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CONVERGENCE OF WEIGHTED SUMS OF RANDOM 
VARIABLES IN VECTOR LATTICES 

RASTISLAV POTOCKV 

n 

In the present paper the order-convergence of weighted sums Sn = 2 <W* is 
k=i 

obtained under various conditions on the weights {ank} and random variables fk. I 
recall that in many spaces (e.g. Lp-spaces, 1 ^p < <») this convergence is stronger 
than convergence in the norm. The first theorem extends a result of Rohatgi [6] for 
weighted sums of random variables to vector lattices. The other main result is an 
order-version of a theorem of Padgett and Taylor [4]. My notation will follow [1] 
and [2]. (See also [3] and [4].) 

In what follows I shall consider functions with values in an Archimedean vector 
lattice E. 

Definition 1. Ler (Z, S, P) be a probability space. A sequence {/„} of functions 
from ZtoE converges to a function f almost uniformly if for every e>0 there exists 
a set AeS such that P{A}<e and {/„} converges relatively uniformly to f 
uniformly on Z - A (i.e. there exists a sequence {an} of real numbers converging to 
0 and an element reE such that \fn(z) —f(z)\^anr for each zeZ — A). 

Definition 2. A function f: Z-*E is called a random variable if there exists 
a sequence {/„} of countably valued random variables such that {/„} converges tof 
almost uniformly. 

Proposition 1. Lef E be a vector lattice equipped with a locally solid complete 
metrizable linear topology, P be a complete probability measure. Then each 
random variable is a random element (i.e. a measurable map from Z to E), 

Proof. There exists a sequence {Ak}, AkeS such that P { A c } < k - 1 and 
\fn(z)- f(z)\^anbk, bkeE for all zeAk, k = l,2, ... For each neighbourhood U 
of zero there exists a continuous monotonous Riesz pseudo-norm r such that 
{x eE; r(x)< 1} cz U (see [2]). Because of this and the above inequalities we have 
that fn(z)-+f(z) in the topology for each zeZ except possibly a set of probability 
0, since P { u A * } c = 0. Denote uAk by Z0. An application of [4], prop. 2.1.3 
implies that the restriction of / to Z0 is a measurable function from Z0 into E. Let B 
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be any Borel subset of E. We have /_ 1(B) = {z eZ0; f(z)e B}u{ze Z- Z0; 
f(z)eB}eS. 

From now on P means a complete probability measure. Proposition 1 makes it 
possible to define independent, identically distributed and symmetric random 
variables in the usual manner, i.e. these definitions are straightforward extensions 
of the real case (see e.g. [4]). 

Theorem 1. Let E be a o-complete vector lattice with the o-property equipped 
with a locally solid complete metrizable linear topology. Let {ank} be a double 
array of real numbers satisfying the conditions 

a) lim max \ank\ = 0 
n k 

b) sup ^\ank\
r<oo for some 0 < r < l . 

n k=i 

If /„ are pairwise independent, symmetric random variables in E such that 
P{ | /n | ^ f l} -^P{ | / i | ^a} for all positive elements a eE+ and all n and moreover 

2 P{ | / i | ^ na}c < oo for some positive aeE, then 
n = \ 

lim P \ z ; y ankfk =£= eu\ = 1 
I |k=i J 

for each e > 0 and some positive ueE. 
Proof. For each n let {fn} be a sequence of countably valued random variables 

converging almost uniformy to /„. The set of all values of fn will be denoted by 
{yn}n=i. Since E has the a-property, this set is included in a principal ideal of E 
(i.e. the ideal generated by a single element, say u, u e E+, a ^ u)Iu. Put y0=u and 

consider the countable set A = \ ^a ,y ,; n = 0, 1, ... | of all linear combinations of y, 

with the rational coefficients a,-. The set 

B=D U {xelu; \x-a\^ru} 
r e O a e A 

where Q stands for the set of all rational numbers is a linear subspace of Iu. 
By definition 1 there exists a set Z0 of probability 1 such that /£(z)—>/n(z) 

relatively uniformly for all n and all z e Z0 with at most countably many different 
regulators of the convergence. Because of this, the inequality |/„| ^ |/„ — fn\ + 1/21 
which holds for each natural n and k and the assumption that E has the a-property 
we obtain that all the values of /„ belong to B. 

It is a well-known fact that Iu equipped with the o-unit norm is a Banach space. 
So is B as a closed subset of Iu. Moreover B is separable. Indeed for each x e B and 
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each e>0 there exists an element aeA such that ||JC — tf||u<e; || ||u means the 
norm induced by u. This space will be denoted by (B, || ||«). 

I shall prove that /„ are pairwise independent, symmetric random variables from 
Z0 to B . Since B is separable, its Borel sets are generated by open balls. Denote 
these Borel sets by Ws and denote by WT the a-algebra generated by subsets of B 
open with respect to the original topology. It suffices to show that Ws c WT. We 
have the following equality for an open ball 

{xeB;\\x-xi\\u<e} = \J{xeB;\\x-xi\\u^e(l-n-1)} = 
n 

\jBn{x e I„; ||x - JC,||„ =Se(l - n"1)} = Bn\J{x e /„ ; |JC - * | «S e(l - n'l)u}. 
n n 

It means that /„ are pairvise independent and symmetric random variables in 
(B, || II,,). By hypothesis we have P{ | | / - | | .&fe}«F{ | | / i | | «^b} for all b>0 and 

E||/1|U<l + 2F{||/.||u>n} = l + 2i>{l/>N""}C<a ) 

n = l n = l 
00 

for 0 < r < 1. Now apply [5], th. 1 which says that ^ankfk norm-converges to 0 in 
fc=i 

probability for each sequence {/„} of pairwise independent random variables in 
a Banach space such that P { | | M | ^ 6 } ^ P { | | / i | | ^ f t } for all 6 > 0 , n ^ l , E | | / i | | r < 
oo for some 0 < r < 1 and the weights {ank} satisfying the conditions a) and b) of our 
theorem. We obtain that 

lim P í z e Z 0 ; | ) OnM s= ej = 1 

for each e > 0. Since P{Z0} = 1 and because of the definition of the order-norm this 
result is equivalent to the following 

lim P I z; 2 <W* ^ EU\= ! 
n l U=i J 

for each e > 0. 

Theorem 2. Lef E be a o-complete vector lattice with the o-property equipped 
with a locally solid complete metrizable linear topology. Let /„ be independent 
identically distributed symmetric random variables such that 

2P{z;\f1(z)\^na}c<oo 
n = l 

for some a e E*. Lef {dnk} be an array of real numbers satisfying 
n 

lim sup 2 dlk<°° 
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and define f , 
\__ 

_\ n k = 1, ..., n 
a " * _ l 0 k>n. 

Then _^ankfk-*0 relatively uniformly with probability 1. 
k=\ 

Proof. One can prove the theorem repeating step by step the argument given in 
the proof of theorem 1. Having proved that /„ are independent, identically 
distributed and symmetric random variables in a separable Banach space B we 
complete the proof as follows. Denoting the norm in B by \\ ||„ we have 

eii/iiiu«i+ir{ii/iiiu>"}=i+i:I>{i/.N""}c<00 

n=\ n=\ 

(C stands for the set complement). It follows, by [4] th. 5.1.5 that 2fl«*/* ~^® 

a.s. in the norm and consequently _^ankfk—>0 relatively uniformly with prob-
k=\ 

ability 1. 
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