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Math. Slovaca 29,1979, No. 2,141—155 

INTEGRAL WITH RESPECT TO A PRE-MEASURE 

JAN SIPOS 

Introduction 

In the classical definition of the Riemann integral the value of the integral is 
defined as the limit of the Riemann integral sums. The concept of a Riemann 
integral sum is based on a partition of the domain into sets of a comparatively 
simple shape. 

Lebesgue introduced the concept of a measure and thus was able to suggest 
a new definition of the integral. The concept of the Lebesgue integral sum is based 
on a possibility of immensly "rich" partitions of the domain. 

In cases of non additive set functions, however, Riemann's and Lebesgue's 
methods are of not much help, because they are essentially based on the possibility 
of forming partitions of the domain, and on the additivity of some set functions. 

In this paper we propose to define a process of integration with respect to 
a pre-measure. The pre-measure is a natural generalization of a nonnegative 
additive measure. In fact it is a monotone set function vanishing on the empty set 
and defined on a family of subsets of some space which contains the empty set. 

An important type of pre-measures, the so called subadditive measures, were 
studied in [1], [2], [3], [4] and [7]. The most important examples of pre-measures 
are, however, the nonnegative capacities vanishing in the empty set [6]. 

§ 1 is introductory. In § 2 we introduce a measurability of real functions defined 
on a pre-measurable space (X, 3)) and investigate their properties. In § 3 we 
introduce the notion of the integral ^ with respect to a pre-measure \i and show 
that ^ is monotone, homogeneous and additive in a horizontal sense, i.e. 

JJ = ̂ (f*a) + ̂ (f-fAa) if a^O. 

It is shown further that if 3) is a a-ring and \i is a a-additive measure on 3), then 
our integral coincides with the Lebesgue integral. § 4 contains the limit theorems, 
namely the Beppo-Levi and the Lebesgue theorems and Fatou's lemma for 
a continuous pre-measure. 
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§ 1. Basic notation 

We explain certain notions used throughout the present paper; specific terms 
will be explained when they appear for the first time. The terminology is essentially 
standard. 

Definitions will be written as direct statements with the defined concept in italics. 
We denote by R the set of all real numbers, R is the compactified real line, i.e. 

R=Rv{c°, -oo}. If BczR, we put B+ = BnR+ and B=BnR~, (where 
R + =(0, oo) and R~ =( — &>, 0)) . Furthermore, B + a = {x + a; xeB} and a. 
B = {ax:x eB}. 

3F denotes the family of all finite subsets of R which contain zero. Further 

^ = { F +
; F e : f } and r = { F ; F 6 f } . 

Recall that the families 2F, ?F* and &*' ordered by the inclusion form directed sets. 
For F e : J w e write 

| | F | | = m i n { | f l - 6 | ; a,beF,a±b}. 

A real net is a triple (S, =., D), where (D, i=) is a directed set and S is a real 
function with the domain D. Throughout this paper we consider X to be a fixed set 
with respect to which we make definitions. 

Further fixed symbols: For A czX the symbol XA denotes the characteristic 
function of the set A. 

We denote by v and A the lattice operations on real functions, i.e. 

(fvg)(x) = max {f(x), g(x)}, 
(fAg)(x) = min {f(x), g(x)}. 

and we put / + = / v 0 and / " = — ( / A O ) . 

For an extended real valued function / on X we put 

Sf = {xeX; f(x)i-0}. 

If f:X-+R and F e : f , w e put 

n m 

fp = 2(«« - tf<-i)*A. + 2( f o t " t>,-i)XBi, 
1 = 1 , = 1 

where F= {bm, ..., bu 0, au ..., an} with 

bm<...<b1<bo = 0 = ao<al<...<an, 
Ai = {x;f(x)^ai} and Bi = {x;f(x)^bi}. 

We put inf 0=oo and 0. (±oo) = 0. 
A pre-measurable space is a pair (X, @), where 3) is a family of subsets of X and 

0 e 2). The members of 3) are called measurable sets. A pre-measure \i is 
a monotone extended real valued set function defined on 3) with JU(0) = O. 
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§ 2. Measurability 

In this paragraph we shall deal with the pre-measurable space (X, 3). We say 
that an extended real valued function f:X-*R is 3)-measurable or only measur
able iff the sets {x ;f(x)=^a} and {x ;f(x)=^ — a} are in 3 for every positive 
element a in R+. 

If 3 is a o-ring, then this notion of measurability coincides with the ordinary one 
defined, e.g. in [5]. 

By !£(3) we denote the family of all ^-measurable extended real valued 
functions on X. 

Proposition 1. IffeS£(3), then / A A , f-f/\a, fv(-a), f-fv(-a), f+, f and 
c •/ are from 5£(3) for every positive a from R and for every real c. 

Proof. Let b>0, then 

{x,f(x)Aa=b}-{0 .f a<b 

and 
{x;f(x)Aa=-b} = {x;f(x)=-b}. 

Hence f t\a is measurable. The proofs of the other assertions are analogous. 

Proposition 2. Let fe£(3) and Fe&; then fF is in £(3). 
Proof. Let a>0. If {JC ; fF(x)=^a}=£0, put b=rmn {ceF; c = a}. Then {JC ; 

fF(x) = a} = {x;f(x) = b}. 
A simple function is a 3 -measurable function with a finite range. 

Proposition 3. IffeS£(3), then there exists a sequence of simple functions {/„} 
in 5£(3) such that fn converges pointwise to f on X. 

Proof. Let / be a 3-measurable function. Put 

Fn = {i/2n;i = 0, ±1, ±2, ...,±n-2n} 

and fn=fFn. If \f(x)\<n then \f(x)-fn(x)\ = l/2n. If \f(x)\ = *>, then \fn(x)\=n 

for every n and hence 

f(x) = \imnfn(x). 

For our considerations we shall need some properties of measurable functions in 
the case when 3 = % is a lattice or cx-lattice of the subsets of X. In this case ^(^) 
has some further interesting properties. 

Proposition 4. <£(<&) is a lattice. If^is a o-lattice, then f, g e^£(^) and f, g=0 
implies f-\-ge^(^). Moreover ZE^) is a o-lattice. 

Proof. Since {JC; (f Ag)(x)^ -a} = {x; f(x)=^ -a}u{x; g(x)=^ -a} and 

{x;(fAg)(x) = a} = {x;f(x) = a}n{x;g(x) = a}, 
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the first assertion is trivial. Let now/ , g be non-negative ^-measurable functions, 
^ be a a-lattice and let a>0. Then 

O<f<a 
t -rational 

but 

{x;f(x) + g(x)^a}= f] {x;f(x) + g(x)>t}, 
O<f<a 

t -rational 

{x;f(x) + g(x)>t}= ( J {{x;f(x)^r}n 
0<r, O«Cs, r+s>t 

r, s rational 

{X;9(X)^S}]KJ ( J [{x;f(x)^r}Kj{x;g(x)^r}} 
r>t 

r-rational 

and so f + g is ^-measurable. 
Let {/„} be a sequence of ^-measurable functions. Denote / = v„/„ ; then for 

a > 0 we have 

{x;f(x)^a}= f l un{x;fn(x)=-r}e% 
O<r<a 

r-rational 

and similarly {x; / ( * ) = — a}ec€. 
The proof of the measurability of fvg and Ar/n is similar. 

§ 3. The integral 

In this paragraph \i will be a pre-measure. Let Fe 3* and F = {bm, ..., bu 0, au 

..., an}, where 

bm<...<bl<bo = 0 = ao<al <...<an. 

The integral sum S(f, F) of the measurable function / with respect to the set F is 
defined as follows 

S(f,F) = f,(ai-ai.i)n({x;f(x)^ai}) + 
i = 1 

+ id(bi-bi-,)n({x;f(x)^bi}) 
7 = 1 

whenever the right-hand side contains no expression of the type oo — oo. 
A 2J-measurable function / is integrable whenever the net (S(f, F), ID, 3F) is 

convergent. 
The integral of a measurable (not necessarily integrable) function / , in symbol 

$f, J J or / / dju is defined by 

Jř/= lim S(f,F) 
F e 3F 

if the limit exists. 
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Theorem 5. Let f be a ^-measurable function on X. 
(i) i / / __0 , then J>f exists and •_*/___ 0. Moreover in this case we have 

Jf=supS(f,F). 
F e & 

(ii) J is a monotone functional. 
(iii) If M exists, then for every real c 

S(c-f) = c-ff 
(iv) _7a i_0, then 

Jf = f(fAa) + S(f-fAa) 

if one of the right-hand side expression is finite. 
(v) If J>f+ or 3>f- is finite, then 3>f exists and $f = $f+-$f~. 

Moreover if f is integrable, then the last equality holds too, andf+, f~ are integrable 
too. 

For proving Theorem 5 we need some properties of the integral sum S(f, F). 

Lemma 6. Let f be an integrable function and let Fe2F, then we have 
(i) S(f,F) = S(f,F+) + S(f,F~). 

(ii) HFU F2e_*withF,c=F2, thenS(f, Ft) = S(f, Ft) andS(f, F~x) i_ S(f, F 2 ) . 
Proof. The first part is a trivial consequence of the definition of the integral 

sum. 
Let F = { 0 , au a2, ..., an} and let F* = F u { a } , where 

0 = a o < a! < . . . < ay _ j < a < a, < . . . < an. 

We prove first that 

S(/,F)__S<y,F*). 
Denote 

then 

y = _!•(-. -<*.-.)*•({-• ; / ( _ ) _ - , } ) ; 
í = l 

S(f, F) = y + (a, - _ , _ . ) M ( { * ; / ( _ ) _ _ , } ) § 
_ y + ( a , - a M { * ; / (*)_.„ ,}) + 

+ ( a - a , _ , ) / i ( { x ; / ( x ) _ a } ) = S( / ,F*) . 

In the foregoing reasoning we have used the monotonicity of y. and the fact that {x ; 
/(_•)_„,} <r {x; / ( . * ) _ „ } . If now F , _ F 2 , then F + _ F + . Let c,, c2, ..., c„ be such 
real numbers that F2 = F + u { c {, c2,..., c„ } . Then from the first part of this proof we 
have 

S(f, Ft)^S(f, F + u { c , } ) _ . . . _ S ( / , F2
+). 

The proof of S(f, F 7 ) _ S ( / , F 2 ) is similar. 
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Lemma 7. 
(i) S(c-f,F) = cS(f,(l/c)-F) forc^O. 
(ii) S(f,F) = S(f+,F)-S(f~,-F). 
(iii) S(f,F) = S(fAa,F) + S(f-fAa,F-a)ifaeFanda^O. 

Proof, (i) follows from the equalities 

{x;c-f(x)^a} = {x;f(x)^a/c} 
and 

{x;c-f(x)^b} = {x;f(x)^blc} 

for c > 0 and from the similar equalities for c<0. 
(ii) If /i=0 </S0), then S(f, F-) = 0 (S(f, F+) = 0) for every Fe&. From this, 

from the definition of / + and / " and from the first part of this lemma it follows that 

S(f,F) = S(f\F+)-S(f-,-F-). 

(iii) by Lemma 6 (i) 

S(f,F) = S(f,F+) + S(f,F~). 

Thus it is enough to prove the asserion if F e f + . Let F= {0 = ao<a1< ... <a„}. 
Then 

However, 

5(/,I7)=Ê(^-«.-.)p({^;/W=a,})=2 + 2 
a, =ia a, >a 

2 = 2 (a, -a,-,)/4{* ;/(*)=«.}) + 
a,- =a a,- =a 

+ 2( a i -^ -0^({^ ; ( / , Aa ) (x)^a l }) = 
a,->a 

n 

= ^J(ai-ai-l)ii({x\(f/\a)(x)^ai}) = S(ffKa,F). 
i = l 

On the other hand 
yZ = yZ(ai-a-(ai-l-a))ii({x;(f-fAa)(x)^: 

Of >a aj >a 

^ai-a}) = S(f-fAa,F). 

And so we get 

S(f,F)=^ + ^=S(fAa,f) + S(f-(fAa),F). 

Proof of Theorem5. (i)isa simple conclusion of Lemma 6 (ii) and the fact 
that monotone real valued nets have always limits (finite or infinite), (ii) follows 
from the relations 
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ti({x;f(x)^a})^n({x;g(x)^a}) 
and 

-iJL({x;f(x)^-a}tk-ii({x',g(x)=\-a}) 

iif^g and a>0. 
If c = 0, then (iii) is trivial. If C=5-=0, then the assertion follows from (i) of 

Lemma 7. 
(iv) Let J(f A a) be finite. Choose F2 e & with a e F, and such that for F => Fj we 

have 

| S ( / A a , F ) - ^ ( / A a ) | < e 

f — f/\a is a non-negative measurable function, hence by (i) of this theorem 
J(f—f Aa) exists. Choose F2e2F+ such that for any F=>F2 we have 

S(f-fAa,F)=\n in the case J(f-fAa) = co 
and 

\J(f-fAa)-S(f-fAa,F)\<s if J(f-fAa)<oo. 

Let F0 = F!u(F2 + a) and let FZDF0. Then 

5(f,F) = 5(/Aa ,F) + 5 ( / - / A a , F - a ) g 
=-n+J(fAa)-e 

if J>(f—fAa) = oo and in the other case 

| S ( / , F ) - ^ ( f - / A a ) - ^ ( / A a ) | ^ 
^ | 5 ( / - / A a , F - a ) - ^ ( / - / A a ) | + 

+ \S(fAa, F)-J(fAa)\ ^2e, 

since F — a=>F2. And so ^ / exists and 

Jf = J(fAa) + J(f-fAa). 

The proof for the infinite J(f Aa) is similar, 
(v) Put a = 0 in (iv); then 

Jf = J(fA0) + J(f-fAO) = J(-f~) + Jr = Jf+-Jf-. 

For the second part of (v) it is sufficient to prove that Jf+ and Jf~ are finite. Let 
F0 e ?F be such that 

| S ( / , F ) - ^ / | < £ for F=>F0. 

Choose F with F~ = F~. 
Then by (ii) of Lemma 7 we have S(/ , F) = 5( / + , F) - S(f~, -F) = S(f+, F) 

— S(f~, — F0) and so 
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S(f+, F+) = S(f+, F)^S(f~, -F0) + $f + e 

for every F e f , F=>F0, F=Fo. Since J*/+ = sup S(f+,F+), we get j2 /+<°°. 
F e & 

Since $(-f)= -$f and / - = ( - / )+, we get that .J^/- is finite too. 

Proposition 8. Let f be an integrable function. Then 

fi({x;f(x) = oo}) = (l({X;f(x)=-oo}) = 0. 

Proof. We prove only ii({x;f(x) = oo}) = 0. If / is integrable, then by (v) of 
Theorem 5 f+ is integrable. Let Fn = {0, n}. Then, since 

{x;f+(x)^n}=>{x;f(x) = co}, 

we get 
n-n({x;f(x)^co})<S(f+,Fn)^<?f+<co, 

hence 
V({x;f(x) = co}) = 0. 

For our latter considerations we shall need the following notion. An essential 
supremum of / is 

e s s s u p / = inf {a^O; [i({x ; f(x)^a}) = 0}. 

Proposition 9. Let f be a measurable function. If J>f exists and a = ess sup / , then 

<ff = f(fAa). 

Proof. If a = oo, then the proof is trivial. Let a be non-negative. The proof 
follows by 

{x;f(x)^b} = {x;(fAa)(x)^b} if a^b 
and 

fi({x;f(x)^b}) = 0 if b>a. 

Proposition 10. Let f be a measurable function with Sf e 2), \f\ S c and [i(Sf) < oo. 
Then f is integrable and \J>f\^C'[i(Sf). 

Proof. Let | / | = c . Then / + , f~=\c-Xsr By the monotonicity of $ and by (i) of 
Theorems / + , / " are integrable and ^ / + , $f~^c\i(Sf). The integrability of / 
follows now by (iv) of Theorem 5. The last assertion of the proposition is 
a conclusion of the mononicity of $ and the following inequality 

-c-Xsf^f^c-Xsr 

Proposition 11. Let f and | / | be measurable functions and let J>f exist. Then 

\*f\^*\f\. 
If | / | is integrable, then f is integrable too. 
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Proof. Let $f exists. Since —/, / ^ | / | , by the monotonicity of $ we get 

±*f^*\fl 
The following example is an illustration of the fact that the integrability of / does 

not involve the integrability of | / | even if \i is bounded. 
Examp l e 12. L e t X = ( - l , 0)u(0, 1), 3) = 2X; let further *i(A) = 1 if A n ( - 1 , 

0) and A n ( 0 , 1) are nonempty and JU(A) = 0 otherwise. Then \i is a pre-measure 
on 3). 

Take / on X defined by f(x) = 1/x. Then #J = 0 and J?M | / | = oo. 

Proposition 13. Let f and | / | be measurable functions. Let \f\=g, where g is an 
integrable function. Then f is integrable. 

Proof. The proof is a conclusion of Proposition 11 and the fact that | / | is 
integrable. 

We give other properties of the integral in connection with the simple functions. 

Proposition 14. If f is a simple function with the range F and $f exists, then 

ff = S(f,F). 

If 3 is a a-ring and \i is a a-additive measure on 3 and f is a simple function, then 

4/ = J7dfi, 
where I / dpi is the Lebesgue integral of the function f. 

Proof. Suppose first that / ^ 0 . Let Fxe3^ with FXZDF. 

Since {JC;/(JC)I^C} = {x ;f(x)^a} if a =min {x eF; x^c}, in the case {x eF; 
x ^ c } - £ 0 a n d a = maxFinthecase {xeF;x^c} = 0 , we have 5(/ , Ft) = S(f, F) 
for F ! - D F and so 

Sf = S(f,F). 

The proof for a not necessarily positive function / follows by applying the result just 
proved separately to / + and /" and (v) of Theorem 5. The proof of the second part 
is trivial. 

Corollary 15. Let A t =) A2=>... =5An be measurable sets. Let c, be positive real 
numbers and let fi=ct x^ (l = 1- 2, ..., n). Then we have 

з \ i = i / l = i 

Proposition 16. Let J>f+ or J>f be finite. Then fis a limit of a sequence {/„ }T=-i of 
simple functions and 

$f = X\mJ>fn. 

If fis non-negative, then fn may be taken non-negative and the sequence {/„} may 
be assumed increasing. 
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Proof . Suppose first that / = 0. It follows from (i) of Theorem 5 that J>f exists. 
Let {Gn} be a sequence of sets from 2F with 

\imnS(f, Gn)=<?f. 

We write 

Fn = \jGjU{i/2n; i = l,2,...,n-2n} 
7 = 1 

and put 
fn=U„-

Clearly /„ is a non-negative simple function and the sequence {/„ } is increasing. If 
f(x)<n, then 

0^f(x)-fn(x)^l/2n. 

If f(x) = oo? then fn(x)^n and so 

\imnfn (x ) = f(x) for every x e X. 
Moreover 

Jf = \imnS(f, Gn) = \imnS(f, Fn) = \imjfn ^<tf. 
Hence 

\imjfn=$f. 
The proof for a not necessarily positive function / follows if we apply the result just 
proved separately to / + , and / " and from (v) of Theorem 5. 

Corollary 17. If f is a non negative 3-measurable function, then 

$f = sup {J>g ; g=f, g is a simple function}. 

The simple conclusion of the second part of Proposition 14 and the last corollary 
is the following: 

Corollary 18. If 3 is a o-ring and \i is a o-additive measure on 3, then 

for every Lebesgue [i — 3 — integrable function f. 

§ 4. Limit theorems 

A pre-measure \i on 3 is called continuous iff it has the following two 
properties: 

(i) An/Az>B (An, Be3) implies limniu(A„) ^ fi(B). 
(ii) An\AcnB (An, Be3), iu(A1)<oo implies lim„ju(A„) S fi(B). 

It is easy to see that if /i is a continuous pre-measure on 3, then An,Ae3, An/A 
or A / 7 \A( |u(A 1 )<oo) implies JU(A„)—>fi(A). 

In this paragraph we shall assume that \i is a continuous pre-measure. 
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Proposition 19. Let {/„} be the sequence of non negative integrable functions 
with Jfn=c and let fn/f. Then f is integrable Jf=c and 

Jf=\imnJfn. 

Proof. Let £ > 0 . Let F={0 = ao<al<...<ak} e&. Choose 6 with 

and & / ( « . - * ) < * 

0 < 2 6 < m i n {af —ai-1;j = 1, 2, ..., k}. 

Denote b0 = 0, &,=«, — <5 (i = \, 2, ..., k). From 

vn{x ; fn(x) = at -6} ZD {X ; f(x) = at} 

and from the continuity of \i we get 

S(f,F) = fl(ai-ai-1M{x;f(x)^ai})^ 
i = l 

k 

;=lim„ ^(Oi -^-^({x ; fn(x)=ai-d}) = 
1 = 1 

= lim„ [ j > , -h-iMix; f„(x)^bl}) + 
Li = l 

+ 6^({jc;/.(jc)Sa,-6})]_i 

^ Iim„ J*/„ + --—--• lim„ Jfn ^ limj?/, + e. 

From this we have 

Зf = sup S(f,F)ѓ l im^Д + e. 
F є ^ " 1 " 

Since e was arbitrary, we get 

Jf=\imjfn. 

The opposite inequality follows by the monotonicity of J. 
For the proof of the Lebesque-like theorem we shall need some lemmas. 

Lemma 20. Let f be a nonnegative integrable function, then 

lim J(f-fAA) = 0. 
A.—*°o 

Proof. Let Fe&, e>0 and let Jf-S(f,F)<e. Clearly S(f, F)<oo, then 
fF=fAa=f. By the monotonicity of J we get 

S(f,F) = JfF^J(fAA) = Jf, 
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and so 

S(f-fAA) = ff-f(fAA)^#f-S(f,F)<e, 

which finishes our proof. 

Lemma 21. Let f be a nonnegative integrable function; then 

l i m ^ ( / A a ) = 0. 

Proof. It is enough to show that limn i(/At7„) = 0 if a„\0. 
Let a„\0, then the sequence 0^=/. =f -f /\an is increasing, fn/f and $fn fk$f < 

oo, by the integrability of /. 
From Proposition 19 it follows that lim„ J>fn =$f. Since 

3{j^an) = 3f-3fny 

we get 
^ ( / A a J - ^ 0 . 

Proposition 22. Let {/„} be a sequence of nonnegative integrable functions. Letf 
be a measurable function and let / „ \ / . 

Then f is integrable and 

\imnJfn=<tf. 

Proof. Since 0^f^fu we get that / is integrable (see Proposition 13). 
Since 

\3>fn-^f\ = \3>(jnAa) + 
+ <fi(fn-fnAA)-f(fAA)-J(f-fAA)\^ 

^\J(fnAA)-<f>(fAA)\+#(fn-fnAA) + 4(f-fAA) = 

= \<?(fnAA)-<f(fAa)\+2-<fi(f,-f,AA), 

from the fact that | im $(/, - / , A A ) = 0 it follows that we may assume that the 

functions /„ and / are bounded with a number A. 
Since 

| ^ / , - ^ / | ^ | ^ ( / , - / „ A a ) - ^ ( / - / A a ) | + 2 ^ ( / 1 A a ) , 

Н т ^ ( / 1 л а ) = 0 
а—»0 

and since 

li({x;(f,-f,Aa)(x)^t}) = n({x;f,(x)^a + t}) = 
= (a + t)-,(a+t)(i({x;f,(x)^a + t})^a-1Jf, 

for every t > 0 , we may and do assume that there exists a real K such that 

n({x;f1(x)^t})^K<°o for f > 0 . 
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Denote 

and put 
gя(t) = џ({x;fя(x)Шt}) 

g(t) = џ({x;f(x)Шt}. 

Then gn and g are real non-negative monotone functions defined on (0, o°), they 
vanish on (A, oo) and they are bounded with K. By the continuity of pi and by the 
fact that fn\f we get gn\g. Let e>0. Choose Fo={0 = ao<a1<...<ak} with 
ak ^ A and such that for FZDF0 there holds: \$J-S(f, F)\ <e/2. Choose a 6 >0 
such that for every partition A of the interval (0, A ) with the norm less then 6 

there holds í g(t)dt - ~\(d,A) 
Jo 

<e/29 where 2 (# , A) is a. Riemann integral 

sum of g with respect to the partition A. Let F=>F0 be such that F n ( 0 , A ) is 
a partition of (0, A ) with the norm less then 6. Then 

3J-Tg(t)dt = <?J-S(f,F) + S(f,F)-rg(t)dt 
Jo Jo 

= W~S(f, F) + Z(g, Fn(0, A » - [*g(t) dtl <£ 
I Jo I 

because S(f, F) = Z(g, F n ( 0 , A ) ) . Thus we get 

JJ=f*g(t)dt. 

Jjn = \Agn(t) dt. 
Jo 

Similarly 

Since gn\g, we get 

*4n = \Agn(t) dř\ íAg(t) dt = SJ. 
Jo Jo 

And so 
\imnyjn=JJ. 

Theorem 23. Let {/„} be a sequence of integrable functions. 
Let fn /f, where f is a measurable function and $>fn ^ c < o° for every n. Then f is 

integrable and 

4fn/3>f. 

Proof . / „ / / implies f+/f+ and f~\f~. Since 

^f:^3fn+3f-^3fn+jfT^c+3f-<^ 

from Proposition 19 3>f+/3>f+. Similarly by the last proposition 3>f~n\$f~, and so 

lim„ 3>fn = Km., 3f+ - lim„ 3>fn = J>f+ - #f~ = Sf. 
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In the last two theorems of this paragraph we shall assume that Q) is a a-lattice. 

Theorem 24. If {/„} is a sequence of measurable functions which converges 
pointwise to a measurable function f and if g is an integrable function with \fn\=g 
for n = \, 2, ..., then f is integrable and 

Xvmn3>fn=<J>f. 

Proof. It follows from Proposition 13 that the functions /„ and / are integrable. 
We put 

hn = /\fi and g„ = V / . 
i = n i^n 

From Proposition 4 we get that hn and gn are measurable. Clearly hn =fn = gn, and 

lim„ hn = lim inf„ /„ = / 
and similarly 

lim„ gn=f. 

The functions hn and gn are integrable and hn/f<—gn. By the last theorem 

*K/$f<^3Qn. 

From this and from the relation 

Mn?k$fn=$gn. 
It follows that 

X\mn$fn=$f. 

Theorem 25. If {/„} is a sequence of integrable functions with fn=g, where g is 
an integrable function, for which 

liminf„ J>fn=c, 

then the function / defined by 

/ (x ) = liminf„/„(x) 
is integrable and 

^ / g l i m i n f n ^ / „ . 

Proof. We let ^ = A A / H I A . . . ; then fk=gk=g and so gk—>f and 3g^3gk = 
$fn for n=k. Hence guff and {$gk} is upper bounded. Thus by Theorem 23 

$f = lim„ Hn -s lim inf„ Jfn. 
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