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SEQUENTIAL CONVERGENCES ON CYCLICALLY 
ORDERED GROUPS 

MATUS HARMINC 

In the paper presented it will be shown that on each cyclically ordered group 
there are at most two sequential convergences which are compatible with its 
inner structure. 

The results of the paper were announced at the Conference on Convergence 
held in 1985 at Szczyrk. 

A cyclically ordered group (G, + , C) is a group (G, + ) with a cyclic order C, 
i.e. with a set C of ordered triplets of pairwise distinct elements of G fulfilling 
the following conditions: 
(1) if (a, b, c)eC, then (b, c, a)eC; 
(2) if (a, b, d)eCand (b, c, d)eC, then (a, c, d)eC; 
(3) if (a, b, c) G C, then (x + a + y, x + b + y, x + c + y) e C for all x, y e G; 
(4) either (a, b, c)e C or (a, c, b)e C. 

The group operation in a cyclically ordered group will be written additively 
although the commutativity will not be assumed. For notions non-defined here 
we refer to [2]. 

Every subroup of a cyclically ordered group will be considered to be cyclically 
ordered by the induced cyclic order. 

Every linearly ordered group can be considered as a cyclically ordered group 
([2]). The multiplicative group of complex numbers of absolute value one, 
denoted by K, equipped with a natural cyclic order, is an example of a cyclically 
ordered group which cannot be linearly ordered. If we have a linearly ordered 
group M, then KxM can be cyclically ordered by the natural induced cyclic 
order; similarly, every subgroup of KxM can be understood as a cyclically 
ordered group (for details see [2]). 

Some results of the theory of cyclically ordered groups, developed by 
L. S. Rieger in [10], were applied by S. Swierczkowski in order to 
prove the following representation theorem. 

Theorem 1. (S. Swierczkowski, [11].) Let (G, + , C) be a cyclically ordered 
group. Then there exists a linearly ordered group M such that (G, + , C) is 
isomorphic to some subgroup of KxM. 

A. I. Z a b a r i n a and G. G. Pes tov have obtained a certain improv-
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ement upon this theorem in [13]. Cyclically ordered groups were studied also 
in [6, 9]. 

We recall that a cyclically ordered group (G, + , C) is Archimedean if it 
contains no elements x, y such that, for each positive integer n, (0, nx, y) e C. 
From Swierczkovski's theorem above it follows that G is Archimedean if and 
only if G is isomorphic to some subgroup of K with the cyclic order on G carried 
over from K. 

The following notation is adopted: N denotes the set of all positive integers; 
GN is the set of all sequences with all members belonging to G; GN x G is the set 
of all pair (S, s) with SeGN and seG; Mon denotes the set of all monotone 
mappings from IV to IV; if S e GN and w e Mon, then S ° w is the subsequence of 
S with the n-th member S(w(n)); const (s) denotes the constant sequence with 
all members equal to s. 

In accordance with the notion of a positive cone of a cyclically ordered group 
introduced and investigated in [12] we introuce |x|, the absolute value of x, for 
xeG such that 

if x = — x, then |x | = x, 

if x T* — x and ( —x, 0, x)e C, then |x | = x, 

if x =£ — x and (x, 0, —x)e C, then |x | = — x. 

It is easy to verify the following assertion. 
Lemma 1. Let x and y be elements of G. Then 

(i) |x | = 0 if and only if x = 0; 
(ii) |*| = | - x | ; 
(in) 11*11=1*1; 
(iv) if x^ — x, then ( — |x|, 0, |x | ) eC ; 
(v) if x # —x andy = — y # 0 , then (|x|, y, — |x | ) eC ; 
(vi) if{-\x\,y, \x\)eC, then ( - |* l , ±lyl, l*l)eC. 

Let us introduce the notion of a convergence on a cyclically ordered group. 
Definition. A set Se £ GNxG is said to be a convergence on (G, + , C) if the 

following conditions are satisfied: 
(F) (S, s)eSe implies (S o w, s) e 3? for each w e Mon. 
(L) (S, s)eSe and (R, r)e& imply (S + R, s + r)e JSf and ( - S, -s)e&. 
(U) If SeGN and if for each ueMon there exists veMon such that 

(SoUoV, s)e<e, then (S, s)e&. 
(S) (const(s), s)eL for each seG. 
(H) (S, a)eSe and (S, b)eSe imply a = b. 
(C) If (S, a)zSe and if (0, \T(n) - a\, \S(n) - a\)eC for each neN, then 

(T,a)eSe. 
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The conditions (FLUSH) define a FLUSH-convergence structure for G 
cf. [7], i.e. a convergence group (cf. [8]); the last condition concerns a relation 
between the convergence and the cyclic order on C. Problems of FLUSH-
convergence structures were investigated by many authors (cf. the survey 
paper [1]). 

Example 1. The discrete convergence d(G) on G, defined by 

d(G) = {(S9 s)eGNxG; S(n) ^ s for finitely many neTV}, 

is convergence on (G, + , C). 
Example 2 (see [5], §3). Let o(G) be defined by 
o(G) = d(G) if card G ^ 2 and 
o(G) = {(S9 s)eGNxG; if xeG and x # - x , 

then ( - |x | , S(n) - s, |x | <£ C for finitely 
many n 6 IV} if card G > 2. 

The set o(G) is a convergence on (G, + , C). 
In the particular case when G is linearly ordered, o(G) coincides with the 

order convergence on G. 
The following assertion is rather easy to verify (for detailed proof cf. [5]): 
Proposition. Let G be isomorphic to some subgroup of K and let S£ be a 

convergence on G. Then S£ = d(G) or S£ = o(G). 
The following theorem is the main result of this paper. 
Theorem 2. Let (G, + , C) be an arbitrary cyclically ordered group and let S£ 

be a convergence on (G, + , C). Then S£ = d(G) or S£ = o(G). 
In view of Proposition we may assume that G is not isomorphic to any 

subgroup of K. We shall prove the theorem by means of a sequel of lemmas. 
Note that if SeGN

9 then S — s and |5 | are defined pointwise. One can easily 
prove the following lemma. 

Lemma 2. Let S£ be a subset of GNxG satisfying the conditions (FLUSH). 
Then (S9 s)zS£ if and only if(\S - s|, 0)e S£. 

Let us denote 
L+ = {xeG; ( — nx9 0, nx)eC whenever neN}, 
L~ = {xeG; (nx9 0, —nx)eC whenever neN}9 

L = L + u { 0 } u L " . 
For a, b e L we define a < b if and only if a = b or (a — b, 0, b — a) e C. 
Theorem 3. (A. I. Z a b a r i n a — G G. Pestov, [13], Thms. 2.6 and 2.7.) 

L is both a normal subgroup ofG and a linearly ordered group with respect to the 
above defined order <. Moreover, ifheL and (0, x, \h\)e Cfor some xe G, then 
xeL. 

Lemma 3. If S£ is a convergence on G and (S9 0) e S£, then there is a final 
segment of S belonging to LN. 

Proof. Suppose it is not. Then there is a sequence weMon such that 
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S(w(n))$L whenever ne1V. By the condition (F) and Lemma 2 we have 
(\So vv'|, 0)e J27. Since G is not Archimedean, there exists an leL, / # 0 (see [13]). 
Applying Theorem 3 we get (0, |/|, \S(w(n))\)e C for each neN.lt follows that 
(const (|/|), 0)e JSf. Finally, the conditions (S), (H) and Lemma 1 (i) imply / = 0, 
a contradiction. 

We recall that JSf is a convergence on a linearl^oxdered group (L, + , < ) if 
JSf ^ LNxL, the conditions (FLUSH) are fulfilled and (S, g)e<£ whenever 
(/?, g)e<£, (T, g)eS£ and R<S<T (cf. [3]). It is easy to observe that the 
following holds. 

Lemma A.lfS£ is a convergence on a cyclically ordered group (G, + , C), then 
JS? n (LN x L) is a convergence on the linearly ordered subgroup (L, + , <) . 

Lemma 5. Let <£ and X be convergences on G. Then S£ — X if and only if 
&n(LNxL) = Xn(LNx L). 

Proof. It is sufficient to show that S£ ^ X whenever S£n(LNxL) = 
= X n(LNx L). Let (/?, r) e <£. From Lemma 2 it follows that for S = \R - r|, 
(S, 0) belongs to <£. By Lemma 3 there is a final segment T of S belonging to 
LN. Hence, by the condition (F), (7, 0) e <£ n (LN x L) = X n (LN x L) ^ X. 
From the condition (U) we obtain (5, 0)eX. So, by Lemma 2, we have 
(i?, r)eX. 

The following easy lemma enables us to prove the theorem. 
Lemma 6. Let ££ bea convergence on the linearly ordered group (L, + , < ) and 

let <£* = {(5, s) e GN x G; there exists a final segment T of S such that (T — s, 0) e 
e<£). Then ££* is a convergence on the cyclically ordered group (G, + , C) and 
<£*n(LNxL) = S£. 

Corollary. Let ££, X be convergences on the linearly ordered group (L, + , < ). 
Then <£ = X if and only if S£* = Jf*. 

P roo f of T h e o r e m 2. By Lemma 4, <£ n(LNxL) is a convergence on 
the linearly ordered group (L, + , <) . From [5], Thm. 2.10 (for a special case, 
if L is commutative, in [4], Thm. 3.9) it follows that 5£ n (LNxL) = d(L) or 
& n (LN x L) = o(L). Applying Lemmas 3 and 6 to <£ = (J£? n (LN x L))* we 
have <£ = (d(L))* = d(G) or <£ = (o(L))* = o(G). 

The following remark is a consequence of the above results (Thms. 1, 2 and 
Prop.). 

Remark . If G is an infinite Archimedean cyclically ordered group, then 
o(G) 7̂  d(G); thus G has exactly two convergences. 

If G is not Archimedean and there is a decreasing sequence SeLN (L defined 
as above) such that the infimum of the set {S(n); neN} is zero, then G has two 
convergences as well. 

Otherwise, G has only one convergence, namely d(G). 
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СЕКВЕНЦИАЛЬНЫЕ СХОДИМОСТИ НА ЦИКЛИЧЕСКИ 
УПОРЯДОЧЕННЫХ ГРУППАХ 

Ма1и8 Н а г г т п с 

Р е з ю м е 

В статье определено понятие секвенциальной сходимости на циклически упорядоченной 
группе. Показано, что всякая циклически упорядоченная группа имеет не более двух сходи-
мостей. 
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