Mathematica Slovaca

Jéan Jakubik
Weak isometries of lattice ordered groups

Mathematica Slovaca, Vol. 38 (1988), No. 2, 133--138

Persistent URL: http://dml.cz/dmlcz/128628

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/128628
http://project.dml.cz

Math. Slovaca 38, 1988, No. 2, 133—138

WEAK ISOMETRIES OF LATTICE ORDERED GROUPS
JAN JAKUBIK

K. L. Swamy [10] defined an isometry in an abelian lattice ordered
group G to be a bijection f: G — G such that

M If(x) =f@)I = Ix —y| foreéach x,yeG.

This definition can be applied for non-abelian lattice ordered groups as well.

Isometries in abelian lattice ordered groups were investigated by Swamy
[10], [11] and by W. B. Powell [8]; for the non-abelian case cf. W. Ch.
Holland [2] and the author [3], [4].

Isometries for some types of abelian partially ordered groups were studied by
J. Rachinek [9], M. Jasem [6], M. Kolibiar and the author [5].

In [4] it was proved that for each isometry f we have

@ fAxAy,xvy)=L/&x)AfB),f(x) vf)] foreach x,yeGC.

In the present paper the following results will be established:

(A) Let G be a representable lattice ordered group and let f: G— G be a
mapping such that (1) is valid. Then f is a bijection.

(B) Let G be a lattice ordered group and let - G — G be a mapping such that
(1) and (2) are valid. Then f is a bijection.

A mapping f: G — G which satisfies the condition (1) will be said to be a
weak isometry in G.

1. Auxiliary lemmas

For the terminology and denotations concerning lattice ordered qroups cf.
Conrad [1] and Kopytov [7].

1.1. Lemma. Let f be a weak isometry in a lattice ordered group G. Then f is
an injection.

Proof. Let x and y be distinct elements of G. Then |x — y| # 0, hence in view
of (1) we have f(x) # f(»).

In the remaining part of this section G is a lattice ordered group and f'is a
weak isometry in G. In the lemmas 1.2—1.10 we assume that the condition (2)
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is satisfied. The method from [3], Section 1 will be applied (with the distinction
that the bijectivity of G will not be assumed).
We denote by M, and M, the sets of all intervals [r,s] of G such that

f(r) £ f(s) or f(r) = f(s), respectively.

1.2. Lemma. Let a, b, ceG,a< b =c, ie{l,2}. If [a,cle M;, then both the
intervals [a, b] and [b, c] belong to M.

Proof. This is a consequence of (2).

Each interval belonging to M, n M, contains only one element; thus from 1.2
we obtain:

1.3. Lemma. Let [a,ble M|, [a,c]leM,. Then a=b A c.
The assertion dual to 1.3 is also valid.

1.4. Lemma. Let a,be G, a £ b. There exist elements c, de[a, b] such that
(i) [a,c], [d,ble M, and [a,d], [c,b]e M,

(i) chd=aandcv d=b;

(i) f(c) = f(a) v f(b), f(d) =f(a) A f(D).

Proof. According to (2) there exist elements ¢ and d in [a, b] such that
(iii) is valid. Hence (i) holds. Thus in view of 1.3 and of its dual, the condition
(i) is satisfied.

Let x,yeG, x Ay=u, xvy=nu.

1.5. Lemma. Let [u, x] and [u, y] belong to M,. Then f(x) A f(y) = f(u) and
J(x) v f(y) = f(v) (hence [x,v], [y,v]€ M,).

Proof. Cf. [3], Proof of Lemma 1.5.

Similarly we have

1.6. Lemma. Let [u,x], [u,yleM,. Then f(x)A f(y)= f(v) and
f(x) v f(y) = f(u) (hence [x,v], [y, v]€ M)).

1.7. Lemma. Let [u,x]e M,, [u,yle M,. Then [x,vle M, and [y,v]e M,.

Proof. According to Lemma 1.4 applied to the interval [x,v] there exists
de[x,v] such that [x,d]e M, and [d, v]e M,. Then we have [u, d]e M, hence in
view of 1.2, [u,d A yle M,. But from [u,d A y] < [u, y]€ M, we obtain [u,d A
A yle M,, thus in view of Lemma 1.3 we have d A y = u. Hence d = x and
therefore [x, v]e M,. Analogously we deduce that [y,v]e M,.

1.8. Lemma. Let [u,x]e M,. Then [y,v]e M,.

Proof. According to 1.4 there is ce[u,y] such that [u,cle M, and
[c,y]e M,. Put ¢, = x v ¢. In view of 1.5 we have [c, ¢|]€ M,. Hence according
to 1.3,¢; A y = c¢. Clearly ¢, v y = v. Now by applying 1.4 we obtain [y, v]le M,.

By duality we get [y, v]e M, = [u, x]€ M,. An analogous result holds for M, ;
thus we conclude:
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1.9. Lemma. Let ie{l,2}. Then [u,x)e M, if and only if [y,v]e M.

1.10. Lemma. Let the assumptions of Lemmal.7 be satisfied. Then we have
S@) A f) = f() and f(u) v f(v) = f(X).

Proof. In view of the assumptions we have f(y) < f(v) and f(¥) £ f(u),
hence f(y) < f(u) A f(v). On the other hand, from (2) we obtain
f@) A f(v) £ f(»). Thus f(u) A f(v) = f(y). Analogously we can verify that
S@) v f(v) = f(x).

1.11. Lemma. Let f(0) = 0. Then

@ x A f(x)20=f(x) =x;

() x A (—f(x)) 20=f(x) = —x;

) xvf(x)=0=f(x)=x;

@ xv(-f(x)=0=f(x)= —x.
Proof. Cf. [3], the proof of 1.8.

1.12. Lemma. Let f(0) = 0. Let (2) be valid and let 0 £ xe G. Then

(@) f(x) =x<f(-x)= —x,
(d) f(x) = —x<=f(—x) =x.
Proof. Cf. [3], the proof of 1.9.
Hence we arrived at the conclusion that if fis a weak isometry on a lattice

ordered group G such that (2) is satisfied, then the assertions of the lem-
mas 1.3—1.9 of [3] remain valid.

2. Representable lattice ordered groups

Recall that a lattice ordered group is said to be representable if it can be
embedded into a direct product of linearly ordered groups. Each abelian lattice
ordered group is representable.

2.1. Lemma. Let G be a lattice ordered group and let f: G — G be a mapping.
Put g(x) = f(x) — f(0) for each xe G. Let je{1,2}. Then the following conditions
are equivalent:

(i) f satisfies the condition (j);

(ii) g satisfies the condition (j).

The proof is immediate.

2.2. Lemma. Let G be a linearly ordered group and let f be a weak isometry
in G. Let g be as in 2.1. Then some of the following conditions is valid:

() g(x)=x for each xeG;
(B) g(x) = —x foreach xeG..
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Proof. The assertion is trivial for the case G = {0}. Assume that G # {0}.
Then there is xe G, x > 0. Since G is linearly ordered, according to 1.11 we have
either g(x) = x or g(x) = —x.

Let g(x) = x and y e G. By way of contradiction, assume that g(y) # y. Then
y#0 and g(y) = —y. If y >0, then |g(x) — g(y¥)| > |x — y|; if y <0, then
lg(x) — g(»)| < |x — y|. Since g is a weak isometry in G, we have arrived at a
contradiction. The case g(x) = —x is analogous.

In the rest of this section we assume that G is a representable lattice ordered
group and that f'is a weak isometry in G.

Without loss of generality we may suppose that G is a subgroup of the lattice
ordered group II,.,G;, where

(a) all G, are linearly ordered, »

(b) for each ie I, the natural projection of G into G, is a surjection.

For xe G and iel we denote by x(i) the i-th component of x. Let g be as
above.

2.3. Lemma. Let x,ye G and iel. If x(i) = y(i), then g(x)(i) = g(¥)(i).
Proof. Let x(i) = y(i). From2.1 we infer that

lg(x) — gWIE) = Ix = yI(),

hence

lg(x)(@) — g = 1x(@) — y@).

Therefore g(x)(i) = g(y)(i).

In view of (b), for each ie I and each x;€ G, there is xe G with x(i) = x,. We
put g:(x;) = g(x)(i). According to 2.3, g; is a correctly defined mapping of G, into
G,.

Since all operations in G are performed component-wise, from 2.1 we obtain
that for each i€/, g; is a weak isometry in G,.

2.4. Lemma. Let i€ l. Then g; satisfies the condition (2).

Proof. Since G; is linearly ordered, we can apply 2.2 (G and g are re-
placed by G; and g;) and then by a straigth-forward calculation we obtain that
(2) holds.

In view of 2.4, g satisfies (2) as well; hence according to 2.1 we get

2.5. Corollary. Let G be a representable lattice ordered group and let f be a
weak isometry in G. Then the condition (2) is satisfied.

3. Proofs of (A) and (B)

In view of 2.5, the assertion (A) is a consequence of (B).

Let G be a lattice ordered group and let f: G — G be a mapping which satisfies
(1) and (2).
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For the next procedure we have two alternatives.

a) As we have already remarked, we have verified in Section 1 above that the
assertions of Lemmas 1.3—1.9, [3] remain valid if the assumption that fis an
isometry is replaced by the assumption that fis a weak isometry satisfying (2).
This assumption also suffices to carry out the proofs of [3], Section2. In
particular, from 2.5.1 in [3] we infer that g?(x) = x is valid for each xe G, where
g is as in Lemma 2.1. Hence in view of 1.1, g is a bijection. Therefore f is a
bijection as well. Thus we have proved that (B) holds. According to 1.1 and 2.5,
(A) is valid.

b) We can proceed directly without applying the results of Section 2 of [3]
(concerning the direct product decomposition of G corresponding to the map-
ping f with f(0) = 0).

Let g be as in 2.1. The following assertion is obvious.

3.1. Lemma. The mapping g* satisfies the conditionsl (1) and (2).

3.2. Lemma. Let xeG, 0 < x. Then g*(x) = x.

Proof. We apply Lemma 1.4 for the interval [0, x] and for g instead of f
(in view of 2.1, this can be done). There are a, b€[0, x] such that [0, a], [b, x] e M,
and [0, b], [a, x] € M, (where M, and M, are taken with respect to g). According
to 1.10 we have

g(0) A g(x) = g(b), g(0) v g(x) = g(a),

whence
0Agx)=—b, 0vgx=a.

Since g(—b) = b (cf. 1.12), according to (2) we obtain

g(g(x))elg(a) A g(—b), g(a) v g(—=b)] =[a A b,a v b] =[0,x],

hence g%(x) = 0. Now in view of 3.1 and 1.11 (a) (applied to g?) we infer that
gi(x) = x.

3.3. Lemma. Let xeG. Then g*(x) = x.

Proof. Put 0 Ax=u, Ov x=v. In view of 1.12 and 3.2 we have
g%(u) = u and g*(v) = v. Hence g*(u) < g*(v). Thus according to 3.1 and 1.2,
g% u) £ g¥(x) < g*(v). Since g2 satisfies (1) and g*(0) = 0, we get |g%(x)| = |x|. If
either g%(x) A 0 > u or g*(x) v 0 < v, then we would have

%) = g*(x) v 0 —g*(x) A 0 <v—x=x],

which is a contradiction. Hence g*(x) A 0 = u and g%(x) v 0 = v. Therefore
2030 —
g(x) =x.
Now we can apply the identity g%(x) = x in the same way as in a) to obtain
that (A) and (B) hold.
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3.4. Corollary. Let G be a representable lattice ordered group andlet f: G - G
be a mapping. Then the following conditions are equivalent:
(1) fis an isometry in G.

(i1) f satisfies (1).

3.5. Corollary. Let G be a lattice ordered group and let f: G — G be a map-
ping. Then the following conditions are equivalent:

(1) fis an isometry in G.

(i1) [ satisfies (1) and (2).

The question whether (2) is a consequence of (1) remains open.
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CJIABBIE U3OMETPUU PEIMETOYHO YIIOPAOAOYEHHLIX TPYIIII
Jan Jakubik
Pesrome
Mycts G pEeLIETOYHO yMopsaoyeHHas rpymna, U f: G — G Takoe oOTOoOpaxkeHHe, 4TO

If(x) = f()l = |x — y| ans Bcex x,y€G. B cTaThe M0Ka3aHO: ecau G ABISETCH 0-aANMPOKCUMUDY-
eMoOH, Toraa otobpaxenue f 6yaeT GHEKLHEN.
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