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A NOTE ON NONNEGATIVE MATRICES 

MIROSLAV FIEDLER 

1. Introduction. The main purpose of this note is to prove that the set of all 
points the coordinates of which are eigenvalues of a nonnegative n by n matrix with 
a given Perron root is closed. 

2. Results. The reader is referred to the book [1] for the necessary definitions 
and theorems. We shall prove first: 

Theorem 1. Let A be a nonnegative matrix which has positive Perron root 
p(A). Then there exists a diagonal matrix D with positive diagonal entries such 
that the matrix DAD - 1 =B = (bik) satisfies 

bik^p(A) 

for all /, k. 
Proof. Let us assume first that A is irreducible. By the Perron—Frobenius 

theorem, there exist positive column vectors u = (u() and v = (v() such that 

Au = p(A)u , 

ATt;=p(A)t? 

AT being the transpose matrix to A. Define D = diag {d,}, where d, = v)/2«,~(1/2\ It 
is easily seen that then B = DAD _ 1 satisfies 

(1) Bw = p(A)w, 

(2) BTw = p(A)w 

where w = (w() with w, = u)/2v)12. Without loss of generality, we can assume that 

wl^w2^...^wn . 

Let /, k be two indices; if i=\k, we have by (2), 

p (A) Wk=X bjk Wj ^ bik wt ^ bik wk 

i 

so that 

(3) bik^p(A). 
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If i>k, (1) yields 

p (A) w,: = 2 A,, w, ^ 6,< w< = A* w', 
/ 

and (3) is fulfilled as well. 
Let now A be reducible. As is well known [ 1 ], there exists a permutation matrix 

P such that 

( AM A12 ... A,r 

0 A22 ... A2r 

0 0 ... A 

where r> 1 and A,,, A22, ..., Arr are square irreducible matrices of order at least 
one. Let D,, / = 1, ..., r be diagonal matrices such that no entry of the matrix 

B„ =D,A,D, ' 

exceeds the corresponding Perron root p(A„), / = 1, ..., r. Let m be the maximum 
of all the entries of all the matrices Df-A/AD*\ i<k. Define (o = 1 if m^p(A), 
(o = mlp(A) if m> p(A). As p(Ati)^p(A), / = 1, ..., r, it is easily checked that if 

D, 
a)D2 

D = P | | PT , 

wr lDr 

the matrix 

B = DAD ' 

has all entries less than or equal to p(A). The proof is complete. 

Corollary. If A = (aik) is a nonnegative matrix with the Perron root p(A) then 
for any indices ku ..., kr, r = 2, 

Proof. If p(A) = 0, A is either of order one and there is nothing to prove, or A 
is reducible and in the corresponding form (4) all matrices A„ are zero matrices of 
order one. It follows that all expressions on the left-hand sides of (5) are to zero. 
Thus the assertion is true in this case. 

If p(A)>0, there exists by Thm. 1 a diagonal matrix D with positive diagonal 
entries such that DAD - 1 =B = (bik) satisfies 

biktkp(A) 
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for all /, k. Since 

Vi = bkik2bk2ki ••• t>k KlK2*"K2*3 

the estimate (5) follows. 

Definition. Let p>0. We shall denote by N(p) the set of all nonnegative 
matrices which have the Perron root p and whose entries do not exceed p. 

Theorem 2. Let In(p) denote the set of all points (A,, A2, ..., An_,) of a complex 
(n — \)-dimensional space Cn_, such that there exists an n by n nonnegative matrix 
A with the Perron root p and all the remaining eigenvalues A,, A2, ..., An_,. Then 
Zn(p) is a closed set. 

R e m a r k . If (A,, A2, ..., kn-x)eZn(p) and P is a permutation of the indices 
1, ...,AZ —1 then (AP1, AF2, ..-, AP(n_, ))€2n(p) as well. 

Proof. The theorem is true if p = 0. Let thus /?>0. Let {(A,,, A2/, ..., y„_,,,)} be 
a sequence of points in Zn(p) which converges to> (ku A2,..., An_/y). By the definition 
of Zn (p) and by Theorem 1, there exist matrices B, e N(p), i = 1, 2, ... such that for 
each /, B, has the Peron root p and the remaining eigenvalues A,,-, A2/, ..., A„_,,,-. 
jV(/?) being compact, there exists a subsequence {Bik} of {B,} which is convergent: 

B . . - B 

As eigenvalues of a matrix depend continuously on its entries [2], it follows that 
B which also belongs to N(p) has the Perron root p and all remaining eigenvalues 
A,, A2, ..., An_,. Thus (A,, A2, ..., An_,)€2n(/?) and the proof is complete. 
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ЗАМЕТКА ПО НЕОТРИЦАТЕЛЬНЫМ МАТРИЦАМ 

Мирослав Фидлер 

Р е з ю м е 

Доказывается, что множество всех точек л-мерного комплексного пространства, координаты 

которых являются собственным значением неотрицательной матрицы порядка п с заданным 

корнем Перрона — замкнуто. 
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