Mathematic Slovaca

Olga Klaučová
 Characterization of distributive multilattices by a betweenness relation

Mathematica Slovaca, Vol. 26 (1976), No. 2, 119--129

Persistent URL: http://dml.cz/dmlcz/128857

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CHARACTERIZATION OF DISTRIBUTIVE MUITILATTICES BY A BETWEENNESS RELATION

OLGA KLAUČOVÁ

Some authors have studied the following betweenness relation:

$$
\begin{equation*}
(a \wedge x) \vee(x \wedge b)=x=(a \vee x) \wedge(x \vee b) \tag{1}
\end{equation*}
$$

In the metric lattices this relation is equivalent to

$$
\begin{equation*}
\varrho(a, x)+\varrho(x, b)=\varrho(a, b) . \tag{2}
\end{equation*}
$$

A characterization of lattices by the relation (1) is given in paper [3]. In the present paper an analogous characterization of distributive directed multilattices is given (Thm. 2). Following [4] we take the ternaryrelation defined by

$$
\begin{equation*}
[(a \wedge x) \vee(x \wedge b)]_{x}=x, \quad(a \wedge x) \wedge(x \wedge b) \subset a \wedge b \tag{b}
\end{equation*}
$$

as the starting point. In metric directed multilattices (b) is equivalent to (2) In distributive multilattices (b) holds iff the relation

$$
\begin{equation*}
[(a \wedge x) \vee(x \wedge b)]_{x}=x=[(a \vee x) \wedge(x \vee b)]_{x} \tag{r}
\end{equation*}
$$

is satisfied (see Thm. 1 and [6, Lemma 14]). In lattices (r) reduces to (1).
The author was stimulated by conversations with M. Kolibiar in developing this approach to the problem.

Basic concepts and properties

A multilattice [1] is a poset M in which the conditions (i) and its dual (ii) are satisfied: (i) If $a, b, h \in M$ and $a \leqq h, b \leqq h$, then there exists $v \in M$ such that (a) $v \leqq h, v \geqq a, v \geqq b$, and (b) $z \in M, z \geqq a, z \geqq b, z \leqq v$ implies $z=v$.

Analogously as in [1] denote by $(a \vee b)_{h}$ the set of all elements $v \in M$ from (i) and by $(a \wedge b)_{d}$ the set of all elements $u \in M$ from (ii) and define the sets:

$$
a \vee b=\bigcup_{\substack{a \leq h \\ b \leqq h}}(a \vee b)_{h}, \quad a \wedge b=\bigcup_{\substack{d \leqq a \\ d \leqq b}}(a \wedge b)_{d}
$$

Let A and B be nonvoid subsets of M, then we define

$$
A \vee B=\bigcup(a \vee b), \quad A \wedge B=\bigcup(a \wedge b)
$$

where $a \in A$ and $b \in B$. Troughout the paper we denote $[(a \vee x) \wedge(b \vee x)] x-$ $=x\left([(a \wedge x) \vee(b \wedge x)]_{x}=x\right)$, if $a, b, x \in M$ and $[(a \vee x) \wedge(b \vee x)] x=\{x\}([(a$ $\left.\wedge x) \vee(b \wedge x)]_{x}=\{x\}\right)$.

A poset A is called upper (lower) directed if for each pair of elements $a, b \in A$ there exists an element $h \in A(d \in A)$ such that $a \leqq h, b \leqq h(d \leqq a, d \leqq b)$. The upper and lower directed poset A is called directed.

A multilattice M is modular [1] iff for every $a, b, b^{\prime}, d, h \in M$ satisfying the conditions $d \leqq a \leqq h, d \leqq b \leqq b^{\prime} \leqq h,(a \vee b)_{h}=h\left(a \wedge b^{\prime}\right)_{d}=d$ we have $b=b^{\prime}$.

A multilattice M is distributive [1] iff for every $a, b, b^{\prime}, d, h \in M$ satisfying the conditions $d \leqq a, b, b^{\prime} \leqq h,(a \vee b)_{h}=\left(a \vee b^{\prime}\right)_{h}=h,(a \wedge b)_{d}=\left(a \wedge b^{\prime}\right)_{d}=$ $=d$ we have $b=b^{\prime}$.

Let M be a multilattice and N a nonvoid subset of $M . N$ is called a submultilattice [1] of M iff $N \cap(a \vee b)_{h} \neq \emptyset$ and $N \cap(a \wedge b)_{d} \neq \emptyset$ for every a, $b, d, h \in N$ satisfying $a \leqq h, b \leqq h, a \geqq d, b \geqq d$. It is obvious that each interval is a submultilattice.

The following definition and results are in [4]:
The multilattices M and M^{\prime} are said to be isomorphic (denoted as $M \sim M^{\prime}$) if the partially ordered set M is isomorphic with the partially ordered set M^{\prime}.

Let M be a cardinal product of two posets $M_{1}, M_{2} . M$ is upper (lower) directed iff M_{1} and M_{2} is upper (lower) directed. M is a multilattice iff M_{1} and M_{2} are multilattices. Let $x_{1}, x_{2}\left(x_{i} \in M_{i}\right)$ be Cartesian coordinates of any element $x \in M$. For all $a, b, h, v \in M v \in(a \vee b)_{h}\left(v \in(a \wedge b)_{h}\right)$ iff $v_{i} \in\left(a_{i} \vee b_{i}\right)_{l}$ $\left(v_{i} \in\left(a_{i} \wedge b_{i}\right)_{h_{i}}\right)$ for $i=1,2$.

§ 1.

Lemma 1. If M is a distributive multilattice $a, b, u v \in M, u \in a \wedge b, v \in a \quad b$, then a mapping $f:\langle u, a\rangle \rightarrow\langle b, v\rangle$ with $f(x)=(b \vee x)_{v}$ for $x \in\langle u, a\rangle(g:\langle b, v\rangle \rightarrow$ $\rightarrow\langle u, a\rangle$ with $g(y)=(a \wedge y)_{u}$ for $\left.y \in\langle b, v\rangle\right)$ is a isomorphism of $\langle u, a\rangle(\langle b, v)$ onto $\langle b, v\rangle(\langle u, a\rangle)$.

The proof of the Lemma 1 follows from 6.4, § 6 of paper [1].
Lemma 2. If M is a distributive multilattice, $a, b, u, v \in M, u \in a \wedge b, v \in a \vee b$, then a mapping $m:\langle u, v\rangle \rightarrow\langle a, v\rangle \times\langle b, v\rangle$ with $m(x)=\left((a \vee x)_{v},(b \vee x)_{v}\right)$ for $x \in\langle u, v\rangle\left(n:\langle a, v\rangle \times\langle b, v\rangle \rightarrow\langle u, v\rangle\right.$ with $n\left(x_{1}, x_{2}\right)=\left(x_{1} \wedge x_{2}\right)_{u}$ for $x_{1} \in$ $\in\langle a, v\rangle$ and $\left.x_{2} \in\langle b, v\rangle\right)$ is a isomorphism of $\left.\langle u, v\rangle(\langle a, v\rangle \times b, v\rangle\right)$ onto $\langle a$, $v\rangle \times\langle b, v\rangle(\langle u, v\rangle)$.

This Lemma is a corollary of $3.2,3.4,3.7$ of paper [2].
Remark. Edidently the dual assertion with respect to Lemma 2 is valid too. Throughout the paper we consider one of the isomorphisms from Lemma 1 (Lemma 2) if we have the isomorphism of any interval onto another interval (of any interval onto a direct product of two intervals).

Lemma 3. Let M be a distributive multilattice, $a, b, u, v, x, x_{1}, y \in M, u \in a \wedge$ $\wedge b, v \in a \vee b, u \leqq x \leqq v, x_{1} \in(a \wedge x)_{u}, y \in\left(x_{1} \vee b\right)_{v}$, then $x_{1} \leqq x \leqq y$.

Lemma 3 is dual to Lemma 12 from [5].
Lemma 4. Let M be a distributive multilattice $a, b, p, q, r, x \in M, r \in a \vee x$, $r \in b \vee x, p \in a \wedge x, p \in a \wedge x, q \in b \wedge x, p \leqq q$, then $a \leqq b$.

Proof. It is obvious that the intervals $\langle a, r\rangle$ and $\langle p, x\rangle$ are isomorphic. Denote by $s \in\langle a, r\rangle$ the image of the element $q \in\langle p, x\rangle$ in this isomorphism. There hold $(a \vee q)_{r}=s$ and $(s \wedge x)_{p}=q$. Evidently $r \in s \vee x$ and

$$
(s \wedge x)_{q}=q=(x \wedge b)_{q}, \quad(s \vee x)_{r}=r=(x \vee b)_{r}
$$

By distributivity $s=b$ and consequently $a \leqq b$.
Lemma 5 ([5, Lemma 13]). Let M be a distributive multilattice, a, b, c, d, e, $f \in M$. If $f \in e \vee d, c \in e \wedge d, d \in c \vee b, a \in e \wedge b, a \leqq c$, then $f \in e \vee b$.

Theorem 1. Let M be a directed distributive multilattice, $a, b, x \in M$. Then the following conditions are equivalent.

$$
\begin{equation*}
[(a \wedge x) \vee(b \wedge x)]_{x}=x=[(a \vee x) \wedge(b \vee x)]_{x} \tag{r}
\end{equation*}
$$

$$
\begin{equation*}
(a \wedge x) \wedge(b \wedge x) \subset a \wedge b,(a \vee x) \vee(b \vee x) \subset a \vee b \tag{s}
\end{equation*}
$$

Proof. Let us choose $x_{1} \in a \wedge x, x_{2} \in b \wedge x, x_{1}^{\prime} \in a \vee x, x_{2}^{\prime} \in b \vee x, u \in x_{1} \wedge x_{2}$, $v \in x_{1}^{\prime} \vee x_{2}^{\prime}$. First we prove that (r) implies (s). It is sufficient to show that $u \in a \wedge b$ (the proof of the assertion $v \in a \vee b$ is dual). First we show

$$
\begin{equation*}
u \in a \wedge x_{2}, u \in b \wedge x_{1}, v \in a \vee x_{2}^{\prime}, v \in b \vee x_{1}^{\prime} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}^{\prime} \in a \vee x_{2}, x_{2}^{\prime} \in b \vee x_{1}, x_{1} \in a \wedge x_{2}^{\prime}, x_{2} \in b \wedge x_{1}^{\prime} \tag{4}
\end{equation*}
$$

Choose $f \in\left(a \wedge x_{2}\right)_{u}$ and $g \in(a \wedge x)_{f}$. By (r)

$$
\begin{equation*}
x \in g \vee x_{2} \tag{5}
\end{equation*}
$$

Next let us choose $h \in\left(x_{1} \vee f\right)_{x}$. From the isomorphism of the intervals $\left\langle u, x_{2}\right\rangle$, $\left\langle x_{1}, x\right\rangle$ it follows that $\left(h \wedge x_{2}\right)_{u}=f$, hence

$$
\begin{equation*}
f \in h \wedge x_{2} \tag{6}
\end{equation*}
$$

Since $f \in a \wedge x_{2}, f \leqq g \leqq a$, we get

$$
\begin{equation*}
f \in g \wedge x_{2} \tag{7}
\end{equation*}
$$

From $x \in x_{1} \vee x_{2}$ it follows that

$$
\begin{equation*}
x \in h \vee x_{2} . \tag{8}
\end{equation*}
$$

By distributivity and using (5), (6), (7), (8) we get $g=h$, hence $g=x_{1}$.

Consequently $f \leqq x_{1}$ and $f=u$. We have proved that $u \in a \quad x_{2}$. By symmetry and duality we get the other assertions from (3). The assertions in (4) can be proved by Lemma 5 and its dual.

Next we prove $u \in a \wedge b$. Let $r \in(a \wedge b)_{u}, s \in(a \vee b)_{v}, a_{1} \in\left(x_{1} \vee r\right)_{a}, a_{\bullet} \in$ $\in\left(a_{1} \vee x\right)_{x_{1}}, c \in\left(r \vee x_{2}\right)_{a_{2}}$. From (3), (4) and the dual of Lemma 2 we get

$$
\begin{equation*}
\left\langle u, x_{1}\right\rangle \sim\langle u, a\rangle \times\left\langle u, x_{2}\right\rangle \tag{9}
\end{equation*}
$$

where $a \mapsto(a, u), c \mapsto\left(r, x_{2}\right), x \mapsto\left(x_{1}, x_{2}\right), a_{2} \mapsto\left(a_{1}, x_{2}\right)$. (We use the isomorphism of the intervals $\left\langle x_{1}, a\right\rangle,\left\langle x, x_{1}^{\prime}\right\rangle$ and the isomorphism of the intervals $\left\langle x_{2}, x_{1}^{\prime}\right.$, $\langle u, a\rangle$, where $\left(a_{1} \vee x\right)_{x_{1}^{\prime}}=a_{2}$ and $\left(a_{2} \wedge a\right)_{x_{1}}=a_{1}=\left(a_{2} \wedge a\right)_{u}$. Because $c \in$ $\in\left(r \vee x_{2}\right)_{a_{2}}$ it follows that $c \in\left(r \vee x_{2}\right)_{x_{1}^{\prime}}$ and we get $r \in\left(\begin{array}{ll}a & c\end{array}\right)_{u}$. .) Now we prove

$$
\begin{equation*}
a_{2} \in c \vee x, x_{2} \in c \wedge x \tag{10}
\end{equation*}
$$

Let $z \in(x \vee c)_{a_{2}}$. Evidently $z \in\left\langle u, x_{1}^{\prime}\right\rangle$. In the isomorphism (9) $z \mapsto\left(z_{1}, z_{2}\right)$, where $z_{1} \in\left(x_{1} \vee r\right)_{a_{1}}$ and $z_{2} \in\left(x_{2} \vee x_{2}\right)_{x_{2}}=x_{2}$. Since $\left(x_{1} \vee r\right)_{a_{1}}=a_{1}$, we get $z_{1}=a_{1}, z_{2}=x_{2}$. Since (a_{1}, x_{2}) corresponds to the element a_{2} in theisomorphism (9), it follows $z=a_{2}$. The assertion $x_{2} \in c \wedge x$ can be proved analogously.

Now we shall show that the assertion $u \in a \wedge b$ follows from

$$
\begin{equation*}
c \leqq s \tag{11}
\end{equation*}
$$

Indeed, if (11) holds from $c \in\langle r, s\rangle, r \in(a \wedge c)_{u}$ by Lemma 3 it follows that $r \leqq c \leqq b$. Hence we get $x_{2} \leqq c \leqq b, x_{2} \leqq c \leqq x_{1}^{\prime}$. Since $x_{2} \in x_{1}^{\prime} \wedge b$, we get $c=x_{2}$ and therefore $r \leqq x_{2}$. Since $u \leqq r \leqq a, u \in a \wedge x_{2}$, we have $r-u$. This gives $u \in a \wedge b$.

It remains to prove (11). Let $a_{3}=\left(a_{2} \vee x_{2}^{\prime}\right)_{v}$. By Lemma 2

$$
\begin{equation*}
\left\langle x_{2}, v\right\rangle \sim\left\langle x_{1}^{\prime}, v\right\rangle \times\langle b, v\rangle \tag{12}
\end{equation*}
$$

In this isomorphism $x_{1}^{\prime} \mapsto\left(x_{1}^{\prime}, v\right), x \mapsto\left(x_{1}^{\prime}, x_{2}^{\prime}\right), a_{2} \mapsto\left(x_{1}^{\prime}, a_{3}\right), s \mapsto(v, s)$ and $x_{2} \mapsto\left(x_{1}^{\prime}, b\right)$. Let $b_{2}^{\prime} \in\left(s \wedge x_{2}^{\prime}\right)_{b}$ and $w \in\left(s \wedge a_{3}\right)_{b_{2}^{\prime}{ }_{2}}$. It is obvious that $b_{2}^{\prime} \in w \backslash x_{2}^{\prime}$. As $v \in s \vee x_{2}^{\prime}, b_{2}^{\prime} \in s \wedge x_{2}^{\prime}$, the intervals $\left\langle b_{2}^{\prime}, s\right\rangle,\left\langle x_{2}^{\prime}, v\right\rangle$ are isomorphic and from $w=\left(s \wedge a_{3}\right)_{b_{2}}$ we get $a_{3}=\left(w \vee x_{2}^{\prime}\right)_{v}$. Denote $d=\left(x_{1}^{\prime} \wedge w\right)_{x_{2}}$. In the isomorphism (12) $d \mapsto\left(x_{1}^{\prime}, w\right)$. We shall prove that $d \in\left(a_{2} \wedge s\right)_{x_{2}}$. Let $k \in\left(a_{2} \wedge s\right)_{x_{2}}$. The element k corresponds to an element (k_{1}, k_{2}), where $k_{1} \in\left(x_{1}^{\prime} \quad v\right)_{x_{1}{ }^{\prime} \text { and } l_{2} \in, ~}^{\nu_{2}}$ $\in\left(a_{3} \wedge s\right)_{b}$. Since $\left(x_{1}^{\prime} \wedge v\right)_{x_{1}^{\prime}}=x_{1}^{\prime}$ and $\left(a_{3} \wedge s\right)_{b}=w$, we have $k_{1}-x_{1}^{\prime}$ and $k_{2}=w$. To the element (x_{1}^{\prime}, w) there corresponds the element d under the isomorphism (12), hence $k=d$ and

$$
\begin{equation*}
d \in a_{2} \wedge s \tag{13}
\end{equation*}
$$

Next we denote $y=\left(x_{1}^{\prime} \wedge b_{2}^{\prime}\right)_{x_{2}}$, then $y \mapsto\left(x_{1}^{\prime}, b_{2}^{\prime}\right)$ under the isomorphism (12) We shall show that

$$
y \in(x \quad d)_{x_{2}}, a_{2} \in\left(\begin{array}{ll}
x & d \tag{14}
\end{array}\right)_{x_{1}}
$$

Let $n \in(x \wedge d)_{x_{2}}$. The element n corresponds to an element (n_{1}, n_{2}) under the isomorphism (12) and $n_{1} \in\left(x_{1}^{\prime} \wedge x_{1}^{\prime}\right) x_{1}^{\prime}=x_{1}^{\prime} n_{2} \in\left(x_{2}^{\prime} \wedge w\right)_{b}=b_{2}^{\prime}$. Since in (12) $y \mapsto\left(x_{1}^{\prime}, b_{2}^{\prime}\right)$, we get $n=y$ and consequently $y \in(x \wedge d) x_{2}$. The assertion $a_{2} \in$ $\in(x \vee d)_{x_{1}^{\prime}}$ can be proved analogously. From (10), (14) by Lemma 4 we get $c \leqq d$. This and (13) imply (11). We have proved that (r) implies (s).

By Lemma 2 and its dual (s) implies (r).
Let M be a multilattice, $a, b, c \in M$. We shall write $a b c$, iff (r) and (s) is valid. From Theorem 1 it follows that in a directed distributive multilattice M we have $a b c$ iff (r) holds. Analogously as in [3] denote by $B(a, b)$ the set of all elements $x \in M$ for which $a x b$ holds.

Lemma 6. If M is a multilattice, $a, b \in M$, then $B(a, b)=B(b, a)$ and $a, b \in B(a, b)$.

Proof. The assertion follows directly from (r) and (s).
Lemma 7. Let M be a multilattice, $a, b, x \in M$. If $a \leqq b$, then $x \in B(a, b)$ iff $a \leqq x \leqq b$, consequently $B(a, b)=\langle a, b\rangle$.

Proof. Evidently from $a \leqq x \leqq b$ it follows that $a x b$, hence $x \in B(a, b)$. Conversely, let $x \in B(a, b), u \in a \wedge x, u^{\prime} \in(b \wedge x)_{u}$. Then $x=\left(u \vee u^{\prime}\right)_{x}=u^{\prime}$, hence $x \in b \wedge x$ and $x \leqq b$. The proof of the assertion $a \leqq x$ is dual.

Lemma 8. Let M be a multilattice, $a, x, b \in M$. If $x \leqq a$ and $x \leqq b$, then $x \in B(a, b)$ iff $x \in a \wedge b$.

Proof. Evidently from $x \in a \wedge b$ it follows that $x \in B(a, b)$. Conversely, let $x \in B(a, b)$. Since $a \vee x=a, b \vee x=b$, we get $x=[(a \vee x) \wedge(b \vee x)]_{x}=(a \wedge$ $\wedge b)_{x}$, hence $x \in a \wedge b$.

Lemma 9. Let M be a distributive directed multilattice. Then $B(a, b)$ is an interval iff $a \wedge b$ and $a \vee b$ are one-element sets.

Proof. Let $B(a, b)=\langle u, v\rangle$. By Lemma 8 and its dual we get $u \in a \wedge b$ and $v \in a \vee b$. Let $u_{1} \in a \wedge b$. By Lemma 8 it follows that $u_{1} \in B(a, b)$, hence $u \leqq u_{1}$, consequently $u=u_{1}$. The proof of the assertion $a \vee b=\{v\}$ is dual.

Conversely, let $a \wedge b$ and $a \vee b$ be sets with exactly one element. Denote $a \wedge b=\{u\}, a \vee b=\{v\}$. We prove $B(a, b)=\langle u, v\rangle$. First we show $B(a, b) \subset$ $c\langle u, v\rangle$. Let $x \in B(a, b) . \mathrm{Bv}$ theorem 1 we get

$$
(a \wedge x) \wedge(b \wedge x)=u,(a \vee x) \vee(b \vee x)=v,
$$

which implies $u \leqq x \leqq v$. Next we prove $\langle u, v\rangle \subset B(a, b)$. Let $x \in\langle u$, $v\rangle$, we show that (r) holds. First we prove

$$
[(a \wedge x) \vee(b \wedge x)] x=x
$$

Denote $x_{1} \in(a \wedge x)_{u}, x_{2} \in(b \wedge x)_{u}$. From the dual of Lemma 2 we get

$$
\langle u, v\rangle \sim\langle u, a\rangle \times\langle u, b\rangle,
$$

where $a \mapsto(a, u), b \mapsto(u, b), x \mapsto\left(x_{1}, x_{2}\right)$. Evidently $[(a \wedge x) \vee(b \wedge x)]_{x}=x$ iff

$$
\left[\left\{(a, u) \wedge\left(x_{1}, x_{2}\right)\right\} \vee\left\{(u, b) \wedge\left(x_{1}, x_{2}\right)\right\}\right]_{\left(x_{1}, x_{2}\right)}=\left(x_{1}, x_{2}\right) .
$$

Since

$$
\begin{gathered}
\left.\left[\left\{(a, u) \wedge\left(x_{1}, x_{2}\right)\right\} \vee\left\{(u, b) \wedge\left(x_{1}, x_{2}\right)\right\}\right]\right]_{\left(x_{1}, x_{3}\right)}= \\
=\left[\left(a \wedge x_{1}, u \wedge x_{2}\right) \vee\left(u \wedge x_{1}, b \wedge x_{2}\right)\right]\left(x_{1}, x_{3}\right)= \\
=\left[\left(x_{1}, u\right) \vee\left(u, x_{2}\right)\right]_{\left(x_{1}, x_{2}\right)}= \\
=\left(x_{1} \vee u, u \vee x_{2}\right)_{\left(x_{1}, x_{3}\right)}=\left(x_{1}, x_{2}\right),
\end{gathered}
$$

we get $[(a \wedge x) \vee(b \wedge x)]_{x}=x$. The assertion $[(a \vee x) \wedge(b \vee x)]_{x}=x$ follows by duality. Hence $\langle u, v\rangle \subset B(a, b)$.

Lemma 10. Let the elements a, b, x of a distributive directed multilattice satisfy the condition
(m) there exist elements $x_{1} \in a \wedge x, x_{2} \in b \wedge x$ and $u \in x_{1} \wedge x_{2}$ such that $x \in x_{1} \vee x_{2}$ and $u \in a \wedge b$.
Then axb.
Proof. 1. First we prove that (m) implies

$$
[(a \vee x) \wedge(b \vee x)]_{x}=x,(a \vee x) \vee(b \vee x) \subset a \vee b
$$

Choose $y_{1} \in a \vee x, y_{2} \in b \vee x, y \in\left(y_{1} \wedge y_{2}\right)_{x}, v \in y_{1} \vee y_{2}$. We show that $y=x$. Clearly $u \in x_{1} \wedge b$. By Lemma 5 we get

$$
\begin{equation*}
y_{2} \in x_{1} \vee b . \tag{15}
\end{equation*}
$$

Choose $r \in\left(a \wedge y_{2}\right)_{x_{1}}$. Then $u \in r \wedge b$. It implies (by (15) using modularity) $r=x_{1}$. Hence

$$
\begin{equation*}
x_{1} \in a \wedge y_{2} \tag{16}
\end{equation*}
$$

and $x_{1} \in a \wedge y$. From this and from $y_{1} \in a \vee x$ we get $x=y$. Consequently (m) implies $[(a \vee x) \wedge(b \vee x)] x=x$. Next we prove that $v \in a \vee b$. By Lemma 5 from (16) we get $v \in a \vee y_{2}$. From this and from (15), (16) and $u \in a \wedge b$ we have by Lemma, $5 v \in a \vee b$. Hence (m) implies $(a \vee x) \vee(b \vee x) \subset a \vee b$.
2. By the first part of the proof, (m) implies the dual condition of (m). Hence we get

$$
(a \wedge x) \wedge(b \wedge x) \subset a \wedge b,[(a \wedge x) \vee(b \wedge x)] x=x
$$

by duality.

Lemma 11. A directed multilattice M is distributive iff $B(u, v)=\langle u, v\rangle \subset$ $\subset B(a, b)$ for each $a, b \in M, u \in a \wedge b, v \in a \vee b$.

Proof. Let M be a directed distributive multilattice. By Lemma $7 B(u, v)=$ $=\langle u, v\rangle$. We prove that $\langle u, v\rangle \subset B(a, b)$. Let $x \in\langle u, v\rangle, x_{1} \in(a \wedge x)_{u}, x_{2} \in$ $\in(b \wedge x)_{u}$. By the dual Lemma of Lemma 2 we get $\left(x_{1} \vee x_{2}\right)_{x}=x$. Hence the assertion (m) holds, consequently $x \in B(a, b)$. It remains to prove the second part of Lemma 11. Let M be a4 non-distributive directed multilattice. Then M contains a submultilattice M_{5} or N_{5} of Figures 1 and 2. In M_{5} and $N_{5} x \in$ $\in\langle u, v\rangle$ and $x \notin B(a, b)$. Hence if M is non-distributive, then $B(u, v) \subset B(a, b)$ do not hoid.

Fig. 1

Fig. 2

Lemma 12. Let M be a distributive directed multilattice, $a, b \in M$. Then

$$
B(a, b)=\bigcup_{\substack{u \in a \wedge b \\ v \in a \vee b}}\langle u, v\rangle .
$$

Proof. By Lemma 11 we get

$$
\bigcup_{\substack{u \in a \wedge b \\ v \in a \vee b}}\langle u, v\rangle \subset B(a, b)
$$

We prove the converse inclusion. Let $x \in B(a, b)$. Denote $x_{1} \in a \wedge x, x_{2} \in b \wedge x$ $y_{1} \in a \vee x, y_{2} \in b \vee x$. By Theorem $1 y_{1} \vee y_{2} \subset a \vee b$ and $x_{1} \wedge x_{2} \subset a \wedge b$. Let $u \in x_{1} \wedge x_{2}, v \in y_{1} \vee y_{2}$, then $u \in a \wedge b, v \in a \vee b$. Hence there exist $u \in a \wedge b$, $v \in a \vee b$ such that $x \in\langle u, v\rangle$.

Lemma 13. Let M be a directed distributive multilattice, $a, b, x \in M . x \in$ $\in B(a, b)$ iff $B(a, x) \cap B(b, x)=\{x\}$.

Proof. Let $x \in B(a, b)$ and $y \in B(a, x) \cap B(b, x)$. Obviously $y \in B(a, x)$ and by Lemma 12 there exist $x_{1} \in a \wedge x$ and $x_{1}^{\prime} \in a \vee x$ such that

$$
\begin{equation*}
x_{1} \leqq y \leqq x_{1}^{\prime} \tag{17}
\end{equation*}
$$

Similarly $y \in B(b, x)$ and there exist $x_{2} \in b \wedge x, x_{2}^{\prime} \in b \vee x$ such that

$$
\begin{equation*}
x_{2} \leqq y \leqq x_{2}^{\prime} \tag{18}
\end{equation*}
$$

Choose $u \in x_{1} \wedge x_{2}, v \in x_{1}^{\prime} \vee x_{2}^{\prime}$. Since $x \in B(a, b)$ by Theorem $1 u \in a \wedge b$ and $v \in a \vee b$. By the dual assertion with respect to Lemma 2 we have

$$
\begin{equation*}
\langle u, v\rangle \sim\langle u, a\rangle \times\langle u, b\rangle, \tag{19}
\end{equation*}
$$

where $x \mapsto\left(x_{1}, \dot{x_{2}}\right), x_{1} \mapsto\left(x_{1}, u\right), x_{2} \mapsto\left(u, x_{2}\right), x_{1}^{\prime} \mapsto\left(a, x_{2}\right), x_{2}^{\prime} \mapsto\left(x_{1}, b\right)$ and $y \mapsto\left(y_{1}, y_{2}\right)$. From (17), (18), (19) it follows

$$
\begin{aligned}
& \left(x_{1}, u\right) \leqq\left(y_{1}, y_{2}\right) \leqq\left(a, x_{2}\right) \\
& \left(u, x_{2}\right) \leqq\left(y_{1}, y_{2}\right) \leqq\left(x_{1}, b\right)
\end{aligned}
$$

From this we get $x_{1} \leqq y_{1}, y_{2} \leqq x_{2}, x_{2} \leqq y_{2}, y_{1} \leqq x_{1}$, consequently $x_{1}=y_{1}$, $x_{2}=y_{2}$ and $x=y$. We have proved that $x \in B(a, b)$ implies

$$
\begin{equation*}
B(a, x) \cap B(b, x)=\{x\} \tag{20}
\end{equation*}
$$

Conversely, let (20) hold. Choose $x_{1} \in a \wedge x, x_{2} \in b \wedge x, x_{1}^{\prime} \in a \vee x, x_{2}^{\prime} \in b \vee x$, $t \in\left(x_{1} \vee x_{2}\right)_{x}$. Clearly $t \in\left\langle x_{1}, x_{1}^{\prime}\right\rangle \subset B(a, x)$ and $t \in\left\langle x_{2}, x_{2}^{\prime}\right\rangle \subset B(b, x)$. From (20) we get $t=x$. The assertion $x=\left(x_{1}^{\prime} \wedge x_{2}^{\prime}\right)_{x}$ follows by duality. Consequently (20) implies (r), hence $x \in B(a, b)$.

Lemma 14. Let M be a distributive directed multilattice, $a, b, c \in M$. Then abc and $a c b$ iff $b=c$.

Proof. If $a b c$ and $a c b$, then $b \in B(a, c)$ and $c \in B(a, b)$. By Lemma $13 B(a$, b) $\cap B(b, c)=\{b\}$. Since $c \in B(a, b)$ and $c \in B(b, c)$ we get $c \in B(a, b) \cap B(b$, $c)=\{b\}$, consequently $c=b$. The converse assertion is obvious.

Lemma 15. Let M be a distributive directed multilattice, $a, b, c, d \in M$. If abc and acd, then bcd.

Proof. Let $a b c$ and $a c d$, hence $b \in B(a, c)$ and $c \in B(a, d)$. Then we have

$$
\begin{align*}
& {[(a \wedge b) \vee(b \wedge c)]_{b}=b=[(a \vee b) \wedge(b \vee c)]_{b}} \tag{21}\\
& {[(a \wedge c) \vee(c \wedge d)]_{c}=c=[(a \vee c) \wedge(c \vee d)]_{c}} \tag{22}
\end{align*}
$$

Choose $x_{1} \in b \wedge c, x_{2} \in c \wedge d, y_{1} \in a \wedge b, u \in x_{1} \wedge y_{1}$. From (21) we get by Theorem $1 u \in a \wedge c$. Hence if $x_{1} \in b \wedge c$, then there exists $u \in a \wedge c$ such that $u \leqq x_{1}$. From (22) it follows that $\left(u \vee x_{2}\right)_{c}=c$. Consequently we have

$$
\begin{equation*}
\left(x_{1} \vee x_{2}\right)_{c}=c \tag{23}
\end{equation*}
$$

Let $x_{1}^{\prime} \in b \vee c, x_{2}^{\prime} \in c \vee d$. By duality we get

$$
\begin{equation*}
\left(x_{1}^{\prime} \wedge x_{2}^{\prime}\right)_{c}=c \tag{24}
\end{equation*}
$$

(23) and (24) implies $c \in B(b, d)$, hence $b c d$.

Let A be a set with a ternary relation $a x b$ and with a specified element $o \in A$ such that the next conditions hold:
(i) $B(a, b)=B(b, a)$;
(ii) $a b c$ and $a c b$ iff $b=c$;
(iii) from $a b c$ and $a c d$ it follows that $b c d$;
(iv) for each two elements $a, b \in A$ there exist sets
$\left\{u_{i} \mid i \in I\right\},\left\{v_{j} \mid j \in J\right\}$ contained in $B(a, b)$ such that:

1. oav ${ }_{j}, o b v_{j}, o u_{i} a, o u_{i} b$ for all $i \in I$ and $j \in J$;
2. for each $c \in B(a, b)$ there exist $i \in I, j \in J$ such that $\mathrm{ou}_{i} c$, ocvj;
3. if $d \in A$, oad, obd (oda, odb), then there exists $j \in J(i \in I)$ such that $o v_{j} d$ (odut);
4. if $z \in A$, oaz, obz and $o z v_{j}\left(o z a, o z b\right.$ and $\left.o u_{i} z\right)$ for some $j \in J(i \in I$, then $z=v_{j}\left(z=u_{i}\right)$.
(v) if for $x \in A$ there exist $u_{i}, v_{j} \in B(a, b)$ such that $o u_{i} x$, oxv v_{j}, then $x \in B(a, b)$.

Lemma 16. Let A be a set with a ternary relation axb which satisfies (i), (ii) and (iii). If $a, b, x \in A, x \in B(a, b)$, then

$$
B(a, x) \cap B(x, b)=\{x\}
$$

Proof. Let $y \in B(a, x) \cap B(x, b)$. Clearly $a y x, b y x$ and we suppose $a x b$. By (iii) from $a y x$ and $a x b$ we get $y x b$. By (i) and (ii) from $b y x$ and $y x b$ it follows that $y-x$.

Theorem 2. Let A be a set with a specified element o and with a ternary relation axb such that (i), (ii), (iii), (iv), (v) are satisfied. Then there is a directed distributive multilattice on A with the least element o in which axb iff (r) is valid. Conversely, if in a directed distributive multilattice we define axb by (r), then the conditions (i), (ii), (iii), (iv), (v) are satisfied.

Proof. Assume that (i) - (v) hold. First we prove that A is a poset. We define $a \leqq b$ iff $o a b$, hence $a \in B(o, b)$. From (i) and (ii) it follows that $a, b \in$ $\in B(a, b)$. Consequently $o a a$ and the relation \leqq is reflexive. Suppose $a \leqq b$ and $b \leqq a$, hence $o a b$ and $o b a$. By (ii) $a=b$ and the relation $a \leqq b$ is antisymmetric. Let $a \leqq b$ and $b \leqq c$, hence $o a b$ and $o b c$. By (iii) $a b c$, therefore $b \in B(a, c)$. By (iv) for $b \in B(a, c)$ there exists $v_{j} \in B(a, c)$ such that oav v_{j}, obv v_{j}, $o c v_{j}$. Now by (iii) from $o a b, o b v_{j}$ we get

$$
\begin{equation*}
a b v_{j} \tag{25}
\end{equation*}
$$

from $o b c, o c v_{j}$ we get

$$
\begin{equation*}
b c v_{j} \tag{26}
\end{equation*}
$$

and finally (25) and $a v_{j} c$ imply
$b v_{j} c$.
From (26), (27) and (ii) it follows $c=v_{j}$. Since $o a v_{j}$ we get oac, hence $a \leqq c$ and the relation \leqq is transitive. We proved that A is a poset. Since $o \in B(o, x)$ for each element $x \in A, o$ is the least element of A.

The condition 1 of (iv) implies that A is a directed set.
Now we shall show that A is a multilattice. The property (a) from the definition of the multilattice follows from 1 and 3 of (iv). The property (b) from the definition of the multiattice follows from 4 of (iv). Consequently

$$
\begin{aligned}
& a \vee b=\left\{v_{j} \mid v_{j} \in B(a, b), j \in J\right\}, \\
& a \wedge b=\left\{u_{i} \mid u_{i} \in B(a, b), i \in I\right\} .
\end{aligned}
$$

Next we suppose that $a, x, b \in A$ and $a x b$, hence $x \in B(a, b)$. We shall show that (r) holds. Let $u_{i} \in a \wedge x, u_{n} \in b \wedge x, v_{j} \in a \vee x, v_{k} \in b \vee x$ where $u_{i}, v_{j} \in$ $\in B(a, x)$ and $u_{n}, v_{k} \in B(b, x)$. We shall prove

$$
\left(u_{i} \vee u_{n}\right)_{x}=x,\left(v_{j} \wedge v_{k}\right)_{x}=x
$$

Let $\left(u_{i} \vee u_{n}\right)_{x}=z$. Clearly $z \leqq x, u_{i} \leqq z, u_{n} \leqq z, x \leqq v_{j}, x \leqq v_{k}$. Hence $z \in\left\langle u_{i}, v_{j}\right\rangle$ and $z \in\left\langle u_{n}, v_{k}\right\rangle$. By (v) $z \in B(a, x)$ and $z \in B(b, x)$, consequently $z \in B(a, x) \cap B(b, x)$ and by Lemma 16 from $x \in B(a, b)$ we get $z=x$. The assertion $\left(v_{j} \vee v_{k}\right)_{x}=x$ follows by duality. Hence $a x b$ implies (r).

Now we shall show that A is a distributive multilattice. Let a, b, b^{\prime}, u, $v \in A$ and $u \leqq a \leqq v, u \leqq b \leqq v, u \leqq b^{\prime} \leqq v$,

$$
(a \vee b)_{v}=\left(a \vee b^{\prime}\right)_{v}=v,(a \wedge b)_{u}=\left(a \wedge b^{\prime}\right)_{u}=u
$$

Obviously $u, v \in B(a, b)$. By (v) $b^{\prime} \in B(a, b)$ and (r)implies

$$
\begin{equation*}
\left[\left(a \wedge b^{\prime}\right) \vee\left(b^{\prime} \wedge b\right)\right] b^{\prime}=b^{\prime} \tag{28}
\end{equation*}
$$

Let $t \in\left(b \wedge b^{\prime}\right)_{u}$. Since $\left(a \wedge b^{\prime}\right)_{u}=u$, from (28) we get $b^{\prime}=(u \vee t)_{b^{\prime}} \quad t$, hence $b^{\prime} \leqq b$. Analogously we obtain $b \leqq b^{\prime}$. We have proved that A is a dis tributive multilattice.

It remains to prove that (r) implies axb. Let (r) hold. By Lemma $12 x \in$ $\in B(a, b)$, hence $a x b$.

The converse assertion follows from Lemma 6, Lemma 12, Lemma 14 and Lemma 15.

REFERENCES

[1] BENADO, M.: Les ensembles partiellement ordonnées et le théoréme de raffinement de Schreier. II. Czechosl. Math. J. 5, 1955, 308-344.
[2] BENADO, M.: Bemerkungen zur Theorie der Vielverbände IV. Proc. Cambridge Philos. Soc. 56, 1960, 291-317.
[3] KOLIBIAR, M.: Charakterisierung der Verbände durch die Relation ,,zwischen". Z. math. Logik und Grundl. Math. 4, 1958, 89-100.
[4] KOLIBIAR, M : Über metrische Vielverbände I. Acta Fac. rerum natur. Univ. Comenianae. Math. 4, 1959, 187-203.
[5] KLAUČOVÁ, O.: b - equivalent multilattices. Math. Slovaca 1, 1976, 63-72.
Received November 28, 1974
Katedra matematiky a deskript vrej geometrie Strojn'ckej fakulty Slovenskej vysokej školy technickej 88031 Bratislava
Gottwaldovo nám. 50

