exs + Eala()|(EroV (1) + Da(t)a(t)/q(t))>

+ 3B (Qalt)lfo(0/aO) |+ B2 | #)lals)(as) Valo)T- s
+ /Tt P3(s)H(s)ds + /Tt Py(s)a(s)ds + 2eI(t).

The remainder of the proof is the same as the latter part of the proof of Theorem 4
except for using using (25') and (25”) in place of (25). O

If we restrict our attention to the solutions of (1) that are not eventually mono-
tonic, condition (24) is not needed to obtain the conclusions of Theorems 4 and 5.
Specifically, we have the following result.

Theorem 6. Let (3)—(6), (11)—(17), (21)-(23), and (26)—(27) hold and let x(t)
be a solution of (1) that is not eventually monotonic. If either (i) (25) holds, or (ii)
(a/q) € C?[to,00) and (25') and (25") hold, then x(t) — 0 as t — co.

Proof. Let x(t) be a solution of (1) that is not eventually monotonic. First,
recall that by (18) and the proof of Theorem 2,

VI[t) < PV (2) + Pa(t)
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and f:)o Pi(s)ds < oo for i = 1,2. But V(t), Pi(t), and P,(t) are nonnegative, so
clearly

VI(t) < [Pi(t) + B[V () + 1] < POV (E) + 1]

where P(t) = P;(t) + P»(t). The boundedness of V(t) was also established in the
proof of Theorem 2, so V(t) < p for some positive constant p. Hence,

V() +1) < (p+1)P(1), t>to.

Therefore,
Vi(t)+ < (p+1)P(2),

and so

¢ t
/ V'i(s)yds < (p+ 1)/ P(s)ds.
to to

Since V'(t); = V'(t) + V'(t)_.

]t V'(s)_ds = V(to) + /t V/(s)s ds — V(t) < V(to) + (p+ 1) /t P(s)ds.

to 0

Thus, we have

/t [V'(s)|ds < V(o) +2(p+1) /00 P(s)ds,

to

and therefore V' (t) is of bounded variation. Hence, V' (t) has a finite limit as ¢ — oo.

To complete the proof of the theorem, we will show that V(¢) — 0 ast — co. Since
V(t) has a finite limit as ¢ — oo, it suffices to show that there exists a sequence {t,}
such that ¢, = oo and V' (t,) — 0 as n — oco. Now z(t) is not eventually monotonic,
so choose {t,} such that y(¢,) = 0. For the proof of (i), proceed exactly as in the
proof of Theorem 4 until (33) is obtained with ¢ replaced by t, > T. Then integrate
the second integral on the right hand side of (33) by parts to obtain

/T " [(a(s)2(s)u(s)) als) /a(s)] ds

=—a(T)w(T)y(T)a(T)/Q(T)—/ a(s)z(s)y(s)[a(s)/a(s)] ds.

T

As in the proof of Theorem 4, (27) and (28) imply that

H(tn) < Pa(tn) + /F " Py(s)H(s) ds
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where
B (tn) = Brx + Brsa(O[a(t)/a(t)]} + /T " Bisl(a(s)/a(s)) | (a(s)q(s)) ds

+ /t" Py(s)a(s)ds + 2el(ty).
T

It then follows, as in the last part of the proof of Theorem 4, that V(t,) — 0 as
n — 0.
To prove (ii), proceed as in the proof of Theorem 5 obtaining

(36)  H(ta) < B + 3 Ba(ta)altn)l[a(ta) /a(t.)] |

+ 35, / " 22 (s)[a(s)((s)/a(s))']- ds

T

+ /Tt" Ps(s)H(s)ds + /Tt“ Py(s)a(s)ds + 2el(t,)

in place of (36). The remainder of the proof that V(t,) — 0 as n = oo is the same
as the latter part of the proof of (i) except for using (25') and (25") in place of (25).
O

Before continuing, it will be convenient to classify the solutions of (1) as follows.
A solution z(¢) of (1) will be called nonoscillatory if there exists t; > to such that
z(t) # 0 for t > t;; the solution will be called oscillatory if for any t; > to there
exist t2 and t3 such that ¢; < t2 < t3 and z(¢2)z(t3) < 0; and it will be called a
Z-type solution if it has arbitrarily large zeros but is eventually either nonnegative
or nonpositive.

If we further restrict our consideration to only the class of oscillatory solutions
of (1), then we can eliminate one of the hypotheses in Theorem 6 (ii).

Theorem 7. Suppose that (a/q) € C*[tg,00). If (3)—(6), (11)—(17), (21)—(23),
(26)—(27), and (25") hold; then every oscillatory or Z-type solution z(t) of (1) satisfies
z(t) > 0 ast — .

Proof. Let z(t) be an oscillatory or Z-type solution of (1). As in the proof of
Theorem 6. tlim V (t) exists and is finite. Choose a sequence {t,} — oo as n — oo
—00
such that z(¢,) = 0 for all n. Then as in the proof of part (ii) of Theorem 6, we
obtain

H(t) < Brs + 3By /T " 22(9)[a(s)(als)/a(s)))- ds

+ /Tt', Py(s)H(s)ds + /:l Py(s)a(s) ds + 2el(tn)
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in place of (36'). That V (¢,) — 0 as n — oo follows by an argument similar to the
one used in the latter part of Theorem 6 except that (25') is not needed. O

Remark. Results similar to the conclusions of the foregoing theorems and
corollary have been obtained for special cases of (1) in [1-9, 11-30]. However, because
of different hypotheses and a more general perturbation term, the results here are
new even when the left hand side of (1) is specialized to the forms previously studied.

Remark. Asindicated in the first remark following Corollary 3, there are some
interchanges in hypotheses that can be made. For example, if k(t) = 0 and b(t) =0
in Theorems 4-7, then condition (6) can be dropped provided (15) is replaced by
(20) and condition (7) is added.

Consider
(En) (te') + 22°[(«")? + 1)/[(«")? + 2] = e(t, 2,2")
for t > 1 with

e(t,z,z') = |z|>/V6 — | sin® t|/V6t> + (sint — t cost — t*sint) /t*
+ [t* + (tcost — sint)?]sin® t/t*[2t* + (t cost — sint)?] .

Here a(t) = t, q(t) = t2, f(z) = 2°, h(t,z,2") =0, and g(z') = [(z")? + 1}/[(z)? + 2].
It is not difficult to verify that (F;) satisfies all the hypotheses of Corollary 3 and
Theorems 1, 2, and 4 by taking r(t) = | sin® t|/v/6t>+[(t2+1)| sin t|+t| cos t|]/t2 +[t* +
(t cost—sint)?]| sin® ¢]/t3[2t4+ (¢t cos t—sin t)?], k(t) = 1, b(t) = w(t) = wy(t) = 0, and
a(t) = 2Int/t. Thus, we can conclude that that all solutions of (E;) are continuable
and tend to zero as t — o0o. This conclusion cannot be obtained from any of the
results in [1-9] or [11-30]. Notice that x(¢t) = sint/t is an oscillatory solution of (E)
on [1,00).

4. NONOSCILLATORY AND Z-TYPE SOLUTIONS

Notice that condition (23) cannot be satisfied if

(a(t)/q@®))(q(t)/a(t))" = '(t)/q(t) — o' (t)/a(t)
= 2¢'(t)/q(t) - (a(t)q(t))’ /a(t)q(t) = 0

and consequently Theorems 4-7 would not hold if this were true. In particular, this
would be the case if a(t) = Czq(t) for some constant C3 > 0. We can avoid this
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difficulty if we restrict our attention to only the nonoscillatory and Z-type solutions
of (1).

Theorem 8. Suppose that (3)—(6), (11)—(17), (21), and (27) hold. If f(z) is
bounded away from zero whenever x is bounded away from zero and

(37) / ) [ 1€kt + sbu)atufatu)) ¥

to to

+ r(u) + Cewi (u)g(u)/a(u) — Crq(u)] duds
+ [ (Caa@)ds = —o0

for any positive constants C;, i = 4,...,8, then every nonoscillatory or Z-type solu-
tion of (1) tends to zero as t — 0.

Proof. Let z(t) be a nonoscillatory or Z-type solution of (1), say z(t) > 0 for

t > t; > to; by the proof of Theorem 2, there exists a constant L > 0 such that

V(t) < L% We first show that litm infa(t) = 0. If this is not the case, there exist
—00

t2 > t1 and a constant L; > 0 such that f(z(t)) > L; for t > t5. Notice first that (6)
and (27) imply (28) which in turn implies |y|/g(y) < B1G(y) + By for some positive
constants B; and By. Now from (1), (4), (6), (21) and (27), we have

k() F3(2(1)) + b#)G % (y(1)) + r(t) + [y(t)w: (8) — LiCag(t)

k(t) + L™b()(q(t)/a(t) F +7(t) + Cowr()|y(t)|/9(y(8)) — L1Ciq(t)
k(t) + L™b(t)( Q(t)/a(t)) T +r(t) + [C2Bi1L2q(t)/a(t) + C2 Bzlwi (1)
— L,Cyq(t).

(a(®)a’ (1))’

<
<L
<L

Since (16) implies that ¢(t)/a(t) is bounded from below, we have
(a(t)z'(1))" < Lk(t) + L™b(t)(a(t)/a(t) ¥ +r(t) + Lawi(t)q(t) /a(t) — L1C1g(t)

for some Lo > 0. Integrating the last inequality twice gives

2(t) < z(t2) + alt2)|2’ (t2)] /‘[l/a(s)] ds

+ / [1/a(s)] /S[Lk.(u) + L™b(w) (q(uw) /a(u))  + r(u)

to

+ Low; (u)q(u)/a(u) — LiCyg(u)] duds
which contradicts (37). Hence, we conclude that li}g inf z(t) =
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To complete the proof, notice that from the proof of Theorem 2, (18) holds and
Jo Pi(s)ds < oo for i = 1,2. Let € > 0 be given. If 2(t) is nonoscillatory and not
eventually monotonic, then ligg Lng z(t) = 0 implies there exists t3 > t; such that
y(t3) = 0, F(z(t3)) < &, ftzo Pi(s)ds < 1, and f: Py(s)ds < e. If z(t) is a Z-type
solution, choose t3 so that y(t3) = F(x(t3)) = 0 and so that the other inequalities
are satisfied. Then integrating (18) we have

t t t
V(t) < V(ts) +/ Py(s)V(s)ds +/ Py(s)ds £ 2e+/ Py (s)V(s)ds,
ts ts t3

and by Gronwall’s inequality we have V' (t) < 2¢ exp(ftc;o P;(s)ds) < 2eexp(1). Since
e is arbitrary, it follows that F(z(t)) — 0 as t — oo which, in view of (3), implies
that z(t) — 0 as t = oco. Now if z(t) is eventually monotonic, then h}ﬁ ;l)tolf z(t) =0
implies that z(t) — 0 as t — oco. This completes the proof for the case when z(t) is
eventually nonnegative. The proof in case z(t) is eventually nonpositive in similar
and will be omitted. a

Theorem 8 puts the somewhat severe restriction on g(y) that it be bounded from
above and from below. In the next theorem we relax the condition that g(y) be
bounded from above by modifying condition (21) on h(t,z,y) and adding condition
(7). As described in the second remark following Theorem 7, the requirement that
g(y) be bounded from below can be dropped in both Theorem 8 and the following
theorem in case k(t) = 0 and b(t) = 0.

Theorem 9. Let (3)—(7) and (11)-(17) hold, G(y) — oo as |y| — oo, and f(z)
be bounded away from zero whenever x is bounded away from zero. If there is a
nonnegative continuous function ws: [tg,00) — R such that

(38) h(t,z,y) Z —lylwa(t)/9(y)

for all y and

(39) /roo[l/a(s)] /ts[Cgk(u) + Crob(u)(q(u)/a(u))? 4+ r(u) + Cryws(u)q(u)/a(u)
— Cr2q(u)] duds + /oo[Clg/a(s)] ds = -

for all positive constants C;, i = 9,...,13, then every nonoscillatory or Z-type
solution z(t) of (1) satisfies x(t) — 0 as t — oo.

The proof of Theorem 9 is the same as the proof of Theorem 8 with (38) and (39)
used in place of (21) and (37) respectively. Another result in this direction is the
following.
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Theorem 10. Suppose that (3)—(6), (11)-(17), (21), and (27) hold, and that
f(z) is bounded away from zero whenever x is bounded away from zero. If, in
addition,

(40) / Tl O)als)/d ()]F ds < oo

to

and
(41)

/ " {[Cuak(s) + Crsb(u) (q(u) fa(w)) % + r(5)]/q(s) + Crown(s)/a(s)} ds < oo

for all positive constants C;, i = 14,...,16, then every nonoscillatory or Z-type
solution of (1) tends to zero as t — co.

Proof. Let z(t) be a nonoscillatory or Z-type solution of (1); then there exists
t1 > to so that z(t) does not change sign on [t;,00), say z(t) > 0 for t > ¢;. If
litrg g)lf z(t) > 0, then there exist constants t, > t; and L3 > 0 such that f(z(t)) >
2L3 for t > to. Then, as in the proof of Theorem 8,

(a(®)z'(t))" < Lk(t) + L™b(t)(a(t)/a(t) T +7(t) + Lawi (t)a(t)/a(t) — 2L3Cuq(t).

Multiplying by 1/¢(t) and integrating by parts gives

a(t)a' ()/9(t) < a(t2)'(t2) /q(tz) + /t:[a(s)lx’(s)q’(s)l/«f(s)] ds
+/tt Pr(s)ds — 2L3Cy (t — t3)
where
Py (t) = [Lk(t) + L™b(t)(a(t)/a()) ¥ + 7(t)]/a(t) + Lawi (8)/a(t).
From the inequality
o' (O[a(t)/a®)? < [ (OPalt)/g(®) + 1,

condition (27), the fact that (16) implies a(t)/¢(t) is bounded from above, (28), and
the boundedness of V' (t), we have

a(t)q' (1) (B)]/¢*(t) < Lala(t)/q*(£))* 14 (B)]
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for some positive constant L. Hence (40) and (41) imply that there exists t3 > t,
so that

a(t)a'(t) /a(t) < —Lst

for t > t3 and some Ls > 0. But ¢(¢)/a(t) is bounded from below, so the last
inequaltiy implies that z'(t) — —oo as t — oo contradicting the assumption that
z(t) > 0. Therefore, litn_l) g}f z(t) = 0. The remainder of the proof is the same as the
last part of the proof of Theorem 8. O

The equation

(Es) 1
" tt+1 (@)% + In[(2")? + 1] K z! t2z3[(2")% + 1]

“%’+{ z +[wwv+mmv+u+u]}ﬂwv+u @) +2
(t4 + 1) t? I: (:E/)Z +ln[(z’)2 + 1] i 2

Tt + 1) 200+ 1) |2[@)? +n[(2')2 + 1] + 1]

x
2

satisfies all the hypotheses of Theorems 1, 2, and 8 and Corollary 3. Here G(y) =
$[¥® + In(y? + 1)] and we can take k(t) = 1, b(t) = 3t*(t* + 1), m = %, and
r(t) = (t* + 1)/t(2t* + 1), w(t) = 0, and w, (t) = 3. Notice that (g(t)/a(t))’ = 0 so
(23) does not hold and therefore none of Theorems 4-7 apply to (E;). Furthermore,
Theorem 10 does not apply since (40) is not satisfied. We can assert from Theorem
1 and Corollary 3 that all solutions of (E;) are continuable and oscillatory solutions
of (E3) are bounded, but we cannot determine if oscillatory solutions tend to zero
as t = 0o. However, Theorem 8 implies that all nonoscillatory and Z-type solutions
of (F2) tend to zero as t — co. Such a solution is z(t) = 1/t.

The equation

(Bs) (%) + -;—(t“ +1)2'/t](@)? + 1]+ £22°[(2")? + 1] = (t* + 1)/¢° - -;-xz

for t > 1 satisfies all the hypotheses of Theorem 9. Notice that Theorems 5-8, and
10 do not apply to (E3) since g is not bounded from above. Also, observe that
z(t) = 1/t is a solution of (E3). None of the results in [1-9] and [11-30] apply to
equations (E3) and (E3).
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