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ON RADICAL CLASSES OF ABELIAN
LINEARLY ORDERED GROUPS

JAN JAKUBIK

Radical classes of linearly ordered groups were introduced and investigated by
C.G.Chehataand R. Wiegandt [1]; these authors developped a radical theory
for linearly ordered groups in the sense of the KuroS—Amitsur radical theory for
groups and rings. Recall that a non-empty class C of linearly ordered groups is
a radical class iff it is closed with respect to homomorphisms and with respect to
transfinite extensions (cf. [1], Thm. 1).

Let 4. be the class of all abelian linearly ordered groups. In this note we modify
the definition of the radical class of linearly ordered groups given in [1] in such
a way that this modification enables one to work with the notion of a radical and
a radical class in the class ¥,. Namely, a nonempty subclass C of 9, will be said to
be a radical class (in %,) if it fulfils the following conditions: (i) C is closed with
respect to homomorphisms, and (ii) if G € 9, is a transfinite extension of linearly
ordered groups belonging to C, then G belongs to C as well.

We denote by R, the lattice of all radical classes in %,. There will be examined
some questions concerning the lattice &, analogous to those that were studied for
the lattice J of torsion classes of lattice ordered groups (Martinez [5], [6]) and for
the lattice R of radical classes of lattice ordered groups [4].

It turns out that the results concerning R, essentially differ from the corre-
sponding results on 7 and R. E. g.,both  and R are distributive ; it will be shown
below that R, fails to be modular. If A is any principal element of R, then there
are infinitely many principal elements of R covering A. On the other hand, if A is
a principal element of R. generated by an archimedean linearly ordered group,
then no element of &, covers A ; in particular, there are no atoms in the lattice %,.
If Ay, Az, Be R such that A,, A, are principal and B= A,, then (i) A;VA; is
principal, and (ii) B is principal. Neither (i) nor (ii) remains valid in the lattice &,.

1. Preliminaries

For the basic definitions concerning lattice ordered groups and linearly ordered
groups we refer to L. Fuchs [2] and P. Conrad [3]. The group operation in
a linearly ordered group will be written additively.
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All linearly ordered groups dealt with in this paper are assumed to be abelian;
the expression ‘linearly ordered group’ below will always mean ‘abelian linearly
ordered group’.

Let 9. be the class of all linearly ordered groups. By considering a subclass X of
9, we always suppose that X is closed with respect to isomorphisms and that
{0} e X.

A subclass X of ¥, is said to have the transfinite extension property if, whenever
Ge ¥, and

{0}=GicG:c...cG,c...(a<9)
is an ascending chain of convex subgroups of G such that

Gs/lJ G, € X foreach B<34,

r<B

then (J G. belongs to X. We express this fact also by saying that X is closed with

a<d

respect to transfinite extensions.

Under the above denotations, the linearly ordered group |J G, is said to be

a<d

a transfinite extension of linearly ordered groups G4(8 < &), where Gy is isomor-

phic to Gg/J G, for each B <3$.
v<B

1.1. Definition. A class X of linearly ordered groups is called a radical class if
(a) X is closed under homomorphisms, and

(b) X is closed with respect to transfinite extensions.

Let X c 9. and G € 9.. Further let N, be the set of all convex subgroups of G

belonging to X. We put X(G)=[JN,. Next we denote by UX the class of all

linearly ordered groups H such that H has no non-trivial homomorphic image
in X.

Let us consider the following condition for X:

(S1) If G,eX, then every non-trivial convex subgroup G, of G; has
a non-trivial homomorphic image in X.

The proofs of the following propositions 1.2 and 1.3 are analogous to the proofs
of the corresponding propositions in [1].

1.2. Proposition. (Cf. [1], Proposition 3.) Let R be a radical class. Then R(G)
belongs to R.

1.3. Proposition. (Cf. [1], Propos. 6.) If X fulfils the condition (S1), then UX is
a radical class.
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2. Basic properties of R,

Let R, be the collection of all radical classes of linearly ordered groups. Then ¥,
is the greatest element of R, and the class Ro={{0}} is the least element of R,. If
@+ R,c R, and if R is the intersection of all radical classes belonging to R;, then R
fulfils the conditions (a) and (b) from 1.1; hence we have

2.1. Proposition. R, is a complete lattice.

Let X be a subclass of ¥,. Let us denote by

TX — the intersection of all radical classes R with Xc R

Hom X — the class of all homomorphic images of linearly ordered groups
belonging to X;

Ext X — the class of all linearly ordered groups G that have an ascending chain
of convex subgroups

{0}=G1cG:c...cGac... (a<P)

such that (i) U G.= G, and (ii) for a each B <8, G,/|J G, belongs to X.
a<d Y<B

In view of 2.1, TX is a radical class; it is said to be the radical class generated
by X. If there is G € X such that for each G, € X either G, is isomorphic with G or
G, = {0}, then we also say that TX is the radical class generated by G and we write
TX = T(G); the radical class T(G) is called principal. Let &, be the collection of
all principal radical classes.

2.2. Proposition. Let X be a subclass of 4,. Then TX =Ext Hom X.

Proof. Put R =Ext Hom X. Since TX is a radical class with X c TX, it follows
from 1.1 that R ¢ TX. Next, the class R has obviously the transfinite extension
property. Hence it suffices to verify that R is closed under homomorphisms.

Let G € R. There exists an ascending chain { G, } (a < ) of convex subgroups of
G with G,= {0} such that

UG.=G,

a<dé
and for each B <8, Gs/J G, belongs to Hom X. Let H, be a convex subgroup of
r<B
G, H,# G. Hence there exists the least § < with H, = Gs. We have
G=U G,

Bsy<6
thus
G/H,= U (G,/H)).

psy<é

Moreover, |J G, < Hi, hence Gy/H, is a homomorphic image of Gg/ U G, and

y<B y<B
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therefore Gg/H, belongs to Hom X. Denote Bo= {0}, B, = G,/H, for each y with
B=vy <0, and consider the ascending chain of convex subgroups

BocBscBguic...cB,c... (f=y<$)

of G/H,. We have already verified that Bs belongs to Hom X. If f <y < §, then the
linearly ordered group

B,/U B.=(G,/H:)/J (G./Hy) =

x<y x<y

=(G,/H,)/((U Gx)/Hl)

x<y

is isomorphic with G,/|J G., hence

x<y

B,/J B.e Hom X.
x<y
Therefore A/H, belongs to Ext Hom X, completing the proof.
Let us denote by A and v the lattice operations in the complete lattice R.,. We
already noticed that A coincides with n (= the intersection of classes). From 2.2
and 1.1 we obtain immediately:

2.3. Corollary. Let J# @ be a class and for each jeJ let X, be a radical class.
Then \/ x; =Ext|JX.

jel jel

2.4. Lemma. Let Ry, R;€ R,. Then R,=R; if and only if R,(G)< R:(G) is
valid for each G € 4,.

Proof. If Ry=R,, then clearly R{(G) < R,(G) for each G € %,. Suppose that
R:(G) < R»(G) holds for each Ge%,.. Let HeR,. Then R,(H)=H, hence
R:(H)= H. Thus in view of 1.2, H belongs to R,, hence R, =R,.

For G € 9, we denote by ¢(G) the set of all convex subgroups of G ; the set c(G)
is partially ordered by inclusion. It is easy to verify that under this partial order,
¢(G) is a complete chain. From 2.4 we infer that the relations

(2.1) (R]AR;)(G)QR](G)/\ Rz(G),

are valid for each G € %, and for each R, R; € R,. (Analogous relations for torsion
classes were examined in [5].) The following examples 2.5 and 2.6 show that the
relation = can occur in (2.1) and (2.2).

At first let us recall the notion of a lexicographic product of linearly ordered
groups. Let I be a linearly ordered set and for each i € I let G; be a linearly ordered
group. The symbol H=T';;G. denotes the lexicographic product of the system
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{Gi}ier; thus H is the set of all functions f: I— | G such that (i) f(i) € G; for each
iel

i€l, and (ii) the set {ieI: f(i)# 0} is either empty or is dually well-ordered. The
operation + in H is defined coordinate-wise and for fi, f>€ H with f; # f. we put
fi<f, if there exists i € I such that f,(i) < fo(i) and fi(j) = f2(j) for each je I with
j>i. If I={1,2, ..., n}, then we write also H= G,0Gzo...0G,.

2.5. Example. Let Gy, G, G; be the additive group of all integers, all rational
numbers and all reals, respectively (with the natural linear order). Put

G = GloGzo Gg, Rl = T(Gl, Gg), R2= T(Gz, Ga)

(The above symbols have an obvious meaning; e.g., T(Gi, G;) = TX, where X is
the class of all G’ € 9, such that, whenever G’ # {0}, then G’ is isomorphic either
to G, or to Gs. The meaning of the symbol Ext(G,, Gs) which will be used below is
analogous.)

From 2.2 we obtain

Ri(G)= G, Ri(G)={0}.

In view of 2.2 and 2.3, (R, v R;)(G) = G. Hence Ri(G)v R:(G) # (R:v R2)(G).
2.6. Example. Let G, G,, Gs, G be as above. Put R,=T(G:.G>), R, =
T(G). Then from 2.2 we infer that R,(G)= G,.G.. Hence

R](G)/\ Rz(G) = G| oGz

and (R:A R;)(G) < G10G:. Since RiAR;= RiNR;, we infer that (R;A R;)(G) is
the join of those convex subgroups of G;.G: that belong to RinR,. Therefore

(R] A Rz)(G) = Rz(GloGz) = {0}.

Thus Ri(G)AR2(G) # (R, A R,)(G).

The lattice of all torsion classes of lattice ordered groups is distributive
(Martinez [5]) and so is the lattice of all radical classes of lattice ordered groups
(cf. [4]). The following example shows that the lattice &, fails to be modular.

2.7. Example. Let G, and G: be as in 2.5. Put

Rl = T(GloGz), Rz = T(Gz), R3 = T(G]), R = R1VR3.
In view of 2.2 we have Ry<R,<R,; and

R0=R1/\R3, R=R2VR3.

Hence {Ro, R1, Rz, R3, R} is a sublattice of &, isomorphic to the pentagon. Thus
R. is not modular.
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3. Principal radical classes

The system of ail principal radical classes of lattice ordered groups is an ideal in

the lattice of all radical classes of lattice ordered groups. For the lattice R, we have
a different situation:

(i) if Qi, Q:€ R, then Q,v Q; need not belong to R,, and

(i) if Qi€ R,, Q€ R, and Q< Q,, then Q, need not belong to &,.

The assertions (i) and (ii) are consequences of Propos. 3.1 below.

We introduce the following denotation. Let a be an infinite cardinal. Let us

denote by w(a) the least ordinal having the property that the power of the set of all
ordinals less than w(a) is a. For each G € 9, we put

Ga = Fisl(u)Gi,

where I(a) is a linearly ordered set isomorphic with w(a) and G is a linearly
ordered group isomorphic with G for each ieI(a).

3.1. Proposition. Let G,, G,€ 9,, G, # {0} # G,. Assume that G, and G, are
non-isomorphic and archimedean. Let a be a cardinal, a >card(G:-G;). Then
(l) T((G1oGz)a)V T((Gz)a) < T(G10G2),
(ii) the radical class T((G1-G:).)Vv T((G:).) fails to be principal.
Proof. We have obviously
T((G10G2)a)VT((G2)o) = T(G10G>).

If H# {0} is a homomorphic image of (G10G;). or of (G)., then card HZ a,

hence G10G: ¢ Ext Hom {T((G10G2).) U T((G2)a)} ; therefore (in view of 2.2) (i)
is valid.

For proving (ii) let us assume (by way of contradiction) that there is K € 9, with
T((G1 ) Gz)a)V T((Gz)a) = T(K)

According to (i) we have T(K) < T(G,0G>), thus K € T(G1.G-). Hence in view of
2.2 and 2.3 there are convex subgroups K, (% <48) of K such that
{O}=K1QK2...§K,¢... (%<(§),
UK.=K,

x<d
and for each 8 <&, the linearly ordered group
Kﬂ = Kﬂ/U K,
r<B

is isomorphic to some of the linearly ordered groups {0}, G2, G1G:. (In fact, since
G, and G; are archimedean, the only homomorphic images of G1.G: are {0}, G
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and G:.G,.) Without loss of generality we can suppose that for each o< there
exists B <& such that B=p, and K;# {0).

Let us distinguish the following cases:

(a) Assume that there is Bo<d such for each B = f,, either Kz = {0} or K; is
isomorphic to G,. In this case (Gi0G:). ¢ Ext Hom{K}=T(K), which is
a contradiction.

(b) Assume that there is o< & such that for each B = B, either Kz = {0} or K; is
isomorphic to G;.G,. Hence because of (i), 6 must be a limit ordinal. Therefore
G: ¢ Ext Hom {K} = T(K), a contradiction.

(c) Assume that neither (a) nor (b) is valid. Hence 6 must be a limit ordinal.
Therefore neither G, nor G,0G; belongs to Ext Hom { K}, which is a contradic-
tion. Therefore (ii) holds.

3.2. Remark. The following question remains open:

Characterize linearly ordered groups G having the property that there exist
G1, G;€ 9, such that (i) T(Gi)v T(G,)<T(G), and (ii)) T(G:)v T(G,) is not
principal.

The following proposition implies that there exist radical classes A # ¥, such that
no principal radical class is larger than A.

3.3. Proposition. Let Gi, G:€ %, G:# {0} # G,. Assume that G, is not
isomorphic to G, and that both G, and G, are archimedean. Then {T(G,), T(G:)}
is not upper bounded in R, and T(G.)v T(G,) # Y..

Proof. By way of contradiction, assume that there is He ¥, with T(H)=
T(G:), T(H)Z T(G:). From this and from 2.2 we infer that G, € Ext Hom { H}
and thus, because G, is archimedean, we get G;e Hom{H}. Hence there is
a convex subgroup H, of H with H; # H such that H/H, is isomorphic with G;.
Similarly, there exists a convex subgroup H, of H with H, # H such that H/H, is
isomorphic with G.. Since G, and G, are not isomorphic, H; # H,. Thus without
loss of generality we can assume that H, = H, is valid. But in this case H/H, is not
o-simple, thus it is not archimedean, which is a contradiction. There exist
archimedean linearly ordered groups G having the property that G is isomorphic
neither to G; nor to G,; then G¢é¢Ext{Gi, G,} = T(G:)vT(G:), hence
T(Gl)V T(Gz) * Y..

The following proposition says that for each principal radical class A there exists
a radical class B# 9, with A <B such that no principal radical class is larger
than B.

If we have a lexicographic product H = ;.;G;, then we denote by I'i;G; the
subgroup of H consisting of all g € H such that the set {i € I: g(i) # 0} is finite.

Let a be an infinite cardinal and let I(a) be as above. Let J(2) be the linearly
ordered set dual to I(a). Let G € .. Put
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Gi=Tic1a)G.,, G:i=T'ics)Gi,

where each G; is isomorphic to G.
Recall that for G € 4., c(G) is the set of all convex subgroups of G (cf. 2). From

the construction of G& (i =1, 2) we obtain by routine calculations:

3.4. Lemma. Let G € 9., G#{0}. Let a be a cardinal, o >card G. Let H,# {0}
be a convex subgroup of Gi (i=1, 2) and let K, # {0} be a convex subgroup of H.
Then

(i) cardH,=2% cardH;=a,
(ii) cardc(H,) = a, cardc(Hi/Ki) < a.

3.5. Proposition. Let Ge€ 4., G# {0}. Let a be a cardinal, a >card G. Then

(i) T(G)<T(G)) (i=1,2), T(G)vT(G3)<Y., and

(ii) if AeR., T(GYVT(GH=A,
then A fails to be principal.

Proof. Letie{1,2}. From the definition of G| it follows that if K is a convex
subgroup of G with K+ {0}, then card K = a ; hence K cannot be isomorphic to
any homomorphic image of G. Therefore G.¢Ext Hom{G} = T(G), whence
T(GY)ET(G). On the other hand, GeHom{G:} and thus T(G)<T(G.).
Moreover, from 3.4 (i) we conclude that for each B>2* and each ie {1, 2} the
linearly ordered group G} does not belong to T(GL)v T(G2). Thus (i) is valid.

Assume that there is H € 9, such that T(GY)=T(H) and T(G?2)= T(H). Thus
there are convex subgroups H; (i=1,2) of G. such that H,# {0} and
H; e Hom {H}. Hence either

(a) H, is a homomorphic image of H,, or

(b) H, is a homomorphic image of H;.

In view of 3.4 (i), the condition (a) cannot hold. From this and from 3.4 (ii) it
follows that (b) cannot be valid. Therefore { T(G1), T(G?2)} is not upper bounded
in &, ; hence (ii) holds.

From 3.5 (i) we obtain immediately:

3.6. Corollary. The partially ordered class R, has no maximal element.
Similarly as in the case of 3.4, the following lemma is a direct consequence of the
definition of G} and G2

3.7. Lemma. Let G and a be as in 3.5. Assume that G is archimedean. Let
Ki# {0} be a homomorphic image of G. (i=1,2). Suppose that there are
j, ke {1, 2}, j# k such that K; is isomorphic with a convex subgroup of K;. Then
K; e T(G).

3.8. Lemma. Let G and a be as in 3.5. Suppose that G is archimedean. Then
T(G)AT(GY)=T(G).
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Proof. We have already verified that T(G)< T(G.) (i=1, 2) is valid. Hence
T(G)ST(GYAT(G?. Let He T(G)AT(G?. It suffices to prove that for
T(G)=R we have R(H)= H. By way of contradiction, assume that R(H)< H.
Put H, = H/R(H). Then (since R has the transfinite extension property) we must
have R(H;)={0}. On the other hand, H,e T(G})A T(G?%), hence there exist
convex subgroups K, # {0} and K,# {0} of H, such that K; is a homomorphic
image of G¢ fori=1, 2. Put K = K;nK;. Since K = K, or K = K,, we have K+ {0}
and in view of 3.7, K € T(G), hence R(H;)2> K+ {0}, which is a contradiction.
Therefore T(G)=T(GX)A T(G?2).

3.9. Proposition. Let G € 9,, T(G)= A. Assume that G is archimedean. Then
there are principal radical classes B, B, with B;>A (i=1,2), BiAB,=A.

Proof. Let A=T(G). If G#{0}, then our assertion follows from 3.8. If
G = {0}, then it suffices to take any pair of non-isomorphic O-simple linearly
ordered groups Bi, B, with B, # {0} # B,; we have clearly T(B:)A T(B:) = Ro.

Let us remark that the assertion dual to 3.9 does not hold (cf. 4.7 below).

4. Covering relations in the lattice &,

Let G# {0} be a linearly ordered group and let a be a cardinal. The lattice
ordered group G, was defined in §3.

4.1. Lemma. Let a>cardG, B> a. Then

(i) Ro<T(G.)<T(G), and

(i) T(Gp) <T(Ga).

Proof. The way of proving (i) is analogous to that used in the proof of 3.1. The
relation (ii) follows from the fact that for each homomorphic image H# {0} of G;
we have card H=p, for each convex subgroup K# {0} of G. there holds
card K= a, and clearly Gs € T(G.).

4.2. Corollary. Let R be a radical class of linearly ordered groups, R# Ro. Then
there is a chain C c[Ro, R] such that C is a proper class and Cc R,.

4.3. Corollary. The lattice R, does not contain any atoms.

For A, B € R, we write A > B or B< A if B <A and if there does not exist any
Ce R, with BKC<A; in such a case we say that A covers B.

Corollary 4.3 can be generalized as follows.

4.4. Lemma. Let H be an archimedean linearly ordered group. Let G € %.,
G ¢ T(H) and Iet a be a cardinal with a>card G. Then G, ¢ T(H).

Proof. By way of contradiction, assume that G, € T(H). Hence in view of 2.2
and because H is o-simple, G. € Ext {H}. Thus there are convex subgroups H.- of
G. such that
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{0}=HocHic...cH,...(a'<Y), U H, = G.,,

a'<y

and for each o' <y, H,/|J Hp is isomorphic either with {0} or with H.

B<a’
There exists a convex subgroup K of G, such that K is isomorphic to G. Thus
there is a’ <y with K ¢ H,; let a’ be the first ordinal having this property. Hence

U HicKcH,.
B<a’
If U Hs=K or H,, =K, then K eExt{H)=T(H), which is impossible. Hence
B<a’
U Hﬂ cKc Ha',
B<a’

but in this case H,./ |J H; fails to be o-simple, thus it is not archimedean, which is

B<a’

a contradiction.

4.5. Proposition. Let H be an archimedean lattice ordered group, B = T(H),
AeR,, B<A. Then there is a chain Cc[B, A] such that C is a proper class.
Proof. There is Ge A\B. Let a, y be cardinals with

y> a>max {card G, card H}.

In view of 4.4, G, ¢ B. Therefore T(G.) & B. On the other hand, from a >card G
it follows that card K = a for each homomorphic image K of G, with K+ {0},
whence H ¢ Ext Hom {G.}, implying B& T(G.). Therefore B and T(G.) are
incomparable. Clearly T(G.)<T(G)=A. Hence

B<BVvT(G.,)=A.
Analogous relations are valid for G,. In view of 4.1 we have
(4.1) BvT(G,)=BvT(G,).

Now it suffices to verify that in this relation the equality cannot hold.
From 2.2 we obtain

Bv T(G,)=Ext Hom {H, G,}.

If the equality holds in (4.1), then G, € Ext Hom {H, G, }. Because of card G, = a
and cardK;=y for each homomorphic image K;# {0} of G,, we must have
G. e Ext Hom {H}, thus G. € B, which is a contradiction.

4.6. Corollary. Let B=T(H), where H is an archimedean linearly ordered
group. Then there does not exist any radical class covering B.

The existence of an infinite number of prime intervals in the lattice &, is
a consequence of the following proposition:
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4.7. Proposition. Let G € R., G# {0}. Assume that G is archimedean. Let B be
the join of all radical classes B, with B, < T(G). Then B < T(G).

Proof. Let us consider the class ¥ of all linearly ordered groups H; € T(G) with
T(H:) # T(G). We have clearly

\/ T(H)=B=T(G).
From the fact that G is archimedean and from 2.2 we obtain
T(G)=Ext{G}.

Let H; be as above, H;# {0}. Then H:eExt{G}. Since T(H:)# T(G), no
homomorphic image of H; is isomorphic with G.

For proving that B is covered by T(G) it suffices to verify that B < T(G) is valid.
By way of contradiction, assume that B = T(G). Then G € B, hence in view of 2.3,
G € Ext Hom {H;} (H; e ¥). From this and from the o-simplicity of G we infer that
G e Hom {H;} for some H; € #, which is impossible.

4.8. Corollary. For each archimedean linearly ordered group G+ {0} there
exists exactly one radical class which is covered by T(G).

Again, let {0} # G € 9, and let a be an infinite cardinal. Recall that the linearly
ordered group G2 was defined in § 3. A radical class A will be said to be x-closed if,
whenever {0} # G e A, then GZe A for each cardinal a.

As an immediate consequence of 3.5 (i) we obtain:

4.9. Corollary. Let A be ax-closed radical class, A #+ Ro. Then A is not principal.
(In particular, 9, is not principal.) '
From the definition of G2 it follows immediately:

4.10. Lemma. Let H, # {0} be a convex subgroup of G2 Then there exists
a convex subgroup H, of G% such that H,c H, and H, is isomorphic with G2.

4.11. Proposition. Let A be a x-closed radical class. Then there is no radical
class B with B<A.

Proof. By way of contradiction, suppose that there is a radical class B with
B<A. Hence for each Gie A\B we have BvT(G,)=A.

There exists G e A\B. Let a be a cardinal with o >card G. As A is x-closed,
GZ must belong to A, and in view of 3.5 (i), G2 does not belong to B. From
GZe Bv T(G) and from 2.2 and 2.3 it follows that there exists a convex subgroup
H, of GZ%with H, # {0} such that either (i) H, € B, or (ii) H, is isomorphic to some
homomorphic image of G. The case (ii) is impossible in view of 4.10 (with respect
to card H; = a >card G). Hence (i) is valid. Put B(G2%)=H. Then H o H,.

Let us write (as above in §3)

G¢21= F:E’(G)Gi'
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Put Jo={ieJ(a): GinH#{0}}. (As usual, we denote by G, also the set of all
g € GZsuch that g(j)=0 for each je J(a), j#i.) Then Jo# @ and thus J, possesses
the greatest element j. Hence G.nH = G for each i <j and we have

H=(I",G)o(G,nH).

Therefore G;nH is a homomorphic image of H and thus G;nH € B. From this it
follows that G,nH# G; (since G; is isomorphic to G and G ¢ B). According to 1.2,
B(G;)2 GinH. Hence B(G;)# {0} and therefore

(4.2) B(G) #{0}.

Denote K=G;/GinH; then K+ {0}. The linearly ordered group GZ/H is
isomorphic with

K.rI'i-,G..

If B(K)# {0}, then B(K.T'.-;G:)# {0} and hence (because B has the transfinite
extension property) we would have

B(G%)-oH,
which is a contradiction. Hence
(4.3) B(K)={0}.

Because of Gie€ A and K e Hom {G:} we obtain K € A. From (4.3) it follows that
K ¢ B. Hence in the above consideration we can replace G with K and in view of
(4.2) we infer that the relation B(K)# {0} is valid, contradicting (4.3).

4.12. Corollary. 9, does not cover any radical class (i.e., the lattice R, has no

dual atoms).
For Xc %, let UX be as in §1.
There are many s-closed radical classes; this is a consequence of the following

Proposition:

4.13. Propostion. Let X c 9,. Assume that each H € X is archimedean. Then

(1) UX is a =-closed radical class;

(ii) if H, and H, are archimedean linearly ordered groups with H,e X, H, ¢ X,
then H, ¢ UX and H,e UX.

Proof. From 1.3 it follows that UX is a radical class. According to the
definition of UX, (ii) is valid. If Ge UX and if a is a cardinal, then clearly
G2e UX; hence UX is x-closed.

4.14. Proposition. Let B be a x-closed radical class, B# R,. Then there is no
G e 9, with B= T(G).
Proof. By way of contradiction, assume that B= T(G) for some G € %.. Let «
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be a cardinal, @ >card G and let He B, H+ {0}. Then H%¢e B, hence H2e T(G) =
Ext Hom(G). Thus there exists a convex subgroup H; of HZ with H,# {0},
H,eHom (G). Then card H, < a, which is impossible in view of the definition of
H.

4.15. Proposition. Let G# {0} be an archimedean lattice ordered group. De-

note B=U{G}, A=BvT(G). Then
(i) B<A,

(ii) B is not principal, and

(iii) A is not principal.

Proof. In view of 4.13, B is a =x-closed radical class and G ¢ B, hence
T(G)ZB. Thus B<A. Let C be a radical class with B<V=A. There exists
G € C\B. According to the definition of U{ G}, some homomorphic image of G,
is isomorphic to G and therefore G € C. Thus T(G)= C, implying C = A ; hence
(i) is valid. From 4.14 it follows that (ii) and (iii) hold.

For C € R, we denote by a(C) the class of all D € R, such that C<D. Let a’'(C)
be defined dually. As we have shown above, there exist C;, C; € &, distinct from
Ro and ¥, such that a(Ci)=# and a’(C;)=0 (cf. 4.6 and 4.11). The following
question remains open:

Give an internal characterization of radical classes C with a(C)=6 (and,
analogously, with a’(C)=0).
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O PAOIUKAJIbHbBIX KIIACCAX ABEJIEBBIX JIMHEMHO YMOPAZOYEHHBIX T'PYIIII
Jin Jakubik

Pe3ome

Knacc C# () aGeneBbIx TIMHERHO yNOPSKOYEHHBIX FPYIN HAa3bIBAETCS PAAMKAIbHBIM KiaccoM, eciu C
3aMKHYT OTHOCHTENLHO FrOMOMOP(}H3MOB W OTHOCHTENbHO TPAaHCUHUTHBIX paciiupenuii. B cratbe
paccMaTpUBaeTCs pelleTKa BCeX pagMKaibHbIX KJIACCOB abeneBbIX JIMHEHHO yMOpSiIOYeHHbIX rpynm.
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