
Mathematica Slovaca

Ján Jakubík
Weak isometries of lattice ordered groups

Mathematica Slovaca, Vol. 38 (1988), No. 2, 133--138

Persistent URL: http://dml.cz/dmlcz/128628

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/128628
http://project.dml.cz


Math. Slovaca 38,1988. No. 2,133—138 

WEAK ISOMETRIES OF LATTICE ORDERED GROUPS 

JAN JAKUBIK 

K. L. Swamy [10] defined an isometry in an abelian lattice ordered 
group G to be a bijection / : G -> G such that 

(1) \f(x)-f(y)\ = \x-y\ for each x,yeG. 

This definition can be applied for non-abelian lattice ordered groups as well. 
Isometries in abelian lattice ordered groups were investigated by Swamy 

[10], [11] and by W. B. Powell [8]; for the non-abelian case cf. W. Ch. 
Hol l and [2] and the author [3], [4]. 

Isometries for some types of abelian partially ordered groups were studied by 
J. Rachunek [9], M. Jasem [6], M. K o l i b i a r and the author [5]. 

In [4] it was proved that for each isometry/we have 

(2) f([xAy,xvy]) = [f(x)Af(y),f(x)vf(y)] for each x.yeG. 

In the present paper the following results will be established: 
(A) Let G be a representable lattice ordered group and let f:G-+Gbea 

mapping such that (1) is valid. Then f is a bijection. 
(B) Let G be a lattice ordered group and let f: G-^G be a mapping such that 

(1) and (2) are valid. Then f is a bijection. 
A mapping / : (?-> G which satisfies the condition (1) will be said to be a 

weak isometry in G. 

1. Auxiliary lemmas 

For the terminology and denotations concerning lattice ordered qroups cf. 
C o n r a d [1] and K o p y t o v [7]. 

1.1. Lemma. Let f be a weak isometry in a lattice ordered group G. Then f is 
an injection. 

Proof. Let x and y be distinct elements of G. Then \x — y\ ^ 0, hence in view 
of (1) we have/(x) # f(y). 

In the remaining part of this section G is a lattice ordered group a n d / i s a 
weak isometry in G. In the lemmas 1.2—1.10 we assume that the condition (2) 
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is satisfied. The method from [3], Section 1 will be applied (with the distinction 
that the bijectivity of G will not be assumed). 

We denote by Mx and M2 the sets of all intervals [r,s] of G such that 
f(r) = f(s) or/(r) = f(s), respectively. 

1.2. Lemma. Let a, b, ceG, a = b = c, ie{l,2}. If[a,c]eMi, then both the 
intervals [a,b] and [b,c] belong to Mf. 

P roof . This is a consequence of (2). 
Each interval belonging to M, n M2 contains only one element; thus from 1.2 

we obtain: 

1.3. Lemma. Let [a,b]eMl9 [a,c]eM2. Then a = b A c. 
The assertion dual to 1.3 is also valid. 

1.4. Lemma. Let a,beG, a = b. There exist elements c, de[a,b] such that 
(i) [a,c], [d,b]eMj and [a,d], [c,b]eM2; 

(ii) c A d = a and c v d = b; 
(iii) f(c) = / ( * ) v f (b ) , f(d) =f(a) A f(b). 
Proof . According to (2) there exist elements c and d in [a,b] such that 

(iii) is valid. Hence (i) holds. Thus in view of 1.3 and of its dual, the condition 
(i) is satisfied. 

Let x,yeG, x A y = u, x v y = v. 

1.5. Lemma. Let [u,x] and [u,y] belong to Mx. Thenf(x) A f(y) = f(u) and 
/ ( x ) v / 0 ) =f(v) (hence [x,v], [y,v]eMx). 

Proof . Cf. [3], Proof of Lemma 1.5. 
Similarly we have 

1.6. Lemma. Let [u,x], [u,y]eM2. Then f(x) A f(y) = f(v) and 
f(x) v f(y) = f(u) (hence [x,v], [y,v]eM2). 

1.7. Lemma. Let [u,x]eMx, [u,y]eM2. Then [x,v]eM2 and [y,v]eMx. 
Proof . According to Lemma 1.4 applied to the interval [x,v] there exists 

de[x, v] such that [x,d]eMx and [d,v]eM2. Then we have [u,d]eMx, hence in 
view of 1.2, [u,d A y]eMx. But from [u,d A y] ^ [u,y]eM2 we obtain [u,d A 
A y]eM2, thus in view of Lemma 1.3 we have d A y = u. Hence d = x and 
therefore [x,v]eM2. Analogously we deduce that [y,v]eMx. 

1.8. Lemma. Let [u,x]eM,. Then [y,v]eM}. 

Proof . According to 1.4 there is ce[u,y] such that [u,c]eMx and 
[c,y]eM2. Put cx = x v c. In view of 1.5 we have [c,cx]eMx. Hence according 
to 1.3, c, A y = c. Clearly cx v y = v. Now by applying 1.4 we obtain [y, v] e M,. 

By duality we get [y, v]eMx => [u,x]eMx. An analogous result holds for M2; 
thus we conclude: 
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1.9. Lemma. Let ie{l,2}. Then [u,x]eMi if and only if\y,v]eMt. 

1.10. Lemma. Let the assumptions of Lemma 1.7 be satisfied. Then we have 
f(u) Af(v) = f(y) andf(u) v f(v) = f(x). 

Proof. In view of the assumptions we have/(y) ^ f(v) and/(y ) ;= /(u) , 
hence f(y) = f(u) A f(v). On the other hand, from (2) we obtain 
f(u) A f(v) = f(y). Thus f(u) A /(v) = f(y). Analogously we can verify that 
f(u)vf(v) = f(x). 

1.11. Lemma. Let f(0) = 0. Then 

(a) xAf(x) = 0of(x) = x; 
(b) xA(-f(x)) = 0of(x)= - x ; 
(c) xv/(x) = 0-=>/(x) = x; 
(d) xv(-f(x)) = 0^>f(x)= -x. 

Proof. Cf. [3], the proof of 1.8. 

1.12. Lemma. Let f(0) = 0. Let (2) be valid and let 0 = xe G. Then 

(a) f(x) = xof(-x) = - x , 
(b)f(x)=-xof(-x) = x. 

Proof. Cf. [3], the proof of 1.9. 
Hence we arrived at the conclusion that i f / i s a weak isometry on a lattice 

ordered group G such that (2) is satisfied, then the assertions of the lem
mas 1.3—1.9 of [3] remain valid. 

2. Representable lattice ordered groups 

Recall that a lattice ordered group is said to be representable if it can be 
embedded into a direct product of linearly ordered groups. Each abelian lattice 
ordered group is representable. 

2.1. Lemma. Let G be a lattice ordered group and letf: G -» G be a mapping. 
Put g(x) = f(x) — f(0) for each xeG. Letje{\,2}. Then the following conditions 
are equivalent: 

(i) / satisfies the condition (j)\ 
(ii) g satisfies the condition (j). 
The proof is immediate. 

2.2. Lemma. Let G be a linearly ordered group and let f be a weak isometry 
in G. Let g be as in 2.1. Then some of the following conditions is valid: 

(a) g(x) = x for each xeG; 
(P) g(x) = — x for each xeG. 
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Proof. The assertion is trivial for the case G = {0}. Assume that G 7-- {0}. 
Then there is x e G, x > 0. Since G is linearly ordered, according to 1.11 we have 
either g(x) = x or g(x) = — x. 

Let g(x) = x and ye G. By way of contradiction, assume that g(y) ?- y. Then 
y # 0 and g ( » = - y . If y > 0, then |g(x) - g(y)\ >\x-y\\ if y < 0, then 
|g(x) — g(y)| < \x — y\- Since g is a weak isometry in G, we have arrived at a 
contradiction. The case g(x) = — x is analogous. 

In the rest of this section we assume that G is a representable lattice ordered 
group and that f is a weak isometry in G. 

Without loss of generality we may suppose that G is a subgroup of the lattice 
ordered group TlielGi9 where 

(a) all G, are linearly ordered, 
(b) for each iel9 the natural projection of G into G, is a surjection. 
For xeG and iel we denote by x(i) the i-th component of x. Let g be as 

above. 

2.3. Lemma. Let x,yeG and iel. If x(i) = y(i)9 then g(x)(i) = g(y)(i). 
Proof. Let x(i) = y(i). From2.1 we infer that 

\g(x) - g(y)\(i) = \x - y\(i), 

hence 
\g(x)(i)-g(y)(i)\ = \x(i)-y(i)\. 

Therefore g(x)(i) = g(y)(i). 
In view of (b), for each /e Iand each jt.-eG,- there is xeG with x(i) = xt. We 

put gi(xt) = g(x)(i). According to 2.3, gt is a correctly defined mapping of G, into 
Gs. 

Since all operations in G are performed component-wise, from 2.1 we obtain 
that for each iel, gt is a weak isometry in G,. 

2.4. Lemma. Let iel. Then g( satisfies the condition (2). 
Proof. Since G, is linearly ordered, we can apply 2.2 (G and g are re

placed by G, and gf) and then by a straigth-forward calculation we obtain that 
(2) holds. 

In view of 2.4, g satisfies (2) as well; hence according to 2.1 we get 

2.5. Corollary. Let G be a representable lattice ordered group and let f be a 
weak isometry in G. Then the condition (2) is satisfied. 

3. Proofs of (A) and (B) 
In view of 2.5, the assertion (A) is a consequence of (B). 
Let G be a lattice ordered group and letf: G -> G be a mapping which satisfies 

(1) and (2). 
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For the next procedure we have two alternatives. 
a) As we have already remarked, we have verified in Section 1 above that the 

assertions of Lemmas 1.3—1.9, [3] remain valid if the assumption that f is an 
isometry is replaced by the assumption that f is a weak isometry satisfying (2). 
This assumption also suffices to carry out the proofs of [3], Section 2. In 
particular, from 2.5.1 in [3] we infer that g2(x) = x is valid for each xe G, where 
g is as in Lemma 2.1. Hence in view of 1.1, g is a bijection. Therefore f is a 
bijection as well. Thus we have proved that (B) holds. According to 1.1 and 2.5, 
(A) is valid. 

b) We can proceed directly without applying the results of Section 2 of [3] 
(concerning the direct product decomposition of G corresponding to the map
ping / with f(0) = 0). 

Let g be as in 2.1. The following assertion is obvious. 

3.1. Lemma. The mapping g2 satisfies the conditions (1) and (2). 

3.2. Lemma. Let xeG, 0 ^ x. Then g2(x) = x. 
Proof . We apply Lemma 1.4 for the interval [0,x] and for g instead off 

(in view of 2.1, this can be done). There are a, be[0,x] such that [0, a], [b, x] eMx 

and [0, b], [a, x] e M2 (where M, and M2 are taken with respect to g). According 
to 1.10 we have 

g(0) A g(x) = g(b), g(0) v g(x) = g(a\ 

whence 
0 A g(x) = -b, 0 v g(x) = a. 

Since g( — b) = b (cf. 1.12), according to (2) we obtain 

g(g(x))e\g(a) A g(-b\ g(a) v g(-b)] = [a A b,a v b] = [0,x], 

hence g2(x) ^ 0. Now in view of 3.1 and 1.11 (a) (applied to g2) we infer that 
g2(x) = x. 

3.3. Lemma. Let XGG. Then g2(x) = x. 
Proof . Put 0 A x = u, 0 v x = v. In view of 1.12 and 3.2 we have 

g2(u) = u and g\v) = v. Hence g\u) ^ g2(v). Thus according to 3.1 and 1.2, 
g\u) =" g\x) = g\v). Since g2 satisfies (1) and g2(0) = 0, we get \g2(x)\ = |JC|. If 
either g2(x) A 0 > u or g2(x) v 0 < v, then we would have 

\g\x)\ = g\x) v 0 - g2(x) A0<V-X = |x | , 

which is a contradiction. Hence g2(x) A 0 = u and g2(x) v 0 = v. Therefore 
g\x) = x. 

Now we can apply the identity g2(x) = x in the same way as in a) to obtain 
that (A) and (B) hold. 
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3.4. Corollary. Let G be a representable lattice ordered group and let f: G -> G 
be a mapping. Then the following conditions are equivalent: 

(i) f is an isometry in G. 
(ii) f satisfies (1). 

3.5. Corollary. Let G be a lattice ordered group and let f: G -• G be a map
ping. Then the following conditions are equivalent: 

(i) f is an isometry in G. 
(ii) f satisfies (1) and (2). 
The question whether (2) is a consequence of (1) remains open. 
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С Л А Б Ы Е ИЗОМЕТРИИ РЕШЕТОЧНО У П О Р Я Д О Ч Е Н Н Ы Х ТРУПП 

1ап 1 а к и Ы к 

Резюме 

Пусть С решеточно упорядоченная группа, и / : С -* С такое отображение, что 
|/(.х) — / 0 ) 1 = \х — У\ Для всех х,уеС. В статье доказано: если С является о-аппроксимиру-
емой, тогда отображение/будет биекцией. 
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