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A NOTE ON THE EXTENSIBILITY OF STATES 

SYLVIA PULMANNOVA 

In the paper the extensibility of states from a Boolean subalgebra of a logic to the 
logic is treated. 

1. Notation and known results 

Let (L, ^ ) be a partially ordered set (poset) with the least element 0 and the 
greatest element 1. An orthocomplementation on L is a mapping a*-+a± onL such 
that (i) (a±)± = a9 (iii) ava^ exists and is equal to 1, and (iii) a^b if and only if 
b±^a±. A poset admitting an orthocomplementation is called orthocomplemen-
ted. A pair a, beL is said to be orthogonal, denoted alb, if a^b±. An 
orthocomplemented poset is called an orthomodularposet if (i) alb implies that 
a v b exists, and (ii) a ̂  b implies that there is a d e L such that d±a and b = avd. 
An orthomodular poset is called a logic if v{ai9 i = 1, 2,...} exists provided at\Lah 

i±j, i, / = 1 , 2, .... A logic which is a lattice, will be called a lattice-logic. 
Let L be a logic, a mapping m: L—>[0, 1] satisfying (i) m ( l ) = l , (ii) if {ai9 

i = 1, 2, ...} are pairwise orthogonal, then m(v,a,) = %m(at) is called a state. The 
set of all states is strongly convex, i.e. if m,, i = 1, 2, ... are states, then m(a) = 
2Am,(fl) (a e L), where 0 ^ t, ̂  1, 2,6 = 1 is also a state. A set of states is said to be 
quite full forL if {me M:m(a)=\) c {meM: m(b)= 1} impliesa^fe [1]. Aset 
M of states is said to be unital for L if for every aeL, a±0, there exists a state 
meM such that m(a) = 1 [2]. If M is quite full for L, then it is also unital for L [1]. 

A subset L 0 c L containing 1 is called a sublogic of L if it is a logic with the same 
ordering ^ , orthocomplementation ± and the operation v as L. If the sublogic L0 

of L is a Boolean a-algebra, it is called a Boolean sub-o-algebra of L. Two 
elements a, beL are said to be compatible, written a<r*b if there are elements au 

bu ceL mutually orthogonal and such that a = axvc, b = bxvc. A logic L is 
a Boolean a-algebra if and only if a <-*b for any a, b e L. If L is a lattice-logic, then 
a collection of elements of L are mutually compatible if and only if the collection is 
contained in a Boolean sub-a-algebra of L [3, 4]. A Boolean sub-a-algebra is 
called maximal if it is not contained in any other Boolean sub-a-algebra. 
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An element qeL is called an atom if b^q, beL implies 6 = 0 or ft = g. A 
Boolean a-algebra is discrete if it is generated by an at most countable set of 
atoms. 

An observable JC on the logic L is a a-homomorphism from the Borel subsets 
B(R) of the real line R to L. We denote the range of JC by R(x). R(X) is a Boolean 
sub-a-algebra of L. If JC is an observable and u is a Borel function on R, we define 
the observable u(x) by u(x)(E) = x(u~l(E)) for all EeB(R). If JC and y are 
observables, then R(x)ciR(y) if and only if there is a Borel function u such that 
JC = u(y) [5]. The spectrum o(x) of the observable JC is the smallest closed set C c R 
such that JC(C)= 1. An observable x is bounded if its spectrum a(jc) is bounded. 
Observables JC, y on L are compatible, written jc*->y if x(E)<->y(F) for any E, 
FeB(R). Let X be a set of observables and y be any observable; we shall write 
y*+X if y<r+x for every JC eX. If JC is an observable and m is a state, then the 
expectation of JC in the state m is ra(jc) = $\m(x(dX)) if the integral exists. 

A logic is countably generated if every Boolean sub-a-algebra of it is countably 
generated. If L is a lattice-logic which is countably generated, then the following 
theorems hold true [3], [6]. 

Theorem 1. A subset of L is the range of an observable if and only if it is 
a Boolean sub-o-algebra. 

Theorem 2. {jca: aeA} are compatible (i.e. xa^>Xp, a, jSe A) if and only if 
there exist an observable x and Borel functions ua such that wa(jc) = jca, aeA. 

Let L(H) be the logic consisting of all closed subspaces of a complex, separable 
Hilbert space H with dim H ^ 3 . It is known that L(H) is a countably generated 
lattice logic. By the Gleason theorem [7], [4], each state on L(H) is of the form 
m(a) = 2A(w, aqh) (a eL(H)), where 0^tt^ 1, 2,t, = 1 and q>t eH, ||<p,|| = 1. The 
set of all states is quite full for L(H). The (bounded) observables on L(H) are in 
a one-to-one correspondence with the (bounded) self-adjoint linear operators on 
L(H). Let us denote by 0 the set of all bounded observables on L(H). Then 6 is 
the self-adjoint part of the von Neumann algebra B(H) of all bounded operators 
on H. Any operator JC e B(H) can be written in the form JC = JCI + ijc2, where JCi, 
x2e6. For any JC, yeO, jc+->y is equivalent with xy = yx. It A czB(H) is a von 
Neumann algebra, then the set of all projection operators in A is a sublogic of 
L(H). In the sequel we shall need the following theorems [8, p. 68, Ex. 9 and 10]. 
We recall that the ultraweak topology on B(H) is defined by the system of 

seminorms: y e B(H), y *• S(yФм Vi) where {(#} and {xpi} are sequences of 

vectors from H such that 2H<p.||2<a> and 2 l . ^ ' l l 2 < a ) -
«=i i = i 

Theorem 3. Let A aB(H) be a von Neumann algebra and g a positive linear 
functional on A. The restriction of g to the logic L(A) consisting of all projection 
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operators in A is a o-additive state on L(A) if and only if g is ultraweakly 
continuous on A and g(l)=l. 

Theorem 4. To ewery positive, ultraweakly continuous linear functional g on 
a von Neumann algebra A ciB(H) there exists a positive, ultraweakly continuous 
linear functional g~ on the algebra B(H) such that g~IA = g and g~(l) = g(l). 

2. Extensibility of states 

Theorem 5. Let L be a logic such that the set of states M is unital for L. Let B be 
a discrete Boolean sub-o-algebra of L. Then any state on B can be extended to 
a state on L. 

Proof. Let {au a2, ...} be the set of all atoms in B. If m is a state on B, let us set 
m*(b) = Him(ai)mi(b), beL, where mt are states on L such that m,(«,)= 1 for 
i= 1, 2, .... Then m*(l) = m(v,^,) = Z,m(a,)= 1, because the atoms of B are 
mutally orthogonal and v,a, = l. From this it follows that m* is a state on L. 
Clearly, m*(a,) = m(a,), i = l ,2 , ..., which implies that m*(b) = m(b) for any 
beB. Q.E.D. 

We shall say that the sublogic L0 of L has the extension property if any state on 
L0 can be extended to a state on L. 

Theorem 6. Let L be a lattice -logic and let the set of all states be unital for L. 
Moreover, let any state on L have the following property: m(a)= 1, m(b) = 1 
(a, beL) imply m(aAb)=l. Then a finite sublogic L0 of L, which is indeed 
a finite orthomodular sublattice ofL, has the extension property if and only if it is 
a Boolean subalgebra of L. 

Proof. If L0 is a Boolean subalgebra, it has the extension property by 
Theorem 5. Now let L0 have the extension property. Then to any state m on L0 

there is a state m* on L such that m(b) = m*(b) for any b e L0. From this it follows 
that m(a) = 1, m(b) =l,a,beL0 imply m(a A b) = 1 for any state m on L0. On the 
other hand, the restriction of a state m on L to L0 is a state on L0. From this it 
follows that the set of states on L0 is unital for L0. By [2, Theorem 4.3], L0 is 
a Boolean algebra. Q.E.D. 

Theorem 6 for the special case L = L(H) is proved in [2, Theorem 5.3]. 

Theorem 7. Any Boolean sub-o-algebra of the logic L(H) has the extension 
property. 

Proof. Let BczL(H) be a Boolean sub-a-algebra. Let B" be the bicommutant 
of B in B(H). A theorem of Bade [9], [10, XVII, P. 286] proves, that for 
a complete Boolean sublattice C of L(H) the following holds: 

C={PeC: Pis projection operator}. 
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As H is separable, any Boolean sub-a-algebra of L(H) is a complete lattice [11]. 
From this it follows that B is the logic of all projection operators in the von 
Neumann algebra B". For any JC e B" we can set JC = JCI + ijc2, where JCI, JC2 e B" are 
self-adjoint operators such that R(xi)9 R(X2)CZB [8], Let m be a state on B. We 
define a functional / on B" by setting 

/(JC) = $tm(xi(dt)) + i ftm(x2(dt)) 

for JC e B'\ x = xx + ijc2. We shall show that / is a positive linear functional on B". It 
is enough to show the linearity of / on the set of all self-adjoint operators in B". Let 
xu x2eCc\B". As R(xx) and R(x2) are contained in the Boolean sub-a-algebra 
BaL(H), JCI and JC2 are compatible. Let JR(JCI)V.R(JC2) be the minimal Boolean 
sub-a-algebra of L(H) containing R(xx) and R(x2). Then R(xi)vR(x2)czB. Let 
jc0 be an observable with the range /?(jc0) = Jf?(jCi)vl?(jc2). There are real Borel 
functions ux and u2 such that JCI = WI(JC0) and JC2 = W2(X0). For any a, PeR then 

/(OJCI + I3x2) = J tm((ax1 + fix2)(dt)) = J tm(au1(x0) + Pu2(x0)(dt)) = 
= J(au,(t) + Pu2(t))m(x0(dt)) = a J ux(t)m(x0(dt)) + /? J « 2 ( 0 ^ f c ( * ) ) = 

= a J fm(jci(<fc)) + /5 J tm(x2(dt)) = a/(*i) + j3/(x2). 

By Theorem 3, / is ultraweakly continuous and by Theorem 4 there is a positive, 
ultraweakly continuous extension / o f / to B(H). Then flL(H) is a a-additive state 
o n L ( H ) a n d / / £ = / / £ = m. 

Q.E.D. 
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ЗАМЕЧАНИЕ О ПРОДОЛЖЕНИИ СОСТОЯНИЙ 

Сылвия Пулманнова 

Резюме 

В данной статье исследуется возможность продолжения состояний из булевой подалгебры 
данной логики на всю эту логику. 
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