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ON THE OSCILLATION OF A VOLTERRA INTEGRAL EQUATION 

BHAGAT SINGH, Mani towoc 

(Received March 7, 1994) 

1. INTRODUCTION 

A vast literature exists on the oscillation theory of functional differential equations. 
The references [1] and [4] present a fairly exhaustive listing for the interested reader. 
Our purpose here is to add to the pioneering work of Onose [2] who recently obtained 
some oscillation criteria for the oscillation of the integral equation: 

(i) X{t) = /(*) - / a(í, s)g{s, X(s)) ds, t ž 0. 

Oscillation results for integral equations of the Volterra type are scant and only a 
few references exist on this subject. Related studies can also be found in Parhi and 
Misra [3]. 

In this work, we have obtained somewhat stronger results than those of Onose 
[2] who obtained sufficient conditions for bounded solutions of equation 1 to be 
oscillatory. We have not only found sufficient conditions for all solutions of equation 1 
to oscillate but also given growth estimates on solutions of equation 1. 

2 . ASSUMPTIONS AND DEFINITIONS 

(i) / : [0, oo) —•> R, g: [0, oo] x IR —•> !R and continuous, where (R is the real line; 
(ii) a: [0, oo) x (R —> [R+, continuous, 0 ^ t ^ oo and 0 ^ s ^ £, a(t,s) = 0, s > t. 

We only consider those solutions of (1) which are continuously extendable on [0, oo) 
and are nontrivial. The term "solution" henceforth applies to such solutions of (1). 

This research was suppor t ed in par t by the Kay Levin Faculty Staff Professional Devel­
opmen t Award 
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A solution of equation 1 is said to be oscillatory if it has arbitrarily large zeros on 

the positive half real line IR+; otherwise it is called nonosdilatory. A solution y(t) 

of (1) is said to be slowly oscillating if the set 

S = {\ta - tp\: y(ta) = y(tp) = 0, |y(*)| > 0 for t € (ta,tp)} 

is bounded on (R+. In the last section of this work, we study slowly oscillating 

solutions of (1). Qualitative behavior of the nonoscillatory solutions of equation 1 

is also examined. An oscillatory solution X(t) is said to be properly unbounded if 

limsupX(£) = oc and liminf^oo X(t) = - co . A nonoscillatory solution is properly 
t—>oo 

unbounded if it is unbounded. 

3. MAIN RESULTS 

Theorem 1. Suppose that 

(2) Xg(t, X) > 0 for X^O, t^ 0; 

(3) g^' ' ^ M; for some M > 0, t^O and X ^ 0. 
X 

Further suppose there exists positive and continuous functions p(t), h(t) on [0,oo) 

sucli that h(s) = 0 for s > t, 

(4) a(t,s)^p(t)h(s), 
oo 

(5) h(t)dt<oo, 

and 

(6) p(t) and f(t)/t are bounded for t ^ 0. 

Let X(t) be any solution of (I). Then 

X(t) 
X(t) = 0(t), i.e. lim —— < +oc. 

t—5»0O t 

P r o o f . Form equation (1), 

x® *m+ [mHa).°j^.\*md8 
t ^ t J ť W v |Aľ(S) | 

0 

X(s) 
^K + L h(s) •ds 

700 



for some positive constants A' and L. The conclusion follows by Gronwall's inequality. 

• 

Theorem 2. Suppose conditions (2) through (4) and (6) of Theorem 1 hold. 

Further suppose that condition (5) is modified to 

oo 

(7) / th(t) dt < oo, 

and 

(8) limsupf(l) = oo, liminf f(t) — -oo . 
t-^oo i ~ > ' 0 0 

TJjen aJJ solutions of equation (1) are osriJJatory. 

P r o o f . Since condition (5) of Theorem 1 is implied by (7) for t ^ 1, we can 
safely assume that the conclusion of Theorem 1 holds. Without any loss of generality, 
suppose T > 1 is large enough so that X(t) > 0 for t ^ T. 

From equation 1, 

T t 

(9) X(t) = f(t) - Ja(t,s)g(s,X(s)) ds - J a(t,s)g(s,X(s)) ds 

0 T 

T 

(10) <:f(t)~ Jp(t)h(s)g(s,X(s))ds 

0 

/• , , f / ,g(s,X(s)) X(s) , 
+ / p(t) • *ft* w ; • - ^ i d5-

J A (s) s 
T 

Now p(t) is bounded, and by Theorem 1, (X(t))/t is bounded. In view of con­
dition (7), the last two integrals on the right hand side of (10) are finite. Since 
X(t) > 0, and (8) holds, we reach a contradiction which completes the proof. • 

Remark 1. Our Theorem 2 does not generalize Theorem 1 of Onose [2], but 
presents an extended set of conditions which apply to all solutions of equation (1). 

Example 1. Consider the equation 

(11) X(t) = (l + l)(sin,N - -(e~l cost + e~* sint - 1) 

t 
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Equation (11) satisfies all conditions of Theorem 2. Hence, all solutions of (11) are 
oscillatory. In fact 

X(t) = (t + l)smt 

is one such solution. 

Remark 2. Our next theorem improves the condition 7 of Theorem 2. 

Theorem 3. Suppose all conditions of Theorem 1 hold. Further suppose that (8) 
holds and 

t 

(12) limsupp(l) / s l i ( s )ds<oo. 
t—»oo J 

Then all solutions of equation (1) are oscillatory. 

P r o o f . Without any loss of generality, let X(t) > 0 for t ^ T be a solution of 

(1). In a manner of Theorem 1, we see that 

(13) X(t) = 0(t). 

From equation (1), 

T t 

(14) X(t) < f(t) - ja(t, s)g(s, X(s)) ds + j'p(t) • sh(s) ds • ̂ % ^ p • ̂  ds 

0 

T 
X(s) 

< / ( < ) - a(t,s)g(s,X(s))ås + Mp(t) shW-^^-ds. 

From (12), (13), and boundedness of p(t), we see that the last two integrals in 

inequality (14) are bounded. Since 

limsup f(t) = oo 
t—>oo 

and 

liminf f(t) — — oo 
t—>oo 

we reach a contradiction. The proof is complete. • 

Remark 3. Our next theorem does not require that f(t) be unbounded. 
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Theorem 4. Suppose conditions (2) through (5) of Theorem 1 hold; p(t) and f(t) 

are bounded; and 

t t 

(15) lim inf / f(t) dt = -oo , lim sup / f(t) dt = oo. 

Further suppose 

OO S 

(16) / p(s) / lz(r)drds < oo 

and 
oo 

(17) p(t)dt<oo. 

Then all solutions of equation (1) are bounded and oscillatory simultaneously. 

P r o o f . Let X(t) be any solution of equation (1). Then boundedness of X(t) 
follows by Gronwall's inequality since f(t) is now bounded. Now suppose to the 
contrary that X(t) is nonoscillatory. Without any loss of generality suppose there 
exists a large T > 0 such that X(t) > 0 for t ^ T. From equation (1) 

t t t s 

(18) f X(r)dr= f f(r)dr- f f a(s,r)g(r,X(r)) drds 

T T TO 

t t T 

— / f(r)dr— / / a(s,r)g(r,X(r)) drds 

T To 
t s 

— / a(s,r)g(r,X(r)) drds 

T T 
t t T 

^ J f(r) dr + J p(s) J h(r) • ^ ^ • X(r) dr ds 

T T 0 

+ J P(s) J h(r) • ^ ^ • X(r) dr ds 

T T 

since A"(£) and [g(t,X(t))]/X(t) are bounded, and conditions (16) and (17) hold, 
the last two integers on the right hand side of (18) are finite. Since 

t 

f X(t) >0 
T 
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for t ^ T, a contradiction is immediately seen in view of (15). The proof is complete. 

D 

Example 2. Consider the equation 

t 

(19) X(t)=sm{(\n(t+l))~---^l---^-X(s)ds, t >- 0. 

0 

If we choose 

then all conditions of this theorem are satisfied. All solutions of this equation are 

oscillatory and bounded. 

Examp le 3. Consider the equation 

(20) 
-r, ^ л . / , / .ч\ sin(ln(í -f-1)) 
* ( í ) = 2sin(ln(í + l)) ( ť + 1 ) 3 

cos(ln(i + 1)) 

<j + D 3 ' ( 

1 cos(ln(i + 1)) 

<j + D 3 ' ( t +1)2 

f X(s) 
J (í + l)2(s + l) : 

0 

;ds, t>-0. 

Here if we choose 

, ч 1 
n ( t „\ — ; tџs a ( í ' j ) - ( í + l ) ' Ҷ 5 + l ) 2 ; tџs 

= 0, s> t 

Then all conditions of Theorem 4 are satisfied. Therefore, all solutions of equation 

(20) are bounded and oscillatory In fact, X(t) — 2 sin (ln(£ + 1)), t ^ 0 is one such 

solution. 

Remark 4. The solution X(t) = 2 sin (ln(£ + 1)) of the preceding example is 

slowly oscillating since its zeros occur at tn = en7t — 1. It is easily seen that r n + i — tn —> 

oo as n —> oo. Our next theorem gives conditions which ensure that solutions of 

equation (1) with non-vanishing first derivatives are indeed slowly oscillating. 

Theorem 5. Suppose conditions of Theorem 4 hold. Let X(t) be any solution of 

(1) which satisfies 

(21) limsup|K(i) | > 0 . 
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Then X(t) is bounded and oscillatory, and either 

(22) limsup|X'(*)| > 0 
t—>cx> 

or else X(t) is slowly oscillating. 

P r o o f . We only need to show that X(t) is slowly oscillating if (22) does not 
hold. Since by Theorem 4, X(t) is oscillatory and (21) holds, there exists a sequence 

{ ^ j ^ o s u c n t n a t 

(23) tn -> oo as n -> oo, tn ^ T, n ^ 0; 

(24) X(^n) > d, n^l for some d > 0; 

for each n ^ 1, let [an,/3n] be the largest interval around tn such that for n ^ 1, 
K(an) = K(/3n) = 0, K(£) > 0, t G (an , /3n). Then by the mean value theorem we 
have 

v / / x K(^n) - X(an) 
x ^ = —T-7^rn— 

lK(C)l-lX(an)l X(U-X(an) d 
\X (sn)\ ^ —— = —— ^ ---— 

n̂ &n cn a n p n a n 

where sn € (an ,£n) and an < tn < f3n. In view of (22) if X'(t) —•> 0 as t -> oo, then 
limsup(/?n — a n ) = oo which completes the proof. • 

t—)-oo 

Remark 5. Our next theorem is somewhat stronger and does not require that 

limsup|X(£)| > 0 where X(t) is a solution of equation (1). The solution X(t) = 
t—>-oo 

2sin(ln(£ + 1)) of equation 20 in Example 3 is slowly oscillating; but does not 

satisfy the conclusion of Theorem 5 since limsup |X '(£)| = 0. However, it satisfies 
t—yoo 

the conditions and conclusion of Theorem 6. 

Theorem 6. In addition to conditions of Theorem 4. suppose p(t), and f(t) are 
continuously differentiable on (0, oo) and 

(25) p'(t) -•> 0, f'(t) -> 0, h(t)p(t) -> 0 as t -> oo. 

Further suppose 

r\ 

(26) |— a ( M ) | < |p'(<)'.(*)|. « ^ l . * ^ 0 . 
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Let X(t) be any solution of equation (1). Then the following conclusions hold: 

(27) X(t) is bounded, 

(28) X'(t) -> 0 as t -> oo. 

Either 

(29) limsup|X(*)| > 0 

or 

(30) X(t) is slowly oscillating. 

P r o o f . From Equation (1), 

t 

(31) X'(t) = f(t) - a(t, t)g(t, X(t)) - J ^a(t, s)g(s, X(s)) ds 

o 
t 

\X'(t)\ < \f'(t)\ + Mp(t)h(t)\X(t)\ + p'(t) J h(s)g(s, X(s)) ds. 

0 

Since conditions of Theorem 4 hold, X(t) is bounded. From conditions (25) and 
(26), we see that (31) implies 

(32) X'(t) -> 0 as t -r oo. 

Since conditions of Theorem 5 are also satisfied and (22) is no longer true, X(t) is 

slowly oscillating. This completes the proof. • 

Example 3 satisfies all the conditions of this theorem. 

Remark 6. We have the following partial converse of Theorem 2. 

Theorem 7. Suppose conditions (2) through (4) and (6) of Theorem 1 hold, and 

condition (7) of Theorem 2 is satisfied. Further suppose that g(t,X)/X ^ K > 0. 
Let X(t) be a properly unbounded oscillatory solution of equation (1). Then 

limsupf(l) = oo and liminf f(t) = —oo. 
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Proof. From equation (1), 

T t 

(33) X(t) = f(t) - J a(t, s)g(s, X(s)) ds - j a(t, s)g(s, X(s)) ds. 
o T 

Since conditions of Theorem 1 are implied, we find that X(t)/t is bounded. Now 

(34) 
t t 

ja(t,s)g(s,X(s)) ds ţ J'p(t)sh(s)9{s^] -^ds. 

In view of condition (7) of Theorem 2 and the fact that g(t, X)/X ^ K, we find that 
the left side of (34) is bounded. Thus the last two integrals in (33) remain finite. 
The conclusion follows from the fact that X(t) is the properly unbounded oscillatory 
solution of equation (1). • 

Corollary 1. Suppose (2) through (4) and (6) of Theorem 1 and (7) of Theorem 2 
hold. Then a necessary and sufficient condition for all properly unbounded solutions 
to be oscillatory is that 

limsup/(r) = oo and liminf f(t) = —oo. 
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