Anton Dekrét Horizontal structures on fibre manifolds

Mathematica Slovaca, Vol. 27 (1977), No. 3, 257--265

Persistent URL: http://dml.cz/dmlcz/128859

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

HORIZONTAL STRUCTURES ON FIBRE MANIFOLDS

ANTON DEKRÉT

Libermann, [3], has defined a connection of the first order on a fibre space $E(B, F, \pi)$ as a global cross-section $\Gamma: E \to J^{\dagger}E$. In this paper we find some properties of this structure. Our consideration are in the category C^{∞} . The standard terminology and notations of the theory of jets are used throughout the paper, see [2].

1. Let VTE denote the fibre bundle of vertical vectors on $E(B, F, \pi)$. A tensor field $\sigma: E \to VTE \otimes T^*E$ will be said to be a *v*-field. Let X be a vector field on E. Denote by $L_x(\sigma)$ the Lie derivative of σ by X. Locally, let (x^i, y^α) , $i=1, ..., n = \dim B$, $\alpha = 1, ..., \dim F$, be local coordinates on E. Direct evaluation yields for the *v*-field $\sigma: (x, y) \mapsto (a_k(x, y)dx^k + b^\alpha_\beta(x, y)dy^\beta) \otimes \partial y_\alpha$ and the vector field $X = a^i(x, y)\partial x_i + b^\alpha(x, y)\partial y_\alpha$:

(1)

$$L_{x}(\sigma) = -\left(a_{k}^{\alpha}dx^{k} + b_{\beta}^{\alpha}dy^{\beta}\right)\frac{\partial a^{i}}{\partial y^{\alpha}}\otimes\partial x_{i} + \left\{\left(\frac{\partial a_{k}^{\alpha}}{\partial x^{i}}a^{i} + \frac{\partial a_{k}^{\alpha}}{\partial y^{\beta}}b^{\beta} + a_{i}^{\alpha}\frac{\partial a^{i}}{\partial x^{k}} + b_{\beta}^{\alpha}\frac{\partial b^{\beta}}{\partial x^{k}} - \frac{\partial b^{\alpha}}{\partial y^{\beta}}a_{k}^{\beta}\right)dx^{k} + \left(a_{k}^{\alpha}\frac{\partial a^{k}}{\partial y^{\beta}} + \frac{\partial b_{\beta}^{\alpha}}{\partial x^{i}}a^{i} + \frac{\partial b_{\beta}^{\alpha}}{\partial y^{\gamma}}b^{\gamma} + b_{\gamma}^{\alpha}\frac{\partial b^{\gamma}}{\partial y^{\beta}} - \frac{\partial b^{\alpha}}{\partial y^{\gamma}}b_{\beta}^{\gamma}\right)dy^{\beta}\right\}\otimes\partial y_{\alpha}.$$

This immediately gives

Lemma 1. Let X be a vector field on E. Then the Lie derivative of every v-field on E by X is a v-field on E if and only if X is projectable.

Let σ be a *v*-field, hence $\sigma(u) \in \text{Hom}(T_uE, T_uE_x)$, $\pi u = x$. If $\sigma(u)|T_uE_x$ is regular for any $u \in E$, then σ determines a horizontal distribution of the kernels of $\sigma(u)$, i.e. a global cross-section $E \to J^{\mathsf{T}}E$. Denote by $\varkappa(E)$ the set of all such *v*-fields on *E* that $\sigma(u)|T_uE_x = \mathrm{id}|T_uE_x$ for any $u \in E$. Let Γ_E be the set of all cross-sections $E \to J^{\mathsf{T}}E$. There is a one to one correspondence $\delta: \varkappa(E) \to \Gamma_E$, where $\delta(\sigma)$ is a cross-section $E \rightarrow J^{\dagger}E$ determined by the horizontal distribution of the kernels of $\sigma(u)$, $u \in E$.

2. **Definition 1.** Let $\Gamma: E \to J^1E$ be a cross-section. The pair (E, Γ) or the *v*-field $\delta^{-1}(\Gamma) \equiv {}^{\Gamma}\sigma$ will be called an *H*-structure or a tensor of the *H*-structure, respectively.

Every 1 – jet $\Gamma(u)$ determines an element of Hom (T_xB, T_uE) , $\pi u = x$. Thus we get a cross-section $\overline{\Gamma}: E \to TE \otimes T^*B$. Locally, let (x^i, y^a, y^a_i) be local coordinates on J^1E . If $\Gamma: (x^i, y^a) \to (x^i, y^a, y^a_i) = -a^a_i(x^k, y^b)$, then

$$\stackrel{r}{\sigma}: (x, y) \mapsto (a_{i}^{a}(x, y)dx^{i} + dy^{a}) \otimes \partial y_{a},$$

$$\bar{\Gamma}: (x, y) \mapsto dx^{i} \otimes \partial x_{i} - a_{k}^{a}(x, y)dx^{k} \otimes \partial y_{a},$$

By direct evaluation we get

Lemma 2. Let X be a projectable vector field on E. Then $L_x(\overline{\Gamma})$ is a global cross-section $E \rightarrow VTE \otimes T^*M$ and

$$(L_x^{\Gamma}\sigma)(u) = -(L_x\bar{\Gamma})(u)\pi_*.$$

Let X be a projectable vector field on E and ¹X be the first prolongation of X on $J^{!}E$. Let $\Gamma(E)$ be the set of all values of the cross-section $\Gamma: E \to J^{!}E$. By [1] a projectable field X on E is conjugate with Γ if $\Gamma_*(X)(h) = {}^{!}X(h)$. It is easy to prove

Proposition 1. Let (E, Γ) be an H-structure. Let X be a projectable vector field on E. Then X is conjugate with Γ if and only if $L_x({}^{\Gamma}\sigma) = 0$.

Denote by \overline{Y} the Γ -lift of a vector field Y on B. Let $Z_1, Z_2 \in T_{x_0}B$. Let Y_1 or Y_2 be such a vector field on B that $Y_1(x_0) = Z_1$ or $Y_2(x_0) = Z_2$, respectively. Put

$$\Theta(u)(Z_1, Z_2) = {}^{r} \sigma(u)([\bar{Y}_1, \bar{Y}_2](u)).$$

It is easy to prove that $\Theta(u)(Z_1, Z_2)$ does not depend on the choice of the vector fields Y_1 , Y_2 and that the mapping $u \mapsto \Theta(u)$ determines a global cross-section

$$\Theta: E \to VTE \otimes \wedge^2 T^*B,$$

which will be said to be the curvature field of the H-structure.

Let $\Gamma: E \to \tilde{J}^2 E$ denote the first prolongation of $\Gamma: E \to J^1 E$, see [4]. In local coordinates, if

$$\Gamma:(x^i, y^{\alpha})\mapsto (x^i, y^{\alpha}, y^{\alpha}_j = -a^{\alpha}_j(x^k, y^{\beta})),$$

then

.

(2)
$$\Gamma': (x^i, y^a) \mapsto \left(x^i, y^a, y^a_k = -a^a_k, y^a_{kj} = \frac{\partial a^a_k}{\partial y^\beta} a^\beta_j - \frac{\partial a^a_k}{\partial x^j}\right)$$

Kolář, [4], introduced the difference tensor $\Delta(X)$ of an arbitrary semi-holonomic

258

jet X. We recall that if $h \in \overline{J}_x^2 E$, $\beta h = u \in E$, then $\Delta(h) \in T_u E_x \otimes \wedge^2 T_x^* B$. Locally, if $h = (x^i, y^{\alpha}, y^{\alpha}_i, y^{\alpha}_i)$, then $\Delta(h) = y^{\alpha}_{(i,k)} dx^i \wedge dx^k \otimes \partial y_{\alpha}$.

In the case of the *H*-structure (B, Γ) we obtain a global cross-section $\Delta(\Gamma'): E \to VTE \otimes \wedge^2 T^*B$. By the direct evaluation in local coordinates we get

Proposition 2. Let (E, Γ) be an H-structure. Then

(3)
$$\Theta(u) = -\Delta(\Gamma')(u)$$

for any $u \in E$.

By the relation (3) the curvature field Θ of the *H*-structure (E, Γ) is the curvature of the connection Γ by Libermann [3]. Relation (3) also gives in the comparison the curvature of the differential system Γ by Prad nes [6].

Let $\bar{X} = a^i \partial x_i - a^a_k a^k \partial y_a$ be the Γ -lift of a vector field X on M. Using (1) we have

(4)
$$L_{x}({}^{r}\sigma) = \left[\frac{\partial a_{k}^{\alpha}}{\partial x^{i}} - \frac{\partial a_{k}^{\alpha}}{\partial y^{\beta}}a_{j}^{\beta} + \frac{\partial a_{j}^{\alpha}}{\partial y^{\beta}}a_{k}^{\beta} - \frac{\partial a_{j}^{\alpha}}{\partial x^{k}}\right]a^{j}dx^{k}\otimes\partial y_{\alpha}$$

It immediately yields that the mapping

 $X \mapsto L_{\bar{x}}(r\sigma)$

is a linear mapping of the modul D(M) of all vector fields on M to the modul of all tensor fields $E \rightarrow VTE \otimes T^*M$. Moreover if the curvature field of (B, Γ) vanishes, then the Γ -lift X of X is conjugate with Γ .

Let $w \in J^1E$, $\beta w = u$, $\pi u = x$. Denote by L(w) the element of $T_u E \otimes T_x^* M$ determined by w. Then $L(w) - L(\Gamma(u)) \in T_u E_x \otimes T_x^* M$ and determines a 1-jet of $J_x^1(B, E_x)$, which we will denote by $w - \Gamma(u)$ and call the development of w into E_x by means of Γ .

Let $v \in \overline{J}^2 E$, $\beta v = u$. Then the tensor $\overline{\tau}(v) = \Delta(v) - \Delta(\Gamma'(u))$ will be said to be the torsion of the 2-jet v. Let $\mathscr{S}: B \to \overline{J}^2 E$ be a global section of $\overline{J}^2 E$ over B. Let (E, Γ) be an H-structure. Then the threetuple (E, Γ, \mathscr{S}) will be called the SH-space. The tensor

$$\bar{\tau}(x) = \Delta(\mathscr{G}(x)) - \Delta(\Gamma'(\beta \mathscr{G}(x)))$$

will be said to be the torsion of the SH-space at $x \in B$.

Remark. The second prolongation of the section $S: B \to E$ gives a holonomic section $S^{(2)}: B \to J^2 E$ and determines the SH-space $(E, \Gamma, S^{(2)})$, the torsion of which has the property

(5)
$$\overline{\tau}(x) = \Theta(S(x)).$$

3. Let us compare our consideration with the theory of connections. Let Φ be a Lie grupoid of the operators on a fibre bundle $E(B, F, \pi)$. Let a, b be the projections of Φ and let $1_x \in \Phi$ denote the unit over $x \in B$. Let us recall (see [5])

259

that the connection (of the first order) on Φ is a global cross-section $C: B \to \bigcup_{x \in B} Q_x$, where Q_x denotes the set of all such elements $h \in J_x^1(a^{-1}(x), b, B)$ that $\beta h = 1_x$.

Let C be a connection on Φ , $C(x) = j_x^1 \eta$. Let $v \in J_x^1 E$, $v = j_x^1 \xi$. We recall that

(6)
$$C^{-1}(x)(v) = j_x^{I}[\eta^{-1}(z)[\xi(z)]] \in J^{1}(B, E_x)$$

is the development of v into E_x by means of C and analogously if $w \in \overline{J}_x^2 E$, $w = j_x^{\dagger} \xi$, then

(7)
$$C'^{-1}(x)(w) = C^{-1}(x)[j_x^{-1}(z)(\xi(z))] \in \bar{J}^2(B, E_x)$$

is the developement of w into E_x by means of C.

Let $u \in E$, $\pi u = x$, $C(x) = j_x^1 \eta$. Using the diffeomorphism $\eta(z): E_x \to E_z$ put

(8)
$${}^{C}\Gamma(u) = j_{x}^{!}[z \mapsto \eta(z)(u)] \in J_{x}^{!}E.$$

It is easy to see that the mapping $u \mapsto {}^{c}\Gamma(u)$ determines a global cross-section ${}^{c}\Gamma: E \to J^{1}E$. The *H*-structure $(E, {}^{c}\Gamma)$ will be said to be the representative of the connection *C* on *E*.

Denote by U the domain of the local cross-section η . We have a mapping f: $\pi^{-1}(U) \rightarrow E_x$ determined by $h \rightarrow \eta^{-1}(z)(h)$, $\pi h = z$. Let dC_u be the differential of f at $u \in E$, $\pi u = x$.

Proposition 3. Let C be a connection on Φ . Then

(9)
$$\mathrm{d} C_u = {}^c \sigma(u), \quad u \in E,$$

where ${}^{c}\sigma$ denotes the tensor of the H-structure (E, ${}^{c}\Gamma$).

Proof. Since $\beta C(x) = 1_x$, $dC_u | T_u(E_x) = id | T_u(E_x)$. Let $Y \in H_u \subset T_u(E)$, where H_u is the subspace determined by ${}^{C}\Gamma(u)$. Then $dC_u(Y) = O$. It proves our assertion.

Lemma 3. Let $v \in J_x^{\mathsf{I}}E$, $\beta v = u$. Then

(10)
$$L(C^{-1}(x)(w)) = L(v) - L(^{c}\Gamma(u)).$$

Proof. It is easy to see that $L(v) - L({}^{C}\Gamma(u)) = {}^{C}\sigma(u)L(v)$ and that dC_{u} $L(v) = L(C^{-1}(x)(v))$. Then the relation (9) completes our proof.

Using Lemma 3 the following assertion can be proved by direct evaluation in local coordinates.

Proposition 4. Let $w \in \overline{J}^2 E$, $\beta w = u$, $\pi u = x$. Then (11) $\overline{\tau}(w) = \Delta C'^{-1}(x)(w)$.

Let P(B, G, p) be a principal fibre bundle and let $E(B, F, \pi)$ be a fibre bundle associated with P. Let $\Phi = PP^{-1}$ be the grupoid associated with P. Let us recall that

260

 $\Phi = (P \times P)|G, (h_1g, h_2g) \sim (h_1, h_2);$ if $\vartheta = (h_1, h_2) \in \Phi$, then $a\vartheta = ph_2, b\vartheta = ph_1;$ if $\vartheta_1 = (h_1, h_2)$ and $\vartheta_2 = (h_3, h_4)$, then the composition $\vartheta_1 \vartheta_2$ is defined if and only if $h_1 = h_2$ and $\vartheta_1 \vartheta_2 = (h_1, h_4)$. Let us also recall that $\Phi = PP^{-1}$ is a grupoid of operators on $E(B, F, \pi)$. Let C be a connection on Φ and let $\Gamma: P \rightarrow J^{\dagger}P$ be the representative of C on P. It is known that $\Gamma(hg) = \Gamma(h)g$ (i.e. Γ is a connection on P). Hence the tensor $\Gamma \sigma$ of the H-structure (P, Γ) is equivariant, i.e. if $\bar{Y} \in T_h P$ is generated by $Y \in \mathcal{G}$ (\mathcal{G} denotes the Lie algebra of G) and $\Gamma \sigma(X) = \bar{Y}$, then

 ${}^{r}\sigma((R_{q})*X) = \overline{Ad \ g^{-1}(Y)}$. Let $h \in P$, p(h) = x. Denote by \overline{h} the map $P_{x} \to G$, $\overline{h}(q) = \overline{h}(hg) = g$. Let φ be the canonical form of the connection Γ . Then $\varphi(h) \in \mathcal{G} \otimes T_{h}^{*}P$ and

(12)
$$\varphi(h) = \bar{h} *^{r} \sigma(h).$$

Let Ω be the curvature form of the connection Γ on P, denote by $\Omega(h)$ the element of $\mathscr{G} \otimes \wedge^2 T^*_x M$ determined by Ω at $h \in P$, ph = x.

Proposition 5. Let Θ be the curvature field of the H-structure (P, Γ) determined by the connection Γ on P. Let Ω be the curvature form of Γ . Then

(13)
$$\bar{h}*\Theta(h) = -\Omega(h).$$

Proof. Let X, \overline{Y} be the Γ -lifts of vector fields X, Y on B. Using (12), the definitions of Ω and Θ yield

$$\Omega(h)(X, Y) = -\varphi([\bar{X}, \bar{Y}](h)) = -\bar{h}*^{r}\sigma(h)[\bar{X}, \bar{Y}] =$$

= $-\bar{h}*\Theta(h)(X, Y) \cdot QED.$

Denote by (E, \tilde{I}) the *H*-structure, which is the representative of the connection *C* on *E*. Every $h \in P$, ph = x, determines a mapping $\tilde{h}: P \to a^{-1}(x) \subset \phi$, $\tilde{h}(q) = (q, h)$. Analogously denote by $\tilde{u}: a^{-1}(x) \to E$ the map $\vartheta \to \vartheta(u), u \in E_x$. Therefore $\tilde{u}\tilde{h}: P \to E$ is a fibre morphism from *P* to *E*. Let $(\tilde{u}\tilde{h})': J^1P \to J^1E$ denote the prolongation of the map $\tilde{u}\tilde{h}$. It is easy to see that the diagram

(14)
$$\begin{array}{ccc} P & \stackrel{u\bar{h}}{\longrightarrow} & E \\ \Gamma \downarrow & & \downarrow \tilde{\Gamma} \\ J^{1}P & \stackrel{(u\bar{h})'}{\longrightarrow} & J^{1}E \end{array}$$

is commutative. Let $(\tilde{u}h)_*$ denote the differential of $\tilde{u}h$ at $h \in P$. Using (14) we obtain

Proposition 6. Let $\[\tilde{\sigma} \] or \[\sigma \] be the tensor field of the <math>(E, \tilde{\Gamma}), \] or \[(P, \Gamma), \] respectively.$ Then

(15)
$$(\tilde{u}\tilde{h})*^{r}\sigma(h)(X) = {}^{r}\tilde{\sigma}(\tilde{u}\tilde{h})*(X), X \in T_{h}(P).$$

261·

Proposition 7. Let $h \in P_x$, $u \in E_x$. Let $\tilde{\Theta}$ be the curvature field of the H-structure $(E, \tilde{\Gamma})$. Then

(16)
$$\tilde{\Theta}(u) = (\tilde{u}\tilde{h}) * \Theta(h).$$

Remark. Let G_x be the isotropy group of Φ over $x \in B$ and let \mathscr{G}_x be its Lie algebra. Let $h \in P_x$. Denote by $\bar{h}*$ the differential of the mapping $\bar{h}: G \to G_x$, $\bar{h}(g) = [hg, h] = \vartheta \in \Phi$, at $e \in G$, where e denotes the unit of G. Let Ω be the curvature form f if the connection Γ on P which is the representative of the connection C. In [5] Kolář has introduced the curvature form of the connection Cat $x \in B$ by

$$\Omega(x) = \bar{h}_* \cdot \Omega(h),$$

where the dot denotes the composition of mappings, and also introduced a generalized space with connection as a quadruple $\mathcal{G} = S(P(B, G), F, C, \eta)$, where $\eta: B \to E$ is a global cross-section. Let $u \in E_x$. Let \bar{u}_* denote the differential of mapping $\bar{u}: G_x \to E_x$, $u(\vartheta) = \vartheta(u)$, at $1_x \in G_x$. Then the form

$$\tau(x) = (\overline{\eta(x)}) * \cdot \Omega(x)$$

is called by Kolář the torsion form of the generalized space \mathscr{S} with connection at $x \in B$. The relations (13) and (16) give

(17)
$$\tilde{\Theta}(\eta(x)) = -\tau(x).$$

Moreover the generalized space $\mathscr{S}(P(B, G), F, C, \eta)$ with connection determines the *SH*-space $(E, {}^{c}\tilde{\Gamma}, \eta^{(2)})$. Let $\tilde{\tau}(x)$ be the torsion of this *SH*-space. Then comparing (5) with (17) we get

$$\bar{\tau}(x) = -\tau(x).$$

4. Let us consider the special case of a vector bundle $E(B, \pi)$. Denote by V the Liouville field on E determined by the 1-parametric group of all homothetics on E. Locally, $V = y^{\alpha} \partial y_{\alpha}$. A v-field σ on E will be said to be k-homogeneous, if $L_v \sigma = k \sigma$.

Lemma 4. Locally let $\sigma = (a_i(x^i, y^\beta)dx^i + b^{\alpha}_{\gamma}(c^i, y^\beta)dy^{\gamma}) \otimes \partial y_{\alpha}$. Then σ is k-homogeneous if and only if a^{α}_i or b^{α}_i are homogeneous functions of the degree k+1 or k with respect to variables y^{β} .

. . .

Proof. Relation (1) gives

(18)
$$L_{\nu}\sigma = \left[\left(\frac{\partial a_{k}^{\alpha}}{\partial y^{\beta}} y^{\beta} - a_{k}^{\alpha} \right) dx^{k} + \frac{\partial b_{\beta}^{\alpha}}{\partial y^{\gamma}} y^{\gamma} dy^{\beta} \right] \otimes \partial y_{\alpha} .$$

This proves our assertion.

Proposition 8. Let (E, Γ) be an H-structure. Then $^{\Gamma}\sigma$ is O-homogeneous if and only if the Liouville field V is conjugate with Γ .

Proof. In the case of the tensor field $r\sigma$ of the *H*-structure we have

(19)
$$L_{v}^{\Gamma}\sigma = \left[\left(\frac{\partial a_{k}^{\alpha}}{\partial y^{\beta}} y^{\beta} - a_{k}^{\alpha} \right) dx^{k} + \frac{\partial b_{\beta}^{\alpha}}{\partial y^{\gamma}} y^{\gamma} dy^{\beta} \right] \otimes \partial y_{\alpha} \, .$$

Using proposition 1, relation (19) and Lemma 4 complete our assertion.

Let \overline{X} be the Γ -lift of a field X on B. Then

$$(L_V^{\ r}\sigma)(\bar{X}) = [V, \bar{X}].$$

This gives

Proposition 9. The tensor field $^{\Gamma}\sigma$ of the H-structure (E, Γ) is O-homogeneous if and only if $[V, \bar{X}] = 0$ for every vector field X on B.

Let (E, Γ) be an *H*-structure, *Z* be a vertical field on *E*. Then $\Gamma_*(Z)$ is a vector field on the submanifold $\Gamma(E)$. The values of $\Gamma_*(Z)$ are vertical tangent vectors on the vector bundle J^1E over *B*. Let *i*: $T_u(J_x^1E) \rightarrow J_x^1E$ be the canonical identification. Then $u \rightarrow i \cdot \Gamma_*(Z(u))$ determines a mapping $\zeta: E \rightarrow J^1E$. Locally, $Z = b^{\alpha}(x^i, y^{\beta}) \partial y_{\alpha}$ and

$$(x^i, y^{\alpha}) \stackrel{\xi}{\mapsto} \left(x^i, b^{\alpha}(x^i, y^{\beta}), \frac{\partial a^{\alpha}_i}{\partial y^{\beta}} b^{\beta} \right).$$

therefore ζ is a global cross-section of $J^{1}E$ over E if and only if Z = V. In this case denote by $(E, V(\Gamma))$ the H-structure determined by ζ . Locally

(20)
$${}^{V(\Gamma)}\sigma = \left(dy^{\alpha} + \frac{\partial a_{j}^{\alpha}}{\partial y^{\beta}}y^{\beta}dx^{i}\right) \otimes \partial y_{\alpha}.$$

Proposition 10. Let (E, Γ) be an *H*-structure. Then

(21)
$$(L_{v}(^{r}\sigma))(u) = (\tilde{\Gamma}(u) - \overline{V(\Gamma)}(u))\pi * .$$

Proof. $\overline{\Gamma}: (x^i, y^{\alpha}) \mapsto dx^i \otimes \partial x_i - a_j^{\alpha}(x, y) dx^j \otimes \partial y_{\alpha}$,

$$\overline{V(\Gamma)}:(x^i, y^{\alpha})\mapsto dx^i\otimes \partial x_i - \frac{\partial a_i^{\alpha}}{\partial y^{\beta}} y^{\beta} dx^i\otimes \partial y_{\alpha}.$$

Using (19) we get (21).

Corollary. An H-structure (E, Γ) is O-homogeneous if and only if $\Gamma = V(\Gamma)$.

Remark. As it is well known, the *H*-structure (E, Γ) is a connection on *E* if and only if the cross-section $\Gamma: E \to J^1 E$ is a vector bundle morphism over *B*. Locally, Γ is a connection on *E* if and only if $a_i^{\alpha} = \Gamma_{i\beta}^{\alpha}(x)y^{\beta}$. Hence the Liouville field *V* is conjugate with every connection on *E*.

Further, if (E, Γ) is an *H*-structure and $\varepsilon: B \to E$ is a global cross-section, then, using the identifications $j: E_x \to T_{\varepsilon(x)}E_x$. $i: T_{\Gamma(\varepsilon(x))}J_x^{\dagger}E \to J_x^{\dagger}E$, we get the mapping

 $\Gamma^{*(x)} \equiv i \cdot \Gamma_* \cdot j$

from E_x to $J_x^{l}E$. It is easy to see that Γ^* is a connection on E. Locally, if the functions $a_i^{a}(x, y)$ determine the H-structure (E, Γ) , then the functions

$$\frac{\partial a_i^{\alpha}(x^k,\,\varepsilon^{\gamma}(x^k))}{\partial y^{\beta}}\,y^{\beta}$$

determine the connection Γ^* .

REFERENCES

- [1] DEKRÉT, A.: On a horizontal structure on differentiable manifolds. (To apear.)
- [2] EHRESMANN, C.: Extension du calcul des jets aux jets non holonomes. C.R. Acad. Sci. Paris 239, 1954, 1762—1764.
- [3] LIBERMANN, P.: Parallélismes. J. Diff. Geometry 8, 1973, 511-539.
- [4] KOLÁŘ, I.: Higher order torsions of space with Cartan connection. Cahiers Topologie Géom. différentielle 12, 1971, 137–146.
- [5] KOLÁŘ, I.: On the torsion of space with connection. Czech. Math. J. 21, 1971, 124–136.
- [6] PARADINES, J.: Suites exactes vectorielles doubles et connections. C.R. Acad. Sc. Paris 278, 1974, 1587–1590.

Received December 8, 1975

Katedra matematiky a deskriptívnej geometrie Vysoká škola lesnícka a drevárska Štúrova 4 960 01 Zvolen

ГОРИЗОНТАЛЬНЫЕ СТРУКТУРЫ НА РАССЛОЕННЫХ ПРОСТРАНСТВАХ

Антон Декрет

Резюме

Пусть *E* расслоенное пространство. Горизонтальная структура или обобщенная связаность это сечение $\Gamma: E \to J^{\dagger}E$ расслоения $J^{\dagger}E$. В статье определено поле и форма кривизны горизон тальной структуры. Пользуясь теорией струей наиден джет-вид формы кривизны. Обоснованы некоторые свойства производной Ли поля горизонтальной структуры. Специально иследованы горизонтальные структуры на векторных расслоенных пространствах. Результаты соединены с полем и формой кривизны горизонтальной структуры сравнены с теорией связности на главном расслоенном пространстве и пространствах ассоциированных с этим пространством.