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CHAINS IN MODULAR TERNARY LATTICOIDS
JARMILA HEDLIKOVA

In this paper we consider a set M closed under a ternary operation (abc)
satisfying the identities

(1) (abb)=b,

(2) ((abc)dc) = (ac(dcbh)). :
We call M a modular ternary latticoid (it is a generalization of the median
semilattice from [4]):

Note that in any modular lattice the ternary operation (abc) defined by

(3) (abc)=({(bvc)na)v(bac)=(bvc)a(av(bAac))
satisfies the identities (1) and (2) (see the introduction in [3]). Thus every modular
lattice is a modular ternary latticoid.

[3, Theorem 1] gives a characterization of modular lattices with a least element
by means of the ternary operation (3).

In a modular ternary latticoid we introduce the relation between, the notion of
the segment (compare [4]),.and the notion of the chain (the corresponding notion is
the line in lattice, see [2]). We give some results which characterize chains.
Moreover, we prove the Jordan-Holder theorem for chains.

Throughout the paper, M will denote a modular ternary latticoid.

1. Basic concepts and properties

In [3, Lemma] for a modular ternary latticoid the following is shown
(4) (bab)=b, (aab)=a.
(5) ((abc)bc)=(ach).
(6) (abc)=(acb).
(7) ((abc)ac) =(ac(abc)) = (abc).
(8) (ab(cab))=(abc).
(9) (bac)=(cab)— (abc)=(bac).
(10) (abc)=c—(bca)=c = (cab).
(11) (a(ade)(bde)) = (ade).
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We say that x is between a and b and write axb if and only if x = (axb). The
segment (a, b) is defined as the set of all elements between a and b, i.e.
(a, b)y={xeM: axb}. From (6) and (10) it follows

(12) axb—x =(bxa)=(xab).

We get (a, b) = {(axb):x e M} from (6) and (7), (a, a)={a} from (4), and a,
be(a, b)y=(b, a) from (1) and (2).

We will show that a modular ternary latticoid satisfies the following relations

(13) (a,b)c(a,c)>be(a,c).
(14) (a,b)=(a,c)—>b=c.
(15) aba—a=5b. :
(16) aab, baa.

(17) abc— cha.

(18) abc-bac—a=5b.

(19) abc-acb—b=c.

(20) abc-acd— bcd-abd.

(21) abc-acd-ade— bde.

Let b e(a, ¢) and x € (a, b), these mean abc and axb. Applying (12) twice, (2),
and again (12) we get x=(bxa)=((cha)xa)= (ca(xab))=cax, which gives
x€(a, c¢) by (10). Thus (13) is proved.

From (6) we have (14): b= (abc)=(acb)=c.

(15) follows immediately from (4), (16) from (1) and (4), (17) and (18) from
(12), and (19) from (6).

Now let abc, acd. Applying (6), (12), (2), (12), and (1) we have
(bed) = (bdc) = ((bac)dc) = (bc(dca)) = (bec) = ¢, which means bcd. Further abd
follows from c e (a, d) and b € (a, c¢) by (13), and (20) is proved.

(21) follows immediately from (20).

The notation of betweenness can be extended as follows: abcd denotes
abc-abd - acd - bcd. Similarly for more than four terms. Thus the implication in (20)
can be replaced by the other one abc-acd — abcd.

The segment (a, b) is called a simple segment if and only if it contains only the
elements a, b. Clearly the segment (a, ) is simple if and only if (axb) € {a, b} for
all xe M (or (bxa)e{a, b} for all xe M).

Two segments (a, b), (c, d) are called transposed segments (or shortly transpos-
es), when a, ce(b,d) and b, de(a,c) or a, de(b, c) and b, ce(a, d). The
relation of transposition is reflexive and symmetric but need not be transitive. This
shows the five-element modular ternary latticoid {O, I, a, b, c} corresponding to
the known five-element modular nondistributive lattice (O, I denote the least and
the greatest element, respectively): (abc)=(Oal)=a, (bac)=(Obl)=b,
(cab)=(Ocl)=c, (aOb)=(aOc)=(bOc)=0, (alb)=(alc)=(blc)=1 (the
number of defining identities is reduced with regard to (1), (6), and (10)). The
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segments (b, I), (a, O) and (a, O), (c, I) are transposes but the segments (b, I),
(¢, I) are not transposed. Therefore we introduce the following definition.

Two segments (a, b), (c, d) are projective if and only if there exist segments
(Xos Y0)s «ovs (Xns Yu), Xo=a, o= b, x, = c, y, = d such that the segments (x,_,, y,_,),
(x;, y;) are transposes for i=1, ..., n. We call the segments (x;, y;), 0<i<n, the
middle members of that projectivity.

Now we prove the following: If (a, b), (c, d) are transposed segments and (a, b)
is simple, then (¢, d) must be also simple. It is sufficient to consider the case bad,
bcd, abc, adc. Let cxd. Then by (20) cxd - cda— cxda and dxc- dcb — dxcb. Since
(a,b) is simple, (axb)e{a,b}. If (axb)=a, then x=(axx)=(ax(dxb))=
=((abx)dx)=(adx)=d. If (axb)=b, this means abx, then by (20)
abx - axc— bxc, which with bcx gives x = c. The segment (c, d) is simple.

The following notions will be needed. The elements a, b, ¢, d € M form a cyclic
quadruple (a, b, c, d) when they are pairwise different and satisfy abc, bcd, cda,
dab. A nonempty subset R = M is a chain if and only if it satisfies the following two
conditions

(a) For every three elements a, b, c € R one (at least) of the relations abc, bca,
cab, holds.

(b) R does not contain a cyclic quadruple.

It is clear that a nonempty subset of a chain is a chain. An element a € R is an end
element of a chain R if and only if for all x, y € R axy or ayx holds. The length of
a finite chain R is the number of its elements minus 1.

2. Chains

In a chain there holds: abc-bcd- b+ c— abd. To prove it assume abc, bed and
b#c. By (20) we have adb-abc—dbc, which together with dcb gives b =c,
further dac - dcb — ach, which with abc also gives b = c¢. Thus neither adb nor dac
is possible. If acd, then by (20) abc - acd — abd. Let adc and dab. The elements a,
b, ¢, d cannot be different (because otherwise they would form a cyclic quadruple).
Because of b# ¢ there must be a#c, a+d, and b+d. If a=b or c=d, then abd

holds trivially.
Note that from the preceding statement there follows: abc- bcd - b# c— abcd in

a chain.

Proposition 1. Every chain R has at most two end elements a, b, which are
characterized by the following property: for all x € R axb.

Proof. Let a, b, c be end elements of a chain R and ach. Therefore cab or cba
must hold. Then c=a or c=b.
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Let a# b be end elements of a chain R, x € R. There are two possibilities: axb
and abx. Let there be abx. One of the relations bxa or bax must hold. If bax, then
a=b, which is impossible. Then bxa, hence axb.

Let a, beR, a¥# b, and azb for all ze R. We shall show that a, b are end
elements of R. Take x, ye R. The elements a, b, x, y can be assumed to be
pairwise different. Now the case xay (xby by symmetry) can be eliminated as
follows. Let xay. From yax, axb, a# x there follows that yab, which with ayb gives
y = a, a contradiction. Therefore axy or ayx must hold and analogously bxy or byx.

Proposition 2. Let RcM have more than four elements and let R satisfy
condition (a). Then R is a chain.

Proof. It is enough to show that no four elements of R form a cyclic quadruple.
Assume that there exist pairwise different elements x, y, z, ¢ € R for which xyz, yzt,
ztx,and txy. Letae R — {x, y, z, t}. There are three possibilities: 1. xay, 2. axy, 3.
ayx. The last two relations are symmetric.

In the first case using (20) we obtain xay - xyz — xayz and yvax - yxt— yaxt. If atz,
then zta-zax— tax, which contradicts axz. The relation azr does not hold by
symmetry. There remains zat. But then taz-tzy— azy, which contradicts ayz.
Therefore the first relation does not hold.

In the second case there are three possibilities: fya, tay, yta. Let tya, then
txy -tya— xya, which contradicts axy. From the relation fay it follows that
a = (tay) = (t(tay)(xay)) = (tax), which cannot hold for the same reasons as xay.
Then yta must hold. By (20) yxt- yta— xta and yzt- yta— yzta. Now we show that
all three possibilities axz, azr, and xaz lead to a contradiction. Let axz, then
axz-azy— xzy, but it does not hold. The possibility azx is symmetric. Finally, let
xaz. But then ¢ = (xat) = (x(xaz)(taz)) = (xaz) = a, which is a contradiction. From
the preceding it follows that the second relation does not hold and also the third
one.

Therefore the assumption was incorrect and the proposition is proved.

Proposition 3. Every finite chain R with at least two elements has two end
elements. .

Proof. Let R={x,, ..., x,} contain n+1 elements. The proposition will be
proved by induction on the number of elements of the chain R.

1.If R = {x, x,}, then x,, x, are the end elements, because x,xx; and xox,x;.

2. Let n>1. Assume the proposition to be true for all k<n. Let a, b be end
elements of a chain {x,, ..., x,_,}. There are three possibilities: ax,b, abx,, bax,.
The last two are symr metric. If ax,b, then R has the end elements a, b. If abx,, then
for all k<n by (20) ax,b - abx,— ax.x,. Clearly ax,x,. Then the chain R has the
end elements a, x,.

Propositiond. Letn>1. R={y,, ..., ¥.} isachainifandonly if R = {x,, ..., X.},
where x,x,...x, (this means xxx, for all i, j, k€ {0, ..., n}, i<j<k).

252



Proof. Let R={y,, ..., y.} be a chain of a length n. The first implication will be
proved by induction on n.

1. The proof is clear for n=2.

2. Let n>2 and let the proposition be true for all X <n. Let us denote the end
elements of the chain R by x,, x,. From the induction assumption it follows that
R —{x.}={Xo, ..., X._1}, Where Xox,...x,_,. It is sufficient to show xxux, for all /,
j€{0, ..., n—1}, i<j. Indeed by (20) xoxx; - XXX, —> XX:X,.

It is easy to see that R = {xo, ..., X, }, where XoX,...x, does not contain a cyclic
quadruple, which proves the second implication.

The chain R will be denoted by R = x,x,...x,.

Proposition 5. Let xox....x, and x,_,xx; for some ie{l, ..., n}. Then
XXy Xy XX Xy

Proof. It is sufficient to show that x.xx,, and xx.x for all j, k, me{0, ..., n},
j<k<ism. Clearly xx_x, Xxx., and xxx;. Using (20) we obtain

XXX;_y XX _ X —> X xX,,  further  xoxx, - xxx.— xxx,, and finally xaxx,-
XXX > XXX

Corollary. If xox,...x, is a maximal chain between the elements X,, X,, then
(xi-i, %) (=1, ..., n) are simple segments.

Remark 1. A chain R is maximal if and only if there exists no chain So R,
S#R.

Using Zorn’s lemma we obtain the proposition: Every chain is contained in
a maximal chain. '

Similarly: Every chain between the elements @, b is contained in a maximal
chain between the elements a, b.

Proposition 6. Let R be a chain, ae R. Then R=S8uUT, where S, T are chains
with the end element a, SNT={a}, and sat for all se S, teT.

. Conversely: Let S, T be chains with the end element a, SNT = {a}, and sat for
all seS, teT. Then R=SuUT is a chain.

Proof. If a is an end element of R, it is sufficient to put S=R and T={a}.1f a
is not an end element of R, then there exist x, y € R such that xay and x, a, y are
pairwise different. Put S={seR: axs or asx} and T={teR: ayt or aty}.
Evidentlyxe S, ye T,and a e SN T. If v € SN T, then avx and avy, which with xay
gives v =a, hence SNT={a}. Let ve R. Then in each of the possibilities vxay,
xvay, xavy, and xayv it follows that ve SUT. Hence R=SuT. Now let z,
v €S — {a} and zav. Each of the possibilities xzav, zxav, zaxv, and zavx leads to
a contradiction. Thus azv or avz must hold and a is the end element of the chain §
and similarly of the chain T. Let s€S, te T. Then we get sat for all four
possibilities xsaty, xsayt, sxaty, and sxayt. Thus the first part of the proposition is
proved.
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To prove that R satisfy the condition (a) it is sufficient to consider the case x,
yeS, zeT, and axy. Then yxa-yaz— yxaz. With respect to this fact and
Proposition 2 R is a chain.

Remark 2. The chain as in Proposition 6 will be denoted by R = SaT. Evidently
the length of the chain R (R finite) is the sum of the lengths of the chains S, T.

Corollary. If R is a chain between the elements a, b and abc holds, then
Rb{b, c}.

It follows from the fact that for all € R ath-abc— tbc holds.

Proposition 7. A nonempty subset R c M is a chain if and only if R ={x.}, .,
where I is an ordered set so that xxx, for all i, j, kel, i<j<k.

Proof. Let R be a chain, a € R. Let S, T be chains as in Proposition 6. Now the
ordering on the set R will be given. For x, y € R let x <y hold if and only if one of
the following conditions holds

(i) x,yeS and xya,
(ii) x,yeT—-{a} and axy,

(ili) xeS and ye T—{a)}.

We immediately obtain that x<x. If x<y and y<ux, then one of the following
possibilities is true: x, y €S, xya, yxa or x, ye T—{a}, axy, ayx. In both cases
x=y holds. Let x<y and y<z. If xeS and zeT—{a}, then x<z. Let
xeT—{a}. Then y, ze T—{a} and axy, ayz, hence axz, which means x <z. If
z€ S, thenx, y € S and xya, yza, hence xza, and hence x < z. Note that in all three
cases xyz holds. It is easy to see that x <y or y<ux for the arbitrary elements x,
y e R. From these considerations it follows that R can be written in a desirable
form.

Clearly R ={x;}, ., (where I has the meaning as above) is a chain, which proves
the second implication.

Proposition 8. Let R be a maximal chain between the elementsa, bandx,y € R.
Then S = Rn(x, y)={z € R: xzy} is a maximal chain between the elements x, y.

Proof. With respect to the symmetry we may assume the case axyb. Let
So,=Su{¢} be a chain between the elements x, y, hence xty and further axtyb. The
chains S, and R, = Rn(a, x) fulfil the assumptions of the second part of Prop-
osition 6, hence S,UR, is a chain. Ru{t} =(S,UR,)UR,, where R,=Rn(y, b) is
a chain for the same reasons as S,UR,. Hence ¢ € R, which with xty gives € § and
thus S is maximal.

Remark 3. Proposition 8 is true for an arbitrary maximal chain R. It can be
proved similarly.

3. The Jordan—Holder theorem for chains

Now we can prove the basic result.
Proposition 9. (Jordan—HG6lder theorem for chains in modular ternary latticoid-
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s.) Let R, § be maximal chains with end elements a, b in a modular ternary
latticoid. Let the chain R be finite. Then there holds:

1. The chain S is finite and of the same length as R.

2. There exists a bijective mapping of the set of all simple segments of the chain
R to the set of all simple segments of the chain S such that the corresponding simple
segments are projective and for the middle members (p, q) of that projectivity
apb, aqb holds.

Proof. Let R be of the length n. The proof will be given by induction on 7.

For n=0,1 the proposition is clear. '

Let n>1, R=xyx,...X,, a=x,, b=x,, and let the proposition be true for all
k<n. From this it follows that S—{a, b}#0. Denote R,={a,x} and

=Rn(x, b). If x, ye(a, b), then (xya)=((bxa)ya)=(ba(yax))=(yax) and
similarly (xyb) = (ybx). There are two possibilities (with respect to the fact that the
segment (a, x,) is simple): 1. ax,y for all yeS—{a, b}, 2. x,ay for some
yeS—{a,b}.

In the first case x, €S, because Su{x,} is a chain and § is maximal (if y,,
y.€S —{a} and ay,y,, then ax,y,-ay,y,— ax,y,y.). The chain R, has the length
n — 1. From the induction assumption there follows the validity of the proposition
for the chains R, and S, = SN(x,, b). Since S = Ryx,S,, the proposition is true for
the chains R, S.

In the second case denote z = (x,yb)=(ybx,), hence x,zy, ax,zb, and ayzb.
Therefore the segments (a, x;) and (y, z) are transposes. Since (a, x,) is simple,
(y, z) is simple. First of all, assume that z = b. If (a, y) is not a simple segment, the
case is symmetric to z# b (there exists y' € S — {a, y, b} such that ay’yb, hence
xay' and z' # b, where z' =(x,y'b) =(y'bx,)). Let (a, y) be simple (the chain S is
of the length 2). The segments (a, y) and (x,, b) are transposes, hence (x,, &) is
simple, n =2, and the proposition is true. Now let the elements z, b be different.
The proposition is true for the chains R, and a maximal chain R, > x,zb between
the elements x;, b. R,n(z, b) has the length k=1 (z+# b), the length of R.N(x,, z)
is n—1—k. Denote S,={y, z}. The proposition is true for the chains
Soz(R:N(z, b)), Sn(y, b) (they have the length k + 1<n, because z#x,; in the
case x, = z there holds ayx,, which with x,ay gives a =y, a contradiction) and for
the chains R.x,(R,N(x,, 2)), (SN(a, y))yS, (they have the length n — k <n). We
may summarize : the chain S is finite and has the length(n — k- 1)+ (k+ 1) =n.

The second part of the proposition follows from the induction assumption and
from the fact that the segments (a, x;), (¥, z) are transposes.
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HEINMA B MOOYJISIPHBIX TEPHAPHBIX CTPYKTYPOUOAX
Sipmuna XennukoBa
Pe3ome

B cratbe paccMaTpiiBaeTCs MHOXECTBO M ¢ TepHapHOW onepauueit (abc) ynoBaeTBOpsIOLIEH
toxpaectsaM (abb) = b 1i ((abc)dc) = (ac(dcb)). M Ha3biBaeTcs MOAYNAPHBINA TEPHAPHDIA CTPYKTYPOHA.
Beskas  MopynspHas  CTPYKTypa ¢ TOAXOfslied  TepHapHoi  omepaumein  (abc)=
=({(bvc)na)v(bac)=(bvc)a(av(bac)) ectb MORYNSPHBIA TEPHapHBIA CTPYKTYpoua. B M BBO
IATCA — TEPHApHOE OTHOLIEHHE MEXNY, MOHATHE HMHTEpBaJIa M MOHATHE LenH (COOTBETCTBYKOLIEE
MOHSATHE B CTPYKTYpE — InHUSA). B paGoTe NpUBEREHO HECKONBKO PE3YJIbTATOB XapaKTEPU3YIOLIHMX LEMH
B M u poka3ana teopema XKoppaHa-I'ensaepa pns ueneit B M.
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