
Mathematica Slovaca

Josef Tkadlec
A note on a function representation of orthomodular posets

Mathematica Slovaca, Vol. 39 (1989), No. 1, 27--29

Persistent URL: http://dml.cz/dmlcz/128653

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/128653
http://project.dml.cz


Math. Slovaca 39, 1989, No. 1 , 27—29 

A NOTE ON A FUNCTION REPRESENTATION 
OF ORTHOMODULAR POSETS 

JOSEF TKADLEC 

In the papers [1], [2] the authors give axioms for a set of functions to 
characterize an orthomodular poset with "enough" states. In the attempt to 
improve the characterization, D. S t ro jewski [3] offers (seemingly) more 
lucid conditions and derives several consequences. However, his crucial auxili
ary result does not seem to be correct. In this note we construct the appropriate 
counterexample and give the correct version of the representation theorem. 

Let us first review the basic notions. By an orthomodular poset we mean a 
triple (L, ^ , ') such that 
(a) (L, ^ ) is a partially ordered set with a greatest element 1, 
(b) the operation': L -> L is an orthocomplementation, for every a, b e L we have 

a" = a and a ^ b implies b' ^ a', 
(c) the least upper bound exists for every pair of orthogonal elements in L, 
(d) b — a v (b A a') for every a, beL with a ^ b. 

By a state we mean a function s: L -• [0, 1] such that s(l) = 1 and s(a v b) = 
= s(a) + s(b) for each pair of the orthogonal elements a, beL. Recall finally 
that a subset of states is called full if for every a, b e L, a ^ b the subset contains 
such a state s that s(a) ̂  s(b). 

Theorem. Let P be a nonvoid set and let P cz [0, \]s for a set S. Let further P 
satisfy 

(1) (V feP , f*0) (3 seS) f ( s )>0 .5 , 
(2) (V fGP) l - fGP , 
(3) (VfgeP,f+g^l)f+geP, 
(4) (Vf geP,f+ g ^ \)(3heP, h >f, g)(VkeP, k >f g)k > h. 

Then (P, ^ , ' ) with the pointwise ordering ^ and the orthocomplementation given 
byf = 1 — fis an orthomodular poset with a full set of states S = {s: P -> [0, 1]; 
(VfeP)s(f) =f(s)}. Moreover, f^g—f+g for the orthogonal elements 
fgzp-

Conversely, each orthomodular poset L with a full set S of states is orthoisomor-
phic to some subset P a [0, l]s satisfying axioms (1)—(4) with the ordering and 
the orthocomplementation given as above. 
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Proof. One can easily verify that (F, ^ , ') is a partially ordered set with 
orthocomplementation. Since the set P is nonempty, there is a n / e P and we 
have 1 -feP(thecondition (2)) and 1 = / + (1 -f)eP(thecondition (3)). Let 
/ geP be orthogonal. T h u s / + g ^ 1 and according to the condition (4) there 
exists/v geP. By the condition (3) we h a v e / + geP. Since/+ g ^ f v g, the 
conditions (2), (3) give (f+g)- (fvg) = 1 - ( ( / v g) + ( / + g)')eP. As fur
ther ( / + g) - ( / v g) ^ min ( / g) ^ min ( / 1 - / ) ^ 0.5, we obtain ( / + g) -
— ( / v S) = 0 (lhe condition (1)). Hence /v g = / + g. 

L e t / geP and f^g. T h e n / g ' e P are orthogonal and a l s o / ( / v g')'eP 
are orthogonal. Hence we infer that / v (g A / ' ) = / v (g' v / ) ' = / + (1 — 

-(0-*)+/)) = *. 
Let conversely L be an orthomodular poset with a full set S of states. Put 

P = {/*e[0, l ] 5 ; (VsES)fa(s) = s(a\ aeL). 

Then av-*fa is obviously an orthoisorriorphism between L and P with respect to 
the respective orderings and orthocomplementations. Hence the axioms (2), (4) 
hold. L e t / e F , / f l ^ 0.5. Then 0.5 ^f'a and therefore/ </ f l \ Thus a^a \x\ 
view of the orthoisomorphism. But it means that a = 0, which gives/ = 0. This 
establishes the condition (1). L e t / , / G F w i t h / + / ^ 1. T h e n / i s orthogonal 
t o / and making use of the orthoisomorphism again we see that a is orthogonal 
tob . But it means that (VsE-S)s(a v b) = s(a) + s(b). H e n c e / + / =-favheP. 
This completes the proof. 

In the paper [3] the author states the same representation theorem without 
the condition (4). It turns out, however, that such a theorem is no longer valid 
as the following example shows (It should be noted that this example disproves 
also other results in [3] — Theorems 1, 2, etc.). 

Example . Put 

P = l(a0, au a2, a3, a4)e<0, - , 1> x {0, l}4; 

4 U 
Y a{ is odd if and only if a0 = -\ • 

i = i 2) 
Then P satisfies the axioms (1)—(3) and it is not an orthomodular poset. 

Proof . The axioms (1)—(3) verify easily. P is not an orthomodular poset 

not because the orthogonal elements a = ( - , 1, 0, 0, 0 J, b = ( - , 0, 1, 0, 0 J do 

have the least upper bound in P (we have three incomparable elements in P 
greater than a, b). 
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О ФУНКЦИОНАЛЬНОМ ПРЕДСТАВЛЕНИИ ОРТОМОДУЛЯРНЫХ ЧАСТИЧНО 
УПОРЯДОЧЕННЫХ МНОЖЕСТВ 

1о$еГТкас11ес 

Р е з ю м е 

М. И. Мочиньски и Т. Трачик установили условия для ортомодулярного частично упоря
доченного множества чтобы оно имело «достаточное» количество состояний. Д. Строевски 
попытался улучшить эти условия, но это ему не совсем удалось. 

В этой статье находится контрпример и исправление теоремы Д. Строевского. 
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